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Series expansions for monogenic functions in Clifford algebras and
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Abstract. This paper deals with studying some properties of a monogenic function defined on a vector
space with values in the Clifford algebra generated by the space. We provide some expansions of a monogenic
function and consider its application to study solutions of second-order partial differential equations.
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1. Introduction

The Clifford algebra is a unital associative algebra, which is the minimal extension of a finite-
dimensional vector space V with a quadratic form. In this case, the vector space V is called embedded
in the Clifford algebra, and its orthogonal basis determines the basis of the algebra. We are interested
in properties of a monogenic function defined on the embedded vector space with values in the Clifford
algebra, which is a null solution of the Dirac operator. A monogenic function is one of the basic
concepts of Clifford analysis [1]. We will obtain the expansion of a left monogenic function into a
series of Fueter-type polynomials. Since any right monogenic function can be expanded in a similar
manner, only left monogenic functions are considered. We also study an application of the properties
of monogenic functions to solving some second-order partial differential equations.

2. Monogenic functions in Clifford algebras

Suppose £t is an (d + 1)-dimensional linear space over R with basis e;, i = 0,1,...,d. Suppose
Et1 is embedded in the Clifford algebra Clyq, p+q = d+1 with an identity = ey and e, e;+e€e, =0,
k#1l 1<k, <d In addition, ei:Ifor 1<k<pand ei:—ffor p<k<d.

Denote, by D = Z?:o ez-a%i, the generalized Cauchy—Riemann operator. It is easily verified that

* _ P 02 d fod
DD* =) i 92 Ei:p+1 922"

We are interested in studing the following equation:
DD*f =0. (2.1)

Definition 2.1. A4 function f : B4 — Cly 4 is called left monogenic, if Df =0, and f is called right
monogenic, if fD = 0.

In what follows, we will consider only left monogenic functions. Any left monogenic function is a
solution of the equation DD* f = 0.
For F4tl 5 ¢ = Z?:o e;x;, we introduce the following polynomials:

pk(m):xk—ekxo, 1§k§d
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Polynomials pi might be called Fueter-type polynomials, since, in the case of the algebra of quater-
nions H = x¢ + ix1 + jxo + kxs, polynomials x1 — ixg, To — jxg, 3 — kxg were introduced by Fueter
in [2| and are known as the Fueter polynomials.

An expansion of hyperholomorphic quaternion functions in Fueter polynomials was reported in [3],
and the similar expansion of hyperholomorphic co-quaternion functions was considered in [4]. The
relations between monogenic and hyperholomorphic functions was considered in [5].

Theorem 2.1. Let f € C (Ed“), n € N, and let the function f with its derivatives

o
8xi18xi2 N 81‘%

f (=)

be left monogenic. Then there exists real 0 such that

d 8
f () :f<0>+Zpk (x)
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T3 ZZPZ 83328%]0(0) et (n—1)!

i=1 j=1
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where 0 < 0, < 1.

Proof. Consider cfunction f (tx) as a function of ¢ € R. Taking into account that f (x) is left mono-

genic, i.e., %f (€) = -39 e e 9_f (x), we obtain
d )
—f (tz) Z Tig - Z — e;xp) ‘f (tx). (2.2)
=1 v
Setting t = 0, we have
a 0
*f( ) = sz‘ () %f(o)' (2.3)
=1 v
Now, considering that the functions
8?Eif(w)’ i=1,...,n
are left monogenic and accounting for Eq. (2.2), we get
d’ a (9, & a 9
th t:L‘ ; ez-rO dt ( > ; — €Xg J; — €;Tp 8wj8xzf(m)

503



Hence, for t =0,

2 d d 92
dt2f ZZ ezIBo — €T 0) mf (O)

=1 j=1

In the same way, we can show that

dr
%f (tx)

an
3 S b (@), (@ T e e AL

11=112=1 in=1

Now, consider the Taylor series for f (tx) w.r.t. ¢:

(i) = 1 (0)+ 7 (0)1+

dnfl tnfl n n

Tt O Tt

Substituting Eqgs. (2.3)-(2.5) into Eq. (2.6), we obtain Eq. (2.1).
If

1 d d o
LD e e LB

+ L s, 06, <1
n:

00 d d d on
J(@=1( +Z§,<ZZ DIFNCINC .pi,xw)axiaxi”_&,Uif(m).

n=1 11=112=1 in=1

In particular case where
871
8331-18331-2 e 83}1'”

f(0) =ay,

for all i1, i9,..., in € {1,2,...,n}, n € N, we have

Z - (Z > Z piy (@) piy (T) .. pi, () an>

i1=112=1 in=1

— Z m(pil (m) + Di, ($) + o+ (m))nan
n=1

[e.e] 1 n
SIETOIEERD S A
n=1
Thus, in this case,
© 1/ d "
x) = a0+zm<2xk —xOZek> A,
n=1 k=1 k=1
where ag = f (0).
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(2.5)
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3. Study of hyperbolic and Laplace equations with the use of monogenic functions

By using Egs. (2.7) and (2.8), we can construct solutions of Eq. (2.1). For example, setting a,, = n!
for 1 <n <m, m € Nand a, =0 for all n > m in Eq. (2.8), we get the following solution of Eq. (2.1):

m

m d d n d d n
f(:c):1+z<2xk—x026k> :Z(Zxk—x026k> .
n=1 \k=1 k=1 k=1 k=1

2n
Taking into account that (Ezzl ek) = (p—¢q)" in Cl, 4, we obtain a real solution of Eq. (2.1)

as follows:

m d n d n—2
U(ﬂfl7$2,~~axd)zz<<2$k> +CEL<Z$1€> (» — @)°z§
=1

n=0 k=1

d n—4
—l—Cﬁ(Zwk) (p—q)%é—l—...),
k=1

where we assume that C*¥ = 0 for n < k.
We can also construct solutions of Eq. (2.1) in the cases of infinite non-zero terms of series (2.7).
Indeed, by setting a, =1 for all n € N in Eq. (2.7), we get the following solution of Eq. (2.8):

d d d d
f(x) = exp (Z TE — To Z ek> = exp (Z xk> exp (—xo Z ek> .
k=1 k=1 k=1 k=1

2n 2n+1
Considering that (Zizl ek> = (p—¢q)" and the fact that expressions (Zi:l ek> are not

real for all n € N, we obtain the following real solution of Eq. (2.1):

d
w(x1,T2,...,Tq) = exp <Z xk> cos (zov/p — q) -

k=1

In the case where p = 0 (or ¢ = 0), i.e., the Clifford algebra is Clg 4 (or Clgyp), it follows from Eq.
(2.1) that a monogenic function f satisfies the d-dimensional Laplace equation

d_ 52
A f = —~_f=0. 3.1
af =2 57 (3.1)
=0 v
Consider the case Clp 3 with the embedded vector space E? and its basis I, e;, ey, where I is the

identity and exe; + e e = —21k;, 1 < k,1 < 2. In this case, Eq. (3.1) is the Laplace equation

0? 0? 0?
A3f:@f+87y2f+@f:0-

With regard for Eq. (2.8), it is easily seen that

_ (eate)r—y—=
l-(eae+e)rt+y+z

[y, 2)
is monogenic in E3\ {(e; + e2)x +y + 2z = 1}.

505



Let us find the real and imaginary parts of f:

Flany,2) = (e1+e)r—y—2z l1+(e1+e)r+y+z

T l-(er+e)r+y+z 1+ (e1+e)r+y+z
_y+z—2x2—(y+z)2 x

o224 (1—y—2)? 2024+ (1—y—2)

3 (61 + 62) .
Thus, we have the following solutions of Eq. (3.1):

ytz—22—(y+ o)
2024+ (1 —y —2)°

u (l‘,y, Z) =

and
T

UZ(‘Tayaz): 2$2+(1—y—2)2

Now, consider the case Cl; 3 where the embedded vector space E* has the basis I, e;, ey, e3, I is
the identity, and epe; + ejep, = —210g;, 1 < k,1 < 3.
In this case, Eq. (2.1) takes the form

0? 0? 0? 0?
ae! a2l a2l =0 (3:2)

Consider the function
where w = (e; + ex+e3)t —x —y — 2.

It follows from Eq. (2.7) that, for w # 1, the function f (w) is monogenic.
The real and imaginary parts of f can be calculated as follows:

f(w): (e1+ex+e3)t—x—y—2z 1+(er+extes)t+ax+y+z
l—(e1+extes)t+ax+y+z 1+(e1+ey+es)t+a+y+z
B —(z+y+2)trty+z t(e1+e2 +e3)
(- z—y—2)t—3t2 (1—z—y—2z)?—3t2

Hence, we have obtained two solutions of Eq. (3.2):

32— (z+y+2)+z+y+=z

ul (t,z,y,2) =
(62,9, %) (1—a—y—2)*—3t2
and
(t,2.9.2) t
ug (t,z,y,2) = )
? Y (1—z—y—2z)*—3t2
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