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COHOMOLOGY OF ALGEBRAS OF DIHEDRAL
TYPE. V

A. I. Generalov∗ UDC 512.5

The Yoneda algebras for a family of local algebras of dihedral type (from the famous K. Erdmann’s
list) are described in terms of generators and relations. Bibliography: 21 titles.

1. Introduction

The Yoneda algebras were calculated in [1–17] for several families of algebras of dihedral
or semidihedral type, which are contained in Erdmann’s classification [18]. The present paper
continues this series. We recall that along with the diagrammatic method of D. Benson and J.
Carlson [19], used, for example, in [1–3,5, 10,12,15], we often used the approach of paper [4].
The essence of this approach is that based on some empirical observations, we state some
hypothesis about the structure of minimal projective resolutions of simple modules. Then
after the study of this hypothesis, we read the “cohomology information” from the found
resolutions. As a result we get the description of the Yoneda algebras of the algebras under
consideration.

In the present paper, we use the approach from [4] to describe the Yoneda algebra for a
family of local algebras presented in Erdmann’s classification [18].

We note that the technique of paper [4] was also applied in calculating the Hochschild
cohomology algebra for a significant number of families of finite-dimensional algebras and for
the integral group rings of dihedral and semidihedral groups, see [21] and references therein.

2. Formulation of the main results

Let R be a finite-dimensional algebra over a field K. All modules under consideration are
left. Denote by

E(M) =
⊕

m≥0

ExtmR (M,M)

the Ext-algebra of the R-module M . For a basic K-algebra R with Jacobson radical J(R),
the Ext-algebra E(R/J(R)) is called the Yoneda algebra of R and is denoted by Y(R). In the
sequel, we assume that the basic field K is algebraically closed.

We define algebras Rm,n := K[X,Y ]/J , where m,n ∈ N, m ≥ n ≥ 2, m + n > 4, and the
ideal J is defined by the elements

XY, Y X, Xm − Y n.

The images of the elements X,Y under the canonical map from K[X,Y ] to R are denoted by
x and y, respectively. Since the algebra Rm,n is local, Y(Rm,n) is the Ext-algebra of a unique
simple Rm,n-module S.

To describe the Yoneda algebra Y(Rm,n), we construct several graded algebras. We intro-
duce a grading on the free K-algebra K〈u1, u2, v〉, such that

deg u1 = deg u2 = 1, deg v = 2,
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and define an algebra E := K〈u1, u2, v〉/I, where the ideal I is generated by the (homogeneous)
elements

u1v − vu1, u2v − vu2, u
2
1, u

2
2. (2.1)

We introduce a grading on E , induced by the grading of K〈u1, u2, v〉.
Moreover, we define an algebra E ′ := K〈u1, u2〉/I ′, where the algebra K〈u1, u2〉 is considered

with a grading such that deg u1 = degu2 = 1, and the ideal I ′ is generated by the elements

u1u
2
2 − u22u1, u

2
1;

the algebra E ′ is considered with the induced grading.

Theorem 2.1. Let R = Rm,n, where m,n ∈ N, m ≥ n ≥ 2, and m + n > 4. If n > 2, then
the Yoneda algebra Y(R) of the algebra R is isomorphic to the algebra E as a graded algebra.
If n = 2, then Y(R) � E ′ as graded algebras.

3. Resolution

Let R = Rm,n, where m, n ∈ N, m ≥ n ≥ 2, and m+n > 4. It is clear that dimK R = m+n
and R admits the set

{1} ∪ {xi}mi=1 ∪ {yj}n−1
j=1

as a K-basis. The homomorphism w∗ : R → R of the right multiplication by w ∈ R is denoted,
for simplicity, again as w.

We consider the following bicomplex B•• lying in the first quadrant of the plane (i.e., its
rows and columns are enumerated by 0, 1, 2, . . . ):

. . . . . . . . . . . . . . .

x
⏐� y

⏐� x
⏐� y

⏐� xm−1
⏐�

R
−yn−1

←−−−− R
−xm−1←−−−− R

−yn−1

←−−−− R
−x←−−−− R

−y←−−−− . . .

y
⏐� x

⏐� y
⏐� xm−1

⏐� yn−1
⏐�

R
xm−1←−−−− R

yn−1

←−−−− R
x←−−−− R

y←−−−− R
x←−−−− . . .

x
⏐� y

⏐� xm−1
⏐� yn−1

⏐� xm−1
⏐�

R
−yn−1

←−−−− R
−x←−−−− R

−y←−−−− R
−x←−−−− R

−y←−−−− . . .

y
⏐� xm−1

⏐� yn−1
⏐� xm−1

⏐� yn−1
⏐�

R
x←−−−− R

y←−−−− R
x←−−−− R

y←−−−− R
x←−−−− . . .

(3.1)

Proposition 3.1. The total complex

Tot(B••) =: Q• = (Qt, dt : Qt+1 → Qt)t≥0

of the bicomplex B•• in (3.1) is the minimal projective resolution of the simple R-module S.

Proof. The acyclicity of the complex Tot(B••) → S → 0 is verified by a direct calculation. �
Remark 3.2. To prove Proposition 3.1, one can also consider the spectral sequence of bicom-
plex (3.1) and observe that the second sheet of this spectral sequence degenerates (cf. [17, proof
of Proposition 2.1]).

Corollary 3.3. dimK ExttR(S, S) = t+ 1.

Remark 3.4. By construction of Q•, we have Qt =
⊕

i+j=t
Bij; in the sequel, we arrange the

direct summands in this decomposition in ascending order of the second index j.
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4. Generators of the Yoneda algebra

As before, let R = Rm,n with m,n ∈ N, m ≥ n ≥ 2, and m + n > 4. In this section, we
specify a (finite) set of generators for the Yoneda algebra

Y(R) = E(R/J(R)) =
⊕

t≥0

ExttR(S, S).

We recall the following interpretation of the Yoneda product in the algebra Y(R) (for the
case of the family of local algebras under consideration, cf. [17]). Let Q•(S) be the minimal
projective resolution of the simple R-module S. Using the isomorphism

ExttR(S, S) � HomR(Ω
t(S), S),

we represent any element f ∈ ExttR(S, S) by the corresponding homomorphism f̃ : Ωm(S) → S.

Moreover, f̃ can be extended to the chain map {ϕl : Qt+l → Ql}l≥0. In its turn, f̂ = ϕ0

uniquely defines the homomorphism f̃ . The homomorphism ϕi is called the ith translate of

the element f and is denoted by Ti(f) or Ti(f̂). Then the Yoneda product of the elements
f ∈ ExttR(S, S) and g ∈ ExtsR(S, S) is defined by the map

(g · f )̂ = ĝ · Ts(f̂). (4.1)

We introduce the following homogeneous elements of the algebra Y(R):

û1 = (1 , 0): Q1 = R2 → R, u1 ∈ Ext1R(S, S);

û2 = (0 , 1): Q1 = R2 → R, u2 ∈ Ext1R(S, S);

v̂ = (0, 1 , 0): Q2 = R3 → R, v ∈ Ext2R(S, S).

Proposition 4.1. As the translates (of suitable orders) of the elements u1, u2, v, we can take
the following maps:

T1(u1) =

(
0 xm−2 0
1 0 0

)
, T2(u1) =

⎛

⎝
0 0 0 0
0 −1 0 0
1 0 0 0

⎞

⎠ ;

T1(u2) =

(
0 0 1
0 −yn−2 0

)
,

T2(u2) =

⎛

⎝
0 0 0 1
0 0 1 0
0 0 0 0

⎞

⎠

for n > 2, and

T2(u2) =

⎛

⎝
0 0 0 1
0 0 1 0
0 1 0 0

⎞

⎠

for n = 2,
and

T1(v) =

(
0 −1 0 0
0 0 1 0

)
,

T2(v) =

⎛

⎝
0 1 0 0 0
0 0 −1 0 0
0 0 0 1 0

⎞

⎠ .

Proof. Follows by a direct verification of commutativity of some squares corresponding to chain
maps between the resolutions. ��
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Proposition 4.2. (a) If n > 2, then the elements u1, u2, v of the algebra Y(R) satisfy the
relations

u21 = u22 = 0, u1v = vu1, u2v = vu2.

(b) If n = 2, then the following relations are satisfied in Y(R):

u21 = 0, u1u
2
2 = u22u1.

Proof. The proof is based on formula (4.1) and elementary calculation using formulas in Propo-
sition 4.1. We leave the corresponding detailed calculation to the reader. �

Proposition 4.3. (a) Assume that n > 2. The Ext-groups presented below admit the following
K-bases:

Ext1R(S, S) = 〈u1, u2〉,Ext2R(S, S) = 〈u2u1, v, u1u2〉,
Ext3R(S, S) = 〈u1u2u1, u1v, u2v, u2u1u2〉.

(b) Assume that n = 2. Then

Ext1R(S, S) = 〈u1, u2〉,Ext2R(S, S) = 〈u2u1, u22, u1u2〉,
Ext3R(S, S) = 〈u1u2u1, u1u22, u32, u2u1u2〉.

Proof. The desired equalities follow directly from the definition of the elements u1, u2, v and
from calculation of their products with using suitable translates of these elements (cf. the
proof of Proposition 4.2). We leave the details of calculation to the reader. �

Proposition 4.4. (a) Assume that n > 2. The set {1, u1, u2, v} generates the Yoneda algebra
Y(R) as K-algebra.

(b) Assume that n = 2. Then the set {1, u1, u2} generates the Yoneda algebra Y(R) as
K-algebra.

Proof. Since

ExttR(S, S) � HomR(Qt, S),

any homogeneous element of the Yoneda algebra Y(R) is given by a (unique) homomorphism
f : Qt =

⊕
i+j=t

Bij → S. Using Proposition 4.3 and Corollary 3.3, we may assume that t > 3.

Now we prove by induction on t that f is represented as a sum of products of elements of
smaller degrees.

We may assume that f(Bt−j,j) 
= 0 for exactly one value of j. According to a ”local” config-
uration of bicomplex (3.1) in which the module Bt−j,j is included, we construct commutative
diagrams of the form

Qt+1
dt−−−−→ Qt

ϕ1

⏐� ϕ0

⏐�

Q�+1
d�−−−−→ Q� ,

(4.2)

such that � < t and Kerϕ0 ⊂ Ker f . For such a diagram, there exists a homomorphism
f ′ : Q� −→ S for which f ′ϕ0 = f . Moreover, since R is a QF -algebra, ϕ0 = T�(ϕ̃) for some
ϕ̃ : Qt−� −→ S. Thus, we can apply the induction hypothesis to f ′ and ϕ̃.

The decomposition

Qt = R⊕Qt−2 ⊕R, (4.3)
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implies that the matrix of the differential d2s, s ≥ 2, has block form corresponding to the
decomposition

d2s =

⎛

⎜⎝

x O O

O d̃2s−2 O

O O y

⎞

⎟⎠ , (4.4)

where d̃2s−2 = C1 · d2s−2 · C2 and

C1 = diag(−1, 1, . . . , 1,−1) ∈ M2s−1(R),

C2 = diag(1,−1, . . . , 1,−1) ∈ M2s(R).

}
(4.5)

Similarly, for the differentials d2s+1 we have

d2s+1 =

⎛

⎜⎝

y O O

O d̃2s−1 O

O O x

⎞

⎟⎠ , (4.6)

where d̃2s−1 = D1 · d2s−1 ·D2 and

D1 = diag(−1, 1, . . . ,−1, 1) ∈ M2s(R),

D2 = diag(1,−1, . . . ,−1, 1) ∈ M2s+1(R).

}
(4.7)

First assume that 1 ≤ j ≤ 2s − 1. If t = 2s, s ≥ 2, then we construct the diagram of form
(4.2), in which � = 2s − 2, ϕ0 is the composition of the projection onto the direct summand
Q2s → Q2s−2 (see decomposition (4.3)) and the automorphism of Q2s−2 with matrix C1 (in
(4.5)), and ϕ1 is the composition of the projection onto the direct summand Q2s+1 → Q2s−1

(see decomposition (4.3)) and the automorphism of the module Q2s−1 with matrix C2.
Similarly, for odd t = 2s + 1, s ≥ 1, there is diagram (4.2), in which � = 2s − 1, ϕ0 is the

composition of the projection onto the direct summand Q2s+1 → Q2s−1 and the automorphism
of Q2s−1 with matrix D1 (in (4.7)), and ϕ1 is the composition of the projection onto the direct
summand Q2s+2 → Q2s with the automorphism of Q2s with matrix D2.

Now we consider the case j = 0. The configurations in bicomplex (3.1), which include the
module Bt,0, have the following forms:

(I)

R

yn−1
⏐�

R
x←−−−− R

(II)

R

xm−1
⏐�

R
y←−−−− R

(the diagrams contain all arrows ending at the corresponding module Bt,0).
a) Assume that we have the configuration I. Then t = 2s is even (and s ≥ 2). If n > 2, then

we construct a diagram of form (4.2), in which � = 2, ϕ0 is the projection of Qt onto the first
two direct summands Bt,0 ⊕Bt−1,1 � B2,0 ⊕B1,1, and ϕ1 is the composition of the projection
of Qt+1 onto the first three direct summands Bm+1,0 ⊕ Bm,1 ⊕ Bm−1,2 � B3,0 ⊕ B2,1 ⊕ B1,2

and the map defined by the matrix diag(1, 1, yn−2).
If n = 2, then we construct diagram (4.2) in which � = 2s− 2, ϕ0 is the composition of the

projection of Q2s onto the first s + 1 direct summands
s⊕

j=0
B2s−j,j � X :=

s⊕
j=0

B2s−2−j,j and

the endomorphism of X with matrix diag(1, 1, . . . , 1, xm−2), and ϕ1 is the projection of Q2s+1

onto the first s+ 1 direct summands
s⊕

j=0
B2s+1−j,j.
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b) Let us consider the configuration II. In this case, t = 2s+1 is odd (s ≥ 2). Again, first we
assume that n > 2. Then we construct square (4.2), in which � = 1, ϕ0 is the composition of
the projection of Q2s+1 onto the first two direct summands B2s+1,0⊕B2s,1 � X := B1,0⊕B0,1

and the endomorphism of X, defined by the matrix diag(1, yn−2), and ϕ1 is the projection of
Q2s+2 onto the first two direct summands B2s+2,0 ⊕B2s+1,1 � B2,0 ⊕B1,1.

In the case n = 2, we construct square (4.2), in which � = 2s − 1, ϕ0 is the projection of
Q2s+1 onto the first s+1 direct summands, and ϕ1 is the composition of the projection of Q2s+2

onto the first s+ 1 direct summands
s⊕

j=0
B2s+2−j,j � Y :=

s⊕
j=0

B2s−j,j and the endomorphism

of Y with matrix diag(1, 1, . . . , 1, xm−2).
Finally, if j = t (i.e., f(B0,t) 
= 0), then the argument is similar to the case j = 0.

�

5. End of the proof of Theorem 2.1

Put R = Rm,n. We consider the case n > 2 in detail; minor modifications are needed in
the corresponding arguments for n = 2 only. Let E = K[u1, u2, v]/I be a graded K-algebra
described in Sec. 2. From Propositions 4.2 and 4.4, it follows that there exists a surjective
homomorphism E −→ Y(R) of graded K-algebras, that takes the canonical generators of E to
the corresponding generators of Y(R), introduced in the beginning of Sec. 4. Let E =

⊕
t≥0

E t

be the direct decomposition of the algebra E into homogeneous direct summands. Now, the
following statement completes the proof of Theorem 2.1.

Proposition 5.1. For any t ≥ 0, dimK E t = t+ 1.

Proof. We assume that t > 0. By the defining relations of the algebra E (see (2.1)), each
monomial f ∈ E is presented in the form

f = uε11 u2u1u2 . . . u1u
ε2
2 vk, (5.1)

where ε1, ε2 ∈ {0, 1}. It easily follows that E2s, s ≥ 1, is generated by the set

{(u1u2)s−jvj}sj=0 ∪ {(u2u1)s−jvj}s−1
j=0 ,

and E2s+1, s ≥ 0, is generated by the set

{(u1u2)s−ju1v
j}sj=0 ∪ {(u2u1)s−ju2v

j}s−1
j=0 .

Thus, for any t, we have dimK E t ≤ t+1. Since there is a surjective linear map E t −→ Y(R)t =
ExttR(S, S), we obtain the desired equality.

If n = 2 (i.e., R = Rm,2), then there is a surjective homomorphism E ′ −→ Y(R) of graded
K-algebras, where the algebra E ′ is defined in Sec. 2. Slightly modifying the above argument
(namely, using u22 instead of v), we can prove that in this case dimK(E ′)t = t+ 1 again. �

Translated by A. I. Generalov.
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