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ON A CERTAIN CLASS OF HYPERBOLIC EQUATIONS
WITH SECOND-ORDER INTEGRALS

A. V. Zhiber and A. M. Yur’eva UDC 517.9

Abstract. In this paper, we examine a special class of nonlinear hyperbolic equations possessing a
second-order y-integral. We clarify the structure of x-integrals and prove that they are x-integrals of a
hyperbolic equation with a first-order y-integral. We also prove that this class contains the well-known
Laine equation.
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1. Introduction. We consider equations of the following form:

uxy =
p− ϕu

ϕuy

ux +
q

ϕuy

√
ux, (1)

where p and q are functions of the variables x, y, and u and ϕ is a function of the variables x, y, u,
and uy. In [5] it was shown that if Eq. (1) has a second-order y-integral

W̄ = W̄
(
x, y, u, uy, uyy

)
, DW̄ = 0, (2)

then the function ϕ is independent of the variable x. Here D is the operator of complete differentiation
with respect to the variable x. Note that Eqs. (1) have not been examined in [4].

We assume that

v = ϕ(y, u, uy). (3)

Then from Eq. (3) it follows that

uy = Φ(y, u, v), (4)

and Eq. (1) can be written as follows:

Dv = p · ux + q
√
ux. (5)

In [5], necessary and sufficient conditions under which Eq. (1) has a second-order y-integral were
obtained. Taking into account (4), we can write the integral (2) as follows:

DW̄ = 0, W̄ = W̄ (x, y, u, v, vy). (6)

Then Eq. (6) is equivalent to the system of equations

L1W̄ = 0, L2W̄ = 0, L3W̄ = 0, (7)

where the operators

L1 =
∂

∂x
+

1

2
q2Φv · ∂

∂v̄1
,

L2 =
∂

∂u
+ p

∂

∂v
+

[
py + puΦ+ pΦu + p2Φv

] ∂

∂v̄1
,

L3 =
∂

∂v
+

[
3

2
pΦv +

qy
q

+
qu
q
Φ+

1

2
Φu

]
∂

∂v̄1
, v̄1 = vy,

(8)
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and the conditions of the existence of a y-integral (6) for Eq. (1) have the following form:

Φvv = 3
px
q2

Φv +
2

q2
(ln q)′′xu · Φ+

2

q2
(ln q)′′xy, (9)

(
1

2
pu + p

qu
q

)
Φv + pΦvu + (ln q)′′yu +

qu
q
Φu + (ln q)′′uu · Φ+

1

2
Φuu +

1

2
p2Φvv = 0, (10)

pxy − pxqy
q

+

(
pux − pxqu

q

)
Φ+

1

2
pxΦu +

(
1

2
ppx − qqu

)
Φv − 1

2
q2Φuv − 1

2
pq2Φvv = 0. (11)

In [5], a partial analysis of the conditions (9)–(10) was performed in the case where the solution of
Eq. (9) is determined by the formula

Φ = −C

B
+D(y, u)eS1v +R(y, u)eS2v, (12)

where

S1,2 =
A±√

Δ

2
, Δ = A2 + 4B �= 0, B �= 0, R ·D �= 0 (13)

and

A = 3
px
q2

, B =
2

q2
(ln q)′′xu, C =

2

q2
(ln q)′′xy, (14)

under the assumption

Ax = 0. (15)

In this case (see [5, Theorem 4.1]), the following relations are possible:

S1 = 2, S2 = 1, A = 3, B = −2, D = 1, R = −S(x, y)
qx
q2

+
H(x, y)

q
, p = −qu

q
. (16)

In this paper, we describe a class of Eqs. (1) with second-order y-integrals satisfying the condi-
tions (12)–(16).

It is shown that one of examples of such equations is the following equation constructed by Laine
in 1926 (see [1–3]):

uxy = 2

[
(u+ Y )2 + uy + (u+ Y )

√
(u+ Y )2 + uy

]
×

[√
ux + ux
u− x

− ux√
(u+ Y )2 + uy

]

, (17)

where Y = Y (y).

2. Equations with second-order y-integrals. It follows from (9) that if Ax = 0, then Bx = 0
and Cx = 0. We rewrite the conditions (12)–(16) using the substitution 2v + lnD → 2v (see [5]):

Φ =
C

2
+ e2v +Rev, (18)

R(y, u) = −S(x, y)
qx
q2

+
H(x, y)

q
, (19)

p = −qu
q
,

px
q2

= 1, (20)

C =
2

q2
(ln q)′′xy, Cx = 0. (21)

It is immediately verified that if the relations (18)–(21) are valid, then Eqs. (9)–(11) are satisfied. Thus,
the original equation (1) possesses a second-order y-integral, which has the following form (see [5]):

W̄ = v̄1 + β(x, y, u, v). (22)
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In order to calculate the y-integral (22), we consider the system of equations (7) with the operators (8).
Taking into account (18), we can write this system as follows:

βx +
1

2
q2(2e2v +Rev) = 0, (23)

βu + pβv + py + pu

[
C

2
+ e2v +Rev

]
+ p

[
Cu

2
+Rue

v

]
+ p2

[
2e2v +Rev

]
= 0, (24)

βv +
3

2
p
[
2e2v +Rev

]
+

qy
q

+
qu
q

[
C

2
+ e2v +Rev

]
+

1

2

[
Rue

v +
Cu

2

]
= 0. (25)

From Eq. (25) we obtain that

β = −
(
qy
q

+
1

2

qu
q
C +

1

4
Cu

)
v −

(
3

2
p+

1

2

qu
q

)
e2v −

(
3

2
pR+

qu
q
R+

1

2
Ru

)
ev + E(x, y, u).

Further, taking into account the relations (20) and (21), it is easy to show that

β = −pe2v −
(
1

2
pR+

1

2
Ru

)
ev + E. (26)

The substitution of the function β defined by the formula (26) in Eq. (23) reduces it to the relation
Ex = 0. Finally, according to (26), Eq. (24) is written as follows:

Eu + py +
1

2
(p · C)′u +

[
−
(
3

2
p+

1

2

qu
u

)′

u

− 2

(
3

2
p2 +

1

2
p
qu
q

)
+ pu + 2p2

]
e2v

+

[
−
(
3

2
pR+

qu
q
R+

1

2
Ru

)′

u

−
(
3

2
p2 + p

qu
q

)
R+

1

2
pRu + puR+ p2R

]
ev. (27)

Since p = −qu/q (see (20)), the coefficient e2v in the formula (27) is zero. To determine the coefficient
of ev, we calculate the derivative Ruu. Differentiating Eq. (19) and taking into account (20), we obtain
that

(qR)′u
q2

= S(x, y).

Now differentiating the last equality by the variable u, we arrive at the relation

(qR)′′uu = 2
qu
q
(Rq)′u,

which can be written in the form
Ruu = puR+ p2R (28)

(here we take into account (20)). Further, using (28), we see that the coefficient of ev in the formula (27)
is zero. Hence, we obtain

Eu + py +
1

2
(pC)′u = 0

or, according to (20),

Eu = (ln q)′′uy −
1

2
(pC)′u.

Thus,

E =
qy
q

− 1

2
pC + f(y).

Since
qy
q

+
1

2

qu
q
C +

1

4
Cu = 0, (29)

the function E can be represented in the form

E = −1

4
Cu + f(y)
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and, consequently, the y-integral (22), according to (26), is determined by the following formula:

W̄ = v̄1 − pe2v − 1

2
(pR+Ru) e

v − 1

4
Cu, (30)

where the function C is defined by Eq. (21).
We write the integral (30) in another way. For this, we assume that

v = r − ln q. (31)

Then

W̄ = r̄1 +

(
−qy

q
+

1

2
pC − 1

4
Cu

)
+

1

2
(pR−Ru)

1

q
· er; (32)

moreover, the integral (32) is independent of the variable u and, due to (29), (32), and (20), is specified
as follows:

W̄ = r̄1 + a(x, y)er, a(x, y) =
1

2q
(pR−Ru) . (33)

Next, we define the right-hand side of the original equation (1), for which the conditions (18)–(21)
are satisfied. As was shown above, these relations possess the second-order y-integral (33).

We consider Eq. (19). Note that S(x, y) �= 0 and qx �= 0; otherwise from (20) we obtain q = 0. We
rewrite Eq. (19) in the following form:

∂

∂x

(
1

q

)
=

R(y, u)

S(x, y)
− H(x, y)

S(x, y)

1

q
.

A solution of this equation is determined by the formula

1

q
= R(y, u)λ(x, y) + Φ(y, u)μ(x, y); (34)

moreover,

H = −μx

μ2
· 1
(
λ
μ

)′
x

, S =
1

μ ·
(
λ
μ

)′
x

. (35)

Further, the conditions (20) imply that the function q satisfies the Liouville equation

−q2 = (ln q)′xu. (36)

Now, using the representation of (34) from (36), we easily obtain the following formula for the func-
tion q:

1

q
= R · λ

[
1 +

∫
dx

λ2
·
∫

du

R2

]
, (37)

where the functions H(y, u) and S(x, y) (see (35)) are defined as follows:

S = −λ

∫
dx

λ2
, H =

1

λ
+ λx

∫
dx

λ2
. (38)

Thus, the relations (19) and (20) are reduced to (37) and (38).
It remains to consider the condition (21). For this, assuming that

∫
dx

λ2
= α(x, y),

∫
du

R2
= γ(y, u), (39)

we rewrite the formula (37) as follows:

1

q
=

1 + αγ√
αx · √γu

.

Thus,

q2 =
αx · γu

(1 + αγ)2
. (40)

171



Further, the condition (21) can be written in the following form:

(ln q2)
′′
xy = h(y, u)q2. (41)

Taking into account (40), we rewrite the relation (41) in the following form:

h · γu =
(lnαx)

′′
xy

αx
− 2γy + 2

(
α

αx
(lnαx)

′′
xy −

αxy

αx

)
γ +

[
α2

αx
(lnαx)

′′
xy − 2

(
ααxy

αx
− αy

)]
γ2.

We differentiate the last equality with respect to variable x and, taking into account the facts that
h = h(y, u) and γ = γ(y, u), we obtain

[
(lnαx)

′′
xy

αx

]′

x

+ 2

(
α

αx
(lnαx)

′′
xy −

αxy

αx

)′

x

· γ +

[
α2

αx
(lnαx)

′′
xy − 2

(
ααxy

αx
− αy

)]′

x

· γ2 = 0.

Since α = α(x, y) and γu �= 0 (see (39)), we rewrite the last equation as follows:
[
(lnαx)

′′
xy

αx

]′

x

= 0, (42)

[
α

αx
(lnαx)

′′
xy −

αxy

αx

]′

x

= 0, (43)

[
α2

αx
(lnαx)

′′
xy − 2

(
ααxy

αx
− αy

)]′

x

= 0. (44)

It is not difficult to show that the relations (43) and (44) are satisfied by (42). Due to (39), Eq. (42)
is reduced to the following form:

(lnλ)′′xy = κ(y)
1

λ2
. (45)

Thus, if a function λ(x, y) is a solution of Eq. (45), then the condition (21) is satisfied, i.e., Cx = 0.
Note that for κ(y) �= 0, Eq. (45) is reduced to the Liouville equation ψxy = eψ by the substitution

−2κ/λ2 = eψ.
Thus, if the function q is calculated by the formula (37), where λ(x, y) is a solution of Eq. (45),

p = −qu/q, and the function ϕ(y, u, uy) is determined from the equation

uy =
1

q2
(ln q)′′xy + e2ϕ +Reϕ, (46)

then the original equation (1) has a second-order y-integral, which, as can be easily shown by using
the formula (33), has the following form:

W̄ = r̄1 +
1

2
λ

(∫
dx

λ2

)
er, a =

1

2
λ

(∫
dx

λ2

)
er, (47)

where r = ϕ+ ln q (see (31)).
Concluding this section, we describe the structure of x-integral of Eq. (1) in the case considered.

The x-integral W has the following form:

W = W
(
x, y, u, u1, u2, . . . , un

)
, D̄W = 0, uk = Dkuk, k = 1, 2, . . . , n. (48)

Further, taking into account the formula (31), we can write Eq. (5) as follows:

Dr =
qx
q

+ q
√
ux. (49)

According to (49), from the variables x, y, u, u1, u2, . . ., one can obtain the new variables, namely, x,
y, u, r1, r2, . . .. Consequently, the integral (48) can be represented in the following form:

W = W
(
x, y, u, r1, r2, . . . , rn

)
.
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Further, taking into account (46) and (47), we have

D̄W = Wy +Wu

[
1

q2
(ln q)′′xy +

1

q2
e2r +

1

q
Reϕ

]
−Wr1D (aer)−Wr2D

2(aer)− . . .−WrnD
n(aer).

Therefore, since x-integral is independent of the variable r, it follows that Wy = 0, Wu = 0, and the
last equality takes the form

Wr1D(aer) +Wr2D
2(aer) + . . . +WrnD

n(aer) = 0. (50)

Note that by virtue of (50), the x-integral W can be considered as an x-integral of the hyperbolic
equation

rxy + (ax + arx) e
r = 0,

which possesses a first-order y-integral W̄ = r̄1 + aer.

3. Equation (17). In this section, we show that the Laine equation (17) is contained in the above-
considered class of Eqs. (1), and we present its x- and y-integrals. Equation (17) coincides with (1)
if

p = q =
1

u− x
, ϕ = ln

[
(u+ Y ) +

√
uy + (u+ Y )2

]
.

In this case, C = 0, R = −2(u+ Y ), and the second-order y-integral (47) has the following form:

W̄ = r̄1 − (x− Y (y)) er,

(
λ = −1

2

)
, (51)

where

r = ϕ+ ln
1

u− x
, a = − (x− Y (y)) .

Next, we calculate a third-order x-integral. According to (51), we can rewrite Eq. (50) in the form

{
(
1 + (x− Y )r1

) ∂

∂r1
+

[
2r1 + (x− Y )(r21 + r2)

] ∂

∂r2

+
[
3(r2 + r21) + (x− Y )

(
r3 + 3r1r2 + r31

)] ∂

∂r3

}

W = 0. (52)

For Y ′(y) �= 0, Eq. (52) is reduced to the following two equations:

L1W =

[
−r1

∂

∂r1
− (r21 + r2)

∂

∂r2
− (r3 + 3r1r2 + r31)

∂

∂r3

]
W = 0, (53)

L2W =

[
(1 + xr1)

∂

∂r1
+

(
2r1 + x(r21 + r2)

) ∂

∂r2
+

(
3(r2 + r21) + x(r3 + 3r1r2 + r31)

) ∂

∂r3

]
W = 0.

(54)

We assume that L3 = L2 + xL1; then

L3W =

[
∂

∂r1
+ 2r1

∂

∂r2
+ 3

(
r2 + r21

) ∂

∂r3

]
W = 0. (55)

We introduce the operator L4 = −L1 − r1L3. So we have the following:

L4W =

[(
r2 − r21

) ∂

∂r2
+

(
r3 − 2r31

) ∂

∂r3

]
W = 0. (56)

Note that the commutator of the operators L3 and L4 is zero, [L3, L4] = 0. Thus, the system (53),
(54) is equivalent to (55), (56).
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It is known that if there exists an integral of the order n, n ≥ 2, then we can assume that it is linear
with respect to the leading variable. We assume that

W = α (x, r1, r2) r3 + β (x, r1, r2) . (57)

The system (55), (56) for the integral (57) is reduced to the system

αr1 + 2r1αr2 = 0, βr1 + 2r1βr2 + 3(r2 + r21)α = 0,

(r2 − r21)αr2 + α = 0, (r2 − r21)βr2 − 2r31α = 0,

the following functions are the solutions of this system:

α =
1

r2 − r21
, β = − 2r31

r2 − r21
− 3r1. (58)

Thus, according to (57) and (58), the x-integral of Eq. (17) for Y ′(y) �= 0 has the following form:

W =
r3

r2 − r21
− 2r31

r2 − r21
− 3r1,

where, according to (49),

r1 =
1

u− x
+

ux
u− x

.

For Y ′(y) = 0, Eq. (17) possesses a second-order x-integral, which, according to (52), is a solution
of the equation

{
(1 + (x− Y )r1)

∂

∂r1
+

[
2r1 + (x− Y )(r21 + r2)

] ∂

∂r2

}
W = 0.

Assuming that
W = α(x, r1)r2 + β(x, r1),

we can easily obtain that it is given by the formula

W =
r2

1 + (x− Y )r1
− r21

1 + (x− Y )r1
.
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