
Journal of Mathematical Sciences, Vol. 252, No. 4, January, 2021

Series expansions for monogenic functions in Clifford algebras and
their application
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Abstract. This paper deals with studying some properties of a monogenic function defined on a vector
space with values in the Clifford algebra generated by the space. We provide some expansions of a monogenic
function and consider its application to study solutions of second-order partial differential equations.
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1. Introduction

The Clifford algebra is a unital associative algebra, which is the minimal extension of a finite-
dimensional vector space V with a quadratic form. In this case, the vector space V is called embedded
in the Clifford algebra, and its orthogonal basis determines the basis of the algebra. We are interested
in properties of a monogenic function defined on the embedded vector space with values in the Clifford
algebra, which is a null solution of the Dirac operator. A monogenic function is one of the basic
concepts of Clifford analysis [1]. We will obtain the expansion of a left monogenic function into a
series of Fueter-type polynomials. Since any right monogenic function can be expanded in a similar
manner, only left monogenic functions are considered. We also study an application of the properties
of monogenic functions to solving some second-order partial differential equations.

2. Monogenic functions in Clifford algebras

Suppose Ed+1 is an (d+ 1)-dimensional linear space over R with basis ei, i = 0, 1, . . . , d. Suppose
Ed+1 is embedded in the Clifford algebra Clp,q, p+q = d+1 with an identity I = e0 and ekel+elek = 0,
k ̸= l, 1 ≤ k, l ≤ d. In addition, e2k = I for 1 ≤ k ≤ p and e2k = −I for p < k ≤ d.

Denote, by D =
∑d

i=0 ei
∂
∂xi

, the generalized Cauchy–Riemann operator. It is easily verified that
DD∗ =

∑p
i=0

∂2

∂x2
i
−
∑d

i=p+1
∂2

∂x2
i
.

We are interested in studing the following equation:

DD∗f = 0. (2.1)

Definition 2.1. A function f : Ed+1 → Clp,q is called left monogenic, if Df = 0, and f is called right
monogenic, if fD = 0.

In what follows, we will consider only left monogenic functions. Any left monogenic function is a
solution of the equation DD∗f = 0.

For Ed+1 ∋ x =
∑d

i=0 eixi, we introduce the following polynomials:

pk (x) = xk − ekx0, 1 ≤ k ≤ d.
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Polynomials pk might be called Fueter-type polynomials, since, in the case of the algebra of quater-
nions H = x0 + ix1 + jx2 + kx3, polynomials x1 − ix0, x2 − jx0, x3 − kx0 were introduced by Fueter
in [2] and are known as the Fueter polynomials.

An expansion of hyperholomorphic quaternion functions in Fueter polynomials was reported in [3],
and the similar expansion of hyperholomorphic co-quaternion functions was considered in [4]. The
relations between monogenic and hyperholomorphic functions was considered in [5].

Theorem 2.1. Let f ∈ C∞ (Ed+1
)
, n ∈ N, and let the function f with its derivatives

∂n

∂xi1∂xi2 . . . ∂xin
f (x)

be left monogenic. Then there exists real θ such that

f (x) = f (0) +
d∑

i=1

pk (x)
∂

∂xi
f (0)

+
1

2

d∑
i=1

d∑
j=1

pi (x) pj (x)
∂2

∂xi∂xj
f (0) + · · ·+ 1

(n− 1)!

×
d∑

i1=1

d∑
i2=1

· · ·
d∑

in−1=1

pi1 (x) pi2 (x) . . . pin−1 (x)
∂n−1

∂xi1∂xi2 . . . ∂xin−1

f (0)

+
1

n!

d∑
i1=1

d∑
i2=1

· · ·
d∑

in=1

pi1 (x) pi2 (x) . . . pin (x)
∂n

∂xi1∂xi2 . . . ∂xin
f (θnx),

where 0 ≤ θn < 1.

Proof. Consider cfunction f (tx) as a function of t ∈ R. Taking into account that f (x) is left mono-
genic, i.e., ∂

∂x0
f (x) = −

∑d
i=1 ei

∂
∂xi

f (x), we obtain

d

dt
f (tx) =

d∑
i=0

xi
∂

∂xi
f (tx) =

d∑
i=1

(xi − eix0)
∂

∂xi
f (tx). (2.2)

Setting t = 0, we have

d

dt
f (0) =

d∑
i=1

pi (x)
∂

∂xi
f (0) . (2.3)

Now, considering that the functions

∂

∂xi
f (x) , i = 1, . . . , n

are left monogenic and accounting for Eq. (2.2), we get

d2

dt2
f (tx) =

d∑
i=1

(xi − eix0)
d

dt

(
∂

∂xi
f (tx)

)
=

d∑
i=1

(xi − eix0)
d∑

j=1

(xj − ejx0)
∂2

∂xj∂xi
f (tx).
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Hence, for t = 0,

d2

dt2
f (0) =

d∑
i=1

d∑
j=1

(xi − eix0) (xj − ejx0)
∂2

∂xi∂xj
f (0). (2.4)

In the same way, we can show that
dn

dtn
f (tx)

=

d∑
i1=1

d∑
i2=1

· · ·
d∑

in=1

pi1 (x) pi2 (x) . . . pin (x)
∂n

∂xi1∂xi2 . . . ∂xin
f (tx). (2.5)

Now, consider the Taylor series for f (tx) w.r.t. t:

f (tx) = f (0) +
d

dt
f (0) t+ . . . (2.6)

+
dn−1

dtn−1
f (0)

tn−1

(n− 1)!
+

dn

dtn
f (θnx)

tn

n!
, 0 ≤ θn < 1.

Substituting Eqs. (2.3)–(2.5) into Eq. (2.6), we obtain Eq. (2.1).
If

1

n!

d∑
i1=1

d∑
i2=1

· · ·
d∑

in=1

pi1(x)pi2(x) . . . pin(x)
∂n

∂xi1∂xi2 . . . ∂xin
f (θnx) → 0, n → ∞,

then Eq. (2.1) implies that

f (x) = f (0) +

∞∑
n=1

1

n!

(
d∑

i1=1

d∑
i2=1

· · ·
d∑

in=1

pi1(x)pi2(x) . . . pin(x)
∂n

∂xi1∂xi2 . . . ∂xin
f (0)

)
. (2.7)

In particular case where
∂n

∂xi1∂xi2 . . . ∂xin
f (0) = an

for all i1, i2, . . . , in ∈ {1, 2, . . . , n}, n ∈ N , we have

∞∑
n=1

1

n!

(
d∑

i1=1

d∑
i2=1

· · ·
d∑

in=1

pi1 (x) pi2 (x) . . . pin (x) an

)

=

∞∑
n=1

1

n!
(pi1 (x) + pi2 (x) + · · ·+ pin (x))

nan

=
∞∑
n=1

1

n!

(
d∑

k=1

xk − x0

d∑
k=1

ek

)n

an.

Thus, in this case,

f (x) = a0 +

∞∑
n=1

1

n!

(
d∑

k=1

xk − x0

d∑
k=1

ek

)n

an, (2.8)

where a0 = f (0).
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3. Study of hyperbolic and Laplace equations with the use of monogenic functions

By using Eqs. (2.7) and (2.8), we can construct solutions of Eq. (2.1). For example, setting an = n!
for 1 ≤ n ≤ m, m ∈ N and an = 0 for all n > m in Eq. (2.8), we get the following solution of Eq. (2.1):

f (x) = 1 +

m∑
n=1

(
d∑

k=1

xk − x0

d∑
k=1

ek

)n

=

m∑
n=0

(
d∑

k=1

xk − x0

d∑
k=1

ek

)n

.

Taking into account that
(∑d

k=1 ek
)2n

= (p− q)n in Clp,q, we obtain a real solution of Eq. (2.1)

as follows:

u (x1, x2, . . . , xd) =

m∑
n=0

((
d∑

k=1

xk

)n

+ C2
n

(
d∑

k=1

xk

)n−2

(p− q)2x20

+C4
n

(
d∑

k=1

xk

)n−4

(p− q)4x40 + . . .

)
,

where we assume that Ck
n = 0 for n < k.

We can also construct solutions of Eq. (2.1) in the cases of infinite non-zero terms of series (2.7).
Indeed, by setting an = 1 for all n ∈ N in Eq. (2.7), we get the following solution of Eq. (2.8):

f (x) = exp

(
d∑

k=1

xk − x0

d∑
k=1

ek

)
= exp

(
d∑

k=1

xk

)
exp

(
−x0

d∑
k=1

ek

)
.

Considering that
(∑d

k=1 ek
)2n

= (p− q)n and the fact that expressions
(∑d

k=1 ek
)2n+1

are not
real for all n ∈ N, we obtain the following real solution of Eq. (2.1):

u (x1, x2, . . . , xd) = exp

(
d∑

k=1

xk

)
cos
(
x0

√
p− q

)
.

In the case where p = 0 (or q = 0), i.e., the Clifford algebra is Cl0,d (or Cld,0), it follows from Eq.
(2.1) that a monogenic function f satisfies the d-dimensional Laplace equation

∆df =
d∑

i=0

∂2

∂x2i
f = 0. (3.1)

Consider the case Cl0,3 with the embedded vector space E3 and its basis I, e1, e2, where I is the
identity and ekel + elek = −2Iδkl, 1 ≤ k, l ≤ 2. In this case, Eq. (3.1) is the Laplace equation

∆3f =
∂2

∂x2
f +

∂2

∂y2
f +

∂2

∂z2
f = 0.

With regard for Eq. (2.8), it is easily seen that

f (x, y, z) =
(e1 + e2)x− y − z

1− (e1 + e2)x+ y + z

is monogenic in E3\ {(e1 + e2)x+ y + z = 1}.
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Let us find the real and imaginary parts of f :

f (x, y, z) =
(e1 + e2)x− y − z

1− (e1 + e2)x+ y + z

1 + (e1 + e2)x+ y + z

1 + (e1 + e2)x+ y + z

=
y + z − 2x2 − (y + z)2

2x2 + (1− y − z)2
+

x

2x2 + (1− y − z)2
(e1 + e2) .

Thus, we have the following solutions of Eq. (3.1):

u1 (x, y, z) =
y + z − 2x2 − (y + z)2

2x2 + (1− y − z)2

and
u2 (x, y, z) =

x

2x2 + (1− y − z)2
.

Now, consider the case Cl1,3 where the embedded vector space E4 has the basis I, e1, e2, e3, I is
the identity, and ekel + elek = −2Iδkl, 1 ≤ k, l ≤ 3.

In this case, Eq. (2.1) takes the form

∂2

∂t2
f − ∂2

∂x2
f − ∂2

∂y2
f − ∂2

∂z2
f = 0. (3.2)

Consider the function
f (w) =

w

1− w
,

where w = (e1 + e2 + e3) t− x− y − z.
It follows from Eq. (2.7) that, for w ̸= 1, the function f (w) is monogenic.
The real and imaginary parts of f can be calculated as follows:

f(w) =
(e1 + e2 + e3) t− x− y − z

1− (e1 + e2 + e3) t+ x+ y + z

1 + (e1 + e2 + e3) t+ x+ y + z

1 + (e1 + e2 + e3) t+ x+ y + z

=
3t2 − (x+ y + z) + x+ y + z

(1− x− y − z)2 − 3t2
+

t (e1 + e2 + e3)

(1− x− y − z)2 − 3t2
.

Hence, we have obtained two solutions of Eq. (3.2):

u1 (t, x, y, z) =
3t2 − (x+ y + z) + x+ y + z

(1− x− y − z)2 − 3t2

and

u2 (t, x, y, z) =
t

(1− x− y − z)2 − 3t2
.
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