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ON THE INTEGRABILITY OF LATTICE EQUATIONS
WITH TWO CONTINUUM LIMITS

R. N. Garifullin and R. I. Yamilov UDC 517.547

Abstract. We study a new example of a lattice equation, which is one of the key equations of a
generalized symmetry classification of five-point differential-difference equations. This equation has two
different continuum limits, which are the well-known fifth-order partial-differential equations, namely,
the Sawada–Kotera and Kaup-Kupershmidt equations. We justify its integrability by constructing an
L-A pair and a hierarchy of conservation laws.
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1. Introduction. We consider the differential-difference equation

un,t = (un + 1)

(
un+2un(un+1 + 1)2

un+1
− un−2un(un−1 + 1)2

un−1
+ (2un + 1)(un+1 − un−1)

)
, (1)

where n ∈ Z, un(t) is an unknown function of one discrete variable n and one continuous variable t,
and the index t in the notation un,t denotes the time derivative. Equation (1) is obtained in the
generalized symmetry classification of five-point differential-difference equations of the form

un,t = F (un+2, un+1, un, un−1, un−2), (2)

performed in [8–10]. Equation (1) coincides with Eq. (E16) in [9]; it was obtained earlier in [2].
Equations of the form (2) play an important role in the study of four-point discrete equations on
square lattices, which are very relevant today (see e.g., [1, 5, 6, 16]).

At the present time, there is very little information on Eq. (1). It was proved in [9] that Eq. (1)
possesses a nine-point generalized symmetry of the form

un,θ = G(un+4, un+3, . . . , un−4).

As for relations to other known integrable equations of the form (2), nothing useful from the viewpoint
of constructing solutions is known (see details in the next section).

However, this equation occupies a special place in the classification (see [8–10]). In particular, it
possesses a remarkable property discovered in [7]: this equation possesses two different continuum
limits, which are the well-known Kaup–Kupershmidt and Sawada–Kotera equations. For this reason,
Eq. (1) deserves a more detailed study.

In Sec. 2, we discuss the known properties of Eq. (1). In order to justify the integrability of (1), we
construct an L-A pair in Sec. 3 and show that it provides an infinite hierarchy of conservation laws in
Sec. 4.

2. Special place of Eq. (1) in the classification of [8–10]. In two lists of integrable equations
of the form (2) presented in [9, 10], the following four equations occupy a special place: they are
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Eq. (1) and

un,t = (u2n − 1)
(
un+2

√
u2n+1 − 1− un−2

√
u2n−1 − 1

)
, (3)

un,t = u2n
(
un+2un+1 − un−1un−2

)− un
(
un+1 − un−1

)
, (4)

un,t = un+1u
3
nun−1

(
un+2un+1 − un−1un−2

)− u2n
(
un+1 − un−1

)
. (5)

Equations (3)–(5) correspond to Eqs. (E17) and (E15) in [9] and Eq. (E14) in [10], respectively.
Equation (4) has been known for a long time (see [18]).

In the continuum limit, all other equations from [9, 10] are transformed into third-order equations
of the form

Uτ = Uxxx + F (Uxx, Ux, U), (6)

where the indices τ and x denote the partial derivatives in τ and x, and mainly into the Korteweg–de
Vries equation. These four equations correspond in the continuum limit to fifth-order equations of the
form

Uτ = Uxxxxx + F (Uxxxx, Uxxx, Uxx, Ux, U). (7)

For all equations (1), (3)–(5), we get in the continuum limit one of the two well-known equations. One
of them is the Kaup-Kupershmidt equation (see [4, 12])

Uτ = Uxxxxx + 5UUxxx +
25

2
UxUxx + 5U2Ux, (8)

and the other is the Sawada-Kotera equation (see [17]):

Uτ = Uxxxxx + 5UUxxx + 5UxUxx + 5U2Ux. (9)

Using the substitution

un(t) =

√
3

3
+

√
3

2
ε2U

(
τ − 18

5
ε5t, x+

4

3
εt

)
, x = εn, (10)

in Eq. (5), we obtain at ε → 0 the Sawada–Kotera equation (9). All other continuum limits are known
(see [1] for (4) and [7] for (1) and (3)). Here we explicitly replicate substitutions for Eq. (1), which
has two different continuum limits. The substitution

un(t) = −4

3
− ε2U

(
τ − 18

5
ε5t, x+

4

3
εt

)
, x = εn (11)

in (1) leads to Eq. (8), while the substitution

un(t) = −2

3
+ ε2U

(
τ − 18

5
ε5t, x+

4

3
εt

)
, x = εn (12)

leads to Eq. (9). The link between these discrete and continuous equations is shown in the following
diagram:

(3) (1) (4)

(8) (9) (5)

�
��

�
�� (11)

�
��(12)

�
��
� (10)

We see that Eq. (8) has two different integrable approximations, while Eq. (9) has three approxima-
tions.

As far as we know, there are no relations between Eqs. (1), (3)–(5) and other known equations of
the form (2) presented in [9, 10]. More precisely, we mean relations in the form of the transformations

ûn = ϕ(un+k, un+k−1, . . . , un+m), k > m, (13)

and their compositions (see a detailed discussion of such transformations in [8]). As for relations
among (1), (3)–(5), Eq. (5) is transformed into (4) by ûn = un+1un, i.e., (5) is a simple modification
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of (4). There is a complicated relation between Eqs. (1) and (4) found in [2]. As was shown in [9],
it is a composition of two Miura-type transformations. It is very difficult to use that relation for the
construction of solutions because the problem is reduced to solving the discrete Riccati type equations
(see [9]).

There is a complete list of integrable equations of the form (7) (see [3, 13, 15]). Equations (8) and (9)
play the key role in that list, since all the other are transformed into these two by transformations of
the form:

Û = Φ(U,Ux, Uxx, . . . , Ux...x).

3. L-A pair. As the continuum limit shows, Eq. (1) should be close to Eqs. (3), (4) in its integrability
properties, and these equations (3), (4) have L-A pairs defined by (3 × 3)-matrices (see [1, 7]). Here
we construct an L-A pair for Eq. (1) following [7].

We search for an L-A pair of the form

Lnψn = 0, ψn,t = Anψn, (14)

with the operator Ln of the form

Ln = T 2 + l(1)n T + l(0)n + l(−1)
n T−1; (15)

where l
(k)
n with k = −1, 0, 1 depend on a finite number of functions un+j and T is the shift operator:

Thn = hn+1. In the case (15), the operator An can be chosen as follows:

An = a(1)n T + a(0)n + a(−1)
n T−1.

The compatibility condition for the system (14) has the form

d(Lnψn)

dt
= (Ln,t + LnAn)ψn = 0; (16)

it can be satisfied by virtue of Eqs. (1) and Lnψn = 0.

If we assume that the coefficients l
(k)
n depend only on un, then we can verify that a

(k)
n depend only

on un−1 and un. However, in this case, the problem for Eq. (1) has no solutions. Therefore, we proceed

to the case where the functions l
(k)
n depend on un and un+1. Then the coefficients a

(k)
n must depend

on un−1, un, and un+1. In this case, we find the operators Ln and An with one irremovable arbitrary
constant λ playing the role of the spectral parameter:

Ln = T 2 − Un+1

un+1
T + λ

Un+1

un

(
1− un

Un
T−1

)
, (17)

An =
un
Un

(
λT−1 − λ−1T

)
+

un
U2
n

(
un−1 + un+1T

−1
)
(T − 1), (18)

where

Un =
un

1 + un
. (19)

The L-A pair (14), (17), (18) can be rewritten in the standard matrix form with the (3×3)-matrices

L̃n and Ãn:

Ψn+1 = L̃nΨn, Ψn,t = ÃnΨn,

where Ψn is a spectral vector-valued function whose standard form is

Ψn =

⎛
⎝ψn+1

ψn

ψn−1

⎞
⎠ .
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Here we slightly change Ψ by a gauge transformation to simplify the matrices L̃n and Ãn:

Ψn =

⎛
⎜⎜⎜⎝
Un

(
λψn+1 +

1

un
ψn

)

ψn

ψn−1

⎞
⎟⎟⎟⎠ ,

and now L̃n and Ãn have the form

L̃n =

⎛
⎜⎜⎜⎜⎝

0 − 1

un

1

Un

λUn
Un

un
0

0 1 0

⎞
⎟⎟⎟⎟⎠ , (20)

Ãn =

⎛
⎜⎜⎜⎜⎜⎝

un−1un−2

U2
n−1

− un+1un
U2
n

− un + un−1

λ(1 + un)un−1 − un

λun−1 − (1 + un−1)un

− un−1

λUn−1
− un−1un−2

λU2
n−1

un+1un + un+1 + un
Un

un+1un + un+1 − unun−1

Un
− 1

λ

λun
Un

− un+1un
U2
n

un−1un−2

U2
n−1

− un−1

λUn−1
λ− un−1un−2

U2
n−1

+
unun−1

Un−1

⎞
⎟⎟⎟⎟⎟⎟⎠

. (21)

In this case, in contrast to (16), the compatibility condition can be represented in a form free of the
spectral vector-valued function Ψn:

L̃n,t = Ãn+1L̃n − L̃nÃn. (22)

4. Conservation laws. As far as we know, there exist two methods of constructing conservation
laws by using the matrix L-A pair (22) (see [5, 11, 14]). However, it is not clear how to apply these
methods in the case of the matrices (20) and (21). Here we will use another scheme of constructing
conservation laws from the L-A pair (14) presented in [7], where it was applied to Eq. (3). Here we
apply it to Eq. (1).

The structure of the operators (17) and (18) allows us to rewrite the L-A pair (14) in the form of
the Lax pair. The operator Ln linearly depends on λ:

Ln = Pn − λQn, (23)

where

Pn = T 2 − Un+1

un+1
T, Qn = −Un+1

un

(
1− un

Un
T−1

)
,

and Un is defined by (19). Introducing the notation L̂n = Q−1
n Pn, we obtain the equation

L̂nψn = λψn. (24)

The functions λψn and λ−1ψn in the second equation of (14) can be expressed in terms of L̂n and ψn

by using (24) and its consequence λ−1ψn = L̂−1
n ψn. As a result, we have

ψn,t = Ânψn, (25)
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where

Ân =
un
Un

(
T−1Q−1

n Pn − TP−1
n Qn

)
+

un
U2
n

(
un−1 + un+1T

−1
)
(T − 1).

It is important that the new operators L̂n and Ân in the L-A pair (24), (25) are independent of
the spectral parameter λ. For this reason, the compatibility condition can be written in the operator
form without using the ψ-function:

L̂n,t = ÂnL̂n − L̂nÂn = [Ân, L̂n]; (26)

this is exactly the Lax equation. The difference between this L-A pair and the well-known Lax pairs
for the Toda and Volterra equations is that the operators L̂n and Ân are nonlocal. Nevertheless, using
the definition of inverse operators:

PnP
−1
n = P−1

n Pn = 1, QnQ
−1
n = Q−1

n Qn = 1 (27)

and the fact that they are linear, we can verify by direct calculations that (26) is valid.
The conservation laws for Eq. (1), which are expressions of the form

ρ
(k)
n,t = (T − 1)σ(k)

n , k ≥ 0,

can be derived from the Lax equation (26), despite the nonlocal structure of L̂n and Ân (see [19]).

For this, we must first represent the operators L̂n and Ân as formal series in powers of T−1:

Hn =
∑
k≤N

h(k)n T k. (28)

Such formal series can be multiplied according the rule (anT
k)(bnT

j) = anbn+kT
k+j. The inverse

series of the form (28) can be easily obtained by definition (27), for example,

Q−1
n = −

(
1 + qnT

−1 + (qnT
−1)2 + . . .+ (qnT

−1)k + . . .
) un
Un+1

, qn =
un
Un

.

The series L̂n has the second order:

L̂n =
∑
k≤2

l(k)n T k = −
(

un
Un+1

T 2 + un

(
un−1

U2
n

− 1

un+1

)
T +

un−1

Un

(
unun−2

U2
n−1

− 1

)
T 0 + . . .

)
.

The conserved densities ρ
(k)
n of Eq. (1) can be found as follows:

ρ(0)n = log l(2)n , ρ(k)n = res L̂k
n, k ≥ 1, (29)

where the residue of the formal series (28) is defined by the rule resHn = h
(0)
n (see [19]). The

corresponding functions σ
(k)
n can be easily found by direct calculations.

The conserved densities ρ̂
(k)
n below have been found in this way and then simplified in accordance

with the rule

ρ̂(k)n = ckρ
(k)
n + (T − 1)g(k)n ,

where ck is a constant and g
(k)
n is a function. The first three densities of Eq. (1) are

ρ̂(0)n = log(un + 1), ρ̂(1)n =
Vn+1un−1

Un
,

ρ̂(2)n =
un+2un+1u

2
nun−1un−2

U2
n+1UnU2

n−1

+
un+1un−2(V

2
n − unun−1)

UnUn−1
+

u2n+1u
2
nun−1

2U2
n+1U

3
n

− un+1unun−1

Un+1Un
+

un+1un−1(Vn+1 − 1)Vn

2Un+1U2
n

+
u2n−1

2U2
n

,

287



where

Vn = unun−1 + un + un−1.

We can easily verify that
2ρ̂

(1)
n

un+1∂un−1
�= 0,

2ρ̂
(2)
n

un+2∂un−2
�= 0.

Therefore, in accordance with the theory developed in [19], the conserved densities ρ̂
(0)
n , ρ̂

(1)
n , and ρ̂

(2)
n

have the orders 0, 2, and 4, respectively. This means that we have obtained three conserved densities,
which are nontrivial and essentially different.
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