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COHOMOLOGY OF ALGEBRAS OF DIHEDRAL
TYPE. V

A. I. Generalov* UDC 512.5

The Yoneda algebras for a family of local algebras of dihedral type (from the famous K. Erdmann’s
list) are described in terms of generators and relations. Bibliography: 21 titles.

1. INTRODUCTION

The Yoneda algebras were calculated in [1-17] for several families of algebras of dihedral
or semidihedral type, which are contained in Erdmann’s classification [18]. The present paper
continues this series. We recall that along with the diagrammatic method of D. Benson and J.
Carlson [19], used, for example, in [1-3,5,10,12,15], we often used the approach of paper [4].
The essence of this approach is that based on some empirical observations, we state some
hypothesis about the structure of minimal projective resolutions of simple modules. Then
after the study of this hypothesis, we read the “cohomology information” from the found
resolutions. As a result we get the description of the Yoneda algebras of the algebras under
consideration.

In the present paper, we use the approach from [4] to describe the Yoneda algebra for a
family of local algebras presented in Erdmann’s classification [18].

We note that the technique of paper [4] was also applied in calculating the Hochschild
cohomology algebra for a significant number of families of finite-dimensional algebras and for
the integral group rings of dihedral and semidihedral groups, see [21] and references therein.

2. FORMULATION OF THE MAIN RESULTS

Let R be a finite-dimensional algebra over a field K. All modules under consideration are
left. Denote by

E(M) = P Extg (M, M)
m>0
the Ext-algebra of the R-module M. For a basic K-algebra R with Jacobson radical J(R),
the Ext-algebra £(R/J(R)) is called the Yoneda algebra of R and is denoted by Y(R). In the
sequel, we assume that the basic field K is algebraically closed.
We define algebras Ry, , := K[X,Y]/J, where m,n € N, m > n > 2, m+n > 4, and the
ideal J is defined by the elements

XY, YX, X" —Y"

The images of the elements X, Y under the canonical map from K[X,Y] to R are denoted by
x and y, respectively. Since the algebra R,, , is local, Y(R,, ) is the Ext-algebra of a unique
simple R,, ,-module S.

To describe the Yoneda algebra Y(R,, ), we construct several graded algebras. We intro-
duce a grading on the free K-algebra K (uj,ug,v), such that

degu; =degus =1, degv =2,
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and define an algebra £ := K (uq,us,v)/I, where the ideal [ is generated by the (homogeneous)
elements

ULV — VUL, UV — VU, UT, U3 (2.1)
We introduce a grading on &, induced by the grading of K (u1,us,v).
Moreover, we define an algebra £ := K (uy,us)/I’, where the algebra K (u,us) is considered
with a grading such that degu; = degus = 1, and the ideal I’ is generated by the elements

LUl — usug, us;
the algebra &’ is considered with the induced grading.

Theorem 2.1. Let R = R, where m,n € N, m >n > 2, and m+n > 4. If n > 2, then
the Yoneda algebra Y(R) of the algebra R is isomorphic to the algebra £ as a graded algebra.
If n =2, then Y(R) ~ &' as graded algebras.

3. RESOLUTION

Let R = Ry, n, where m, n € N, m > n > 2, and m+n > 4. It is clear that dimg R = m+n
and R admits the set ‘ '
{Bu{e Y vy
as a K-basis. The homomorphism w*: R — R of the right multiplication by w € R is denoted,
for simplicity, again as w.
We consider the following bicomplex B, lying in the first quadrant of the plane (i.e., its
rows and columns are enumerated by 0,1,2,...):

a2l v] a2l v e

R R &M g Rt R

v] 2 e T

R R R RY R F (3.1)
z] v] am=1 | | am1 |

R R 5 R o R Y

v ] vt e ]

R+ R «2 R & Y R~

Proposition 3.1. The total complex

Tot(Bee) =: Qo = (Qt,di: Qi1 — Q)0
of the bicomplex Bee in (3.1) is the minimal projective resolution of the simple R-module S.
Proof. The acyclicity of the complex Tot(Bes) — S — 0 is verified by a direct calculation. [J

Remark 3.2. To prove Proposition 3.1, one can also consider the spectral sequence of bicom-
plex (3.1) and observe that the second sheet of this spectral sequence degenerates (cf. [17, proof
of Proposition 2.1]).

Corollary 3.3. dimg Ext(S,5) =t + 1.

Remark 3.4. By construction of Q., we have Q; = € Bij; in the sequel, we arrange the
it+j=t
direct summands in this decomposition in ascending order of the second index j.
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4. GENERATORS OF THE YONEDA ALGEBRA

As before, let R = Ry, ,, with m,n € N, m > n > 2, and m +n > 4. In this section, we
specify a (finite) set of generators for the Yoneda algebra
Y(R) = E(R/J(R)) = €D Extir(S. 5).
>0
We recall the following interpretation of the Yoneda product in the algebra Y(R) (for the

case of the family of local algebras under consideration, cf. [17]). Let Q4(S) be the minimal
projective resolution of the simple R-module S. Using the isomorphism

Ext% (S, S) ~ Hompg(Q(9), S),

we represent any element f € Ext,(S, 9) by the corresponding homomorphism f: Qms) — S.
Moreover, f can be extended to the chain map {y;: Qi1 — Qrli>0. In its turn, f = g
uniquely defines the homomorphism f The homomorphism ¢; is called the ith translate of
the element f and is denoted by T(f) or TZ(]/"\) Then the Yoneda product of the elements
f € Exthy(S,S) and g € Ext%(S, S) is defined by the map

-~

(g-f=g9-T°(f) (4.1)
We introduce the following homogeneous elements of the algebra V(R):
i =(1,0): Q1 =R*— R, uy € Exth(S,S);
Uy =(0,1): Q1 = R* - R, uy € Exth(S,S);
5=(0,1,0): Q2 =R’ = R, v € Ext%(S, S).

Proposition 4.1. As the translates (of suitable orders) of the elements uy, ug, v, we can take
the following maps:

0 0 00
m—2
Tl(m)—(? xo 8>,T2(u1): 0 -1 0 0};
1 0 00
0 0 1
Tl ('UQ) = <0 _yn—2 0> )
000 1
T?(ug) = [0 0 1 0
0000

forn > 2, and

forn =2,
and

Proof. Follows by a direct verification of commutativity of some squares corresponding to chain
maps between the resolutions. H
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Proposition 4.2. (a) If n > 2, then the elements uy,u2,v of the algebra Y(R) satisfy the
relations

u% = u% =0, wv =vuy, UV = Vus.

(b) If n =2, then the following relations are satisfied in Y(R):

ut =0, ujui = udu;.

Proof. The proof is based on formula (4.1) and elementary calculation using formulas in Propo-
sition 4.1. We leave the corresponding detailed calculation to the reader. O

Proposition 4.3. (a) Assume that n > 2. The Ext-groups presented below admit the following
K -bases:

EXt}%(S, S) = <U17U2>,Exﬁa(5, S) = (ugu1,v,urug),
Ext} (S, 5) = (uiuguy, u1v, ugv, uguyus).

(b) Assume that n = 2. Then
EXt}%(S’ S) = <’LL1,’LL2>,EX’G%(S, S) = <’LL2’LL1,’LL§,’LL1’LL2>,
Exth(S, S) = (uiugu1, uui, ul, upuius).

Proof. The desired equalities follow directly from the definition of the elements wuy,us, v and
from calculation of their products with using suitable translates of these elements (cf. the
proof of Proposition 4.2). We leave the details of calculation to the reader. O

Proposition 4.4. (a) Assume that n > 2. The set {1,u;,us,v} generates the Yoneda algebra
Y(R) as K-algebra.

(b) Assume that n = 2. Then the set {1,u1,us} generates the Yoneda algebra Y(R) as
K -algebra.

Proof. Since

Eth:i(S, S) o HomR(Qtv S)v

any homogeneous element of the Yoneda algebra Y(R) is given by a (unique) homomorphism
f:Qi= @ B;j = S. Using Proposition 4.3 and Corollary 3.3, we may assume that ¢ > 3.
itj=t

Now we pr]ove by induction on t that f is represented as a sum of products of elements of
smaller degrees.

We may assume that f(B;_; ;) # 0 for exactly one value of j. According to a ”local” config-
uration of bicomplex (3.1) in which the module B;_; ; is included, we construct commutative
diagrams of the form

Qi1 —2— Q
o1 | vo | (4.2)

d
Q1 —— Qr

such that ¢ < ¢t and Kerpg C Ker f. For such a diagram, there exists a homomorphism
f': Q¢ — S for which f'¢y = f. Moreover, since R is a QF-algebra, ¢y = T¢(p) for some
@: Q¢_¢y — S. Thus, we can apply the induction hypothesis to f/ and ¢.

The decomposition

Qi=R®Qi2® R, (4.3)
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implies that the matrix of the differential dog, s > 2, has block form corresponding to the
decomposition

T O O
dos=| O dos2 O |, (4.4)
O O Y

where JQS_Q = 01 . d23_2 . 02 and

C, = diag(—1,1,...,1,—1) € Mgs_l(R),} 45)
Cy = diag(1,—1,...,1,—1) € Ma(R).
Similarly, for the differentials dosy1 we have
Y O O
dysi1=| O dysr O |, (4.6)
O O =«
where 6723—1 = D1 - dos—1 - Dy and
Dy = diag(—1,1,...,—1,1) € May(R), } “n
Dy = diag(1,—1,...,—1,1) € Mas+1(R).

First assume that 1 < j < 2s— 1. If t = 2s, s > 2, then we construct the diagram of form
(4.2), in which ¢ = 2s — 2, g is the composition of the projection onto the direct summand
Q25 — Q2s—2 (see decomposition (4.3)) and the automorphism of Q25_2 with matrix C; (in
(4.5)), and ¢y is the composition of the projection onto the direct summand Qo511 — Q2s—1
(see decomposition (4.3)) and the automorphism of the module Q251 with matrix Cs.

Similarly, for odd ¢ = 2s + 1, s > 1, there is diagram (4.2), in which ¢ = 2s — 1, ¢ is the
composition of the projection onto the direct summand Q9511 — (QQ25—1 and the automorphism
of Q251 with matrix Dy (in (4.7)), and ¢ is the composition of the projection onto the direct
summand Qosyro — Qo with the automorphism of Qo5 with matrix Ds.

Now we consider the case j = 0. The configurations in bicomplex (3.1), which include the
module By, have the following forms:

R R
I ] (D) gm-1|
R+ R R+Y2 R

(the diagrams contain all arrows ending at the corresponding module By ).

a) Assume that we have the configuration I. Then ¢ = 2s is even (and s > 2). If n > 2, then
we construct a diagram of form (4.2), in which ¢ = 2, g is the projection of @Q); onto the first
two direct summands By o @ Bi—1.1 ~ B2 ® By 1, and ¢y is the composition of the projection
of Q+1 onto the first three direct summands B,,,11,0 ® B © Bm—12 >~ B30 ® B21 @ B
and the map defined by the matrix diag(1,1,y"?).

If n = 2, then we construct diagram (4.2) in which ¢ = 2s — 2, ¢y is the composition of the

S S

projection of Qs onto the first s + 1 direct summands @ Bas—j; ~ X := @ Bas_2—j; and
j=0 J=0
the endomorphism of X with matrix diag(1,1,...,1,2™2), and ¢ is the projection of Qa1
S

onto the first s + 1 direct summands @ Bas41—j,;-
=0
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b) Let us consider the configuration II. In this case, t = 2s+1is odd (s > 2). Again, first we
assume that n > 2. Then we construct square (4.2), in which ¢ = 1, ¢q is the composition of
the projection of Q2441 onto the first two direct summands Basy1,0® Bas;1 ~ X := By, ® Bo,1
and the endomorphism of X, defined by the matrix diag(1,y"~?), and ¢ is the projection of
Q2s+2 onto the first two direct summands Bosi20 © Bast1,1 =~ B o ® By 1.

In the case n = 2, we construct square (4.2), in which £ = 2s — 1, ¢¢ is the projection of

Q2511 onto the first s+1 direct summands, and 1 is the composition of the projection of Qosyo
S S

onto the first s + 1 direct summands @ Bosi2—j; ~ Y := @ Bas—j; and the endomorphism
j=0 j=0
of Y with matrix diag(1,1,...,1,2™2).
Finally, if j =t (i.e., f(Bo.) # 0), then the argument is similar to the case j = 0.

5. END OF THE PROOF OF THEOREM 2.1

Put R = R,, . We consider the case n > 2 in detail; minor modifications are needed in
the corresponding arguments for n = 2 only. Let & = KJ[uy,us,v]/I be a graded K-algebra
described in Sec. 2. From Propositions 4.2 and 4.4, it follows that there exists a surjective
homomorphism & — Y(R) of graded K-algebras, that takes the canonical generators of £ to

the corresponding generators of V(R), introduced in the beginning of Sec. 4. Let & = @ &°

>0
be the direct decomposition of the algebra £ into homogeneous direct summands. Now, the
following statement completes the proof of Theorem 2.1.

Proposition 5.1. For anyt >0, dimg& =1¢+1.

Proof. We assume that ¢ > 0. By the defining relations of the algebra & (see (2.1)), each
monomial f € £ is presented in the form

f=utuguius . . . ugus2o”, 5.1
1 2
where £1,&5 € {0,1}. It easily follows that £2%, s > 1, is generated by the set
{(wru2)* 7075 U {(ugur)* 707 }5 5,
and £25F1 s > 0, is generated by the set
{(urug)* Turv? }i_o U {(ugur)* Jugv? 525 .

Thus, for any ¢, we have dimy £ < t+1. Since there is a surjective linear map £! — Y(R)! =
Ext% (S, S), we obtain the desired equality.

If n =2 (ie.,, R = Ry, 2), then there is a surjective homomorphism £ — Y(R) of graded
K-algebras, where the algebra £’ is defined in Sec. 2. Slightly modifying the above argument
(namely, using u3 instead of v), we can prove that in this case dimg (£')! =t + 1 again. [

Translated by A. I. Generalov.
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