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TENSOR PRODUCTS OF QUANTUM MAPPINGS

S. N. Filippov UDC 519.72, 530.145

Abstract. In this paper, we examine properties of the tensor powers of quantum mappings Φ. In
particular, we review positivity properties of unitary and nonunitary qubit mappings Φ⊗2. For arbitrary
finite-dimensional systems, we present the relationship between the positive and completely positive
divisibility of dynamical mappings Φ⊗2

t and Φt. A criterion of annihilation of entanglement by an
arbitrary qubit mapping Φ⊗2 is found.
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1. Introduction. Linear mappings naturally arise in the problems of quantum evolution of density
operators (see [6, 27, 39]) since the fundamental quantum equations of motion are linear differential
equations of the first order in time. In this paper, we consider finite-dimensional quantum systems
whose states are described by linear density operators �(t) ∈ B(H), where H is a finite-dimensional
Hilbert (unitary) space, dimH = d < ∞, and B(H) is the set of operators acting on H. The density
operator �(t) is Hermitian (�†(t) = �(t)) and nonnegative definite (〈ψ|�†(t)|ψ〉 ≥ 0 for all |ψ〉 ∈ H;
here and below we use the standard Dirac notation), which has a unit trace (tr[�(t)] = 1).

In the case of the absence of initial correlations between a quantum system and its environment, the
evolution is described by a dynamic mapping �(t) = Φt[�(0)], where Φt is a completely positive, trace-
preserving mapping called a quantum channel (see, e.g., [27]). The physical requirement of complete
positivity instead of simple positivity of the mapping is explained by the fact that the initial state
of the system considered can be entangled with another (auxiliary) system (see [31, 48, 49]). The
auxiliary system can have an arbitrary dimension k; its trivial evolution is governed by the identity
mapping Idk. The density matrix of the initial entangled state must turn into a certain density matrix;
therefore, the mapping Φt⊗ Idk must be positive for any k: this is the definition of complete positivity
of the mapping Φt. It is remarkable that for completely positive mappings, there exists a convenient
criterion based on the Choi–Jamio�lkowski isomorphism (see [7, 9, 32]), while for positive mappings
such a criterion has not been found in the general case.

The existence of entangled states implies the structure of the tensor product of the space H. An
entangled state of a two-part system is a density operator �AB ∈ B(HA) ⊗ B(HB), which cannot be
represented as the closure of the convex sum of tensor products of local density operators (see [53]),
i.e.,

�AB �=
∑

k

pk�
(k)
A ⊗ �

(k)
B . (1)

States described by the right-hand side of Eq. (1) are said to be separable (or disentangled); they can
be prepared by using local operations and classical communication in remote laboratories A and B.

Assume that two physical carriers of information A and B evolve independently. In particular, this
occurs when propagating a quantum signal from a source to two remote signal receivers A and B
via individual communication lines. In this case, the dynamic mapping is given by a local quantum
channel of the form ΦA

1 ⊗ ΦB
2 . It is easy to show that ΦA

1 ⊗ ΦB
2 is completely positive if and only if

both ΦA
1 and ΦB

2 are completely positive.
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Another important case of tensor mapping occurs when information encoded in several physical
carriers of information is transmitted via the same communication channel Φ. In case of the absence
of memory effects, the consecutive transfers of n physical carriers via the channel lead to the mapping
Φ⊗n. Such tensor constructions are used in the definition of the capacity of quantum channels (see [28]).
Obviously, Φ⊗n is completely positive if and only if Φ is completely positive. Channels that break
entanglement have the same property of invariance with respect to the tensor product (see [25, 26,
30, 33, 44, 50]). However, the positivity property is not invariant with respect to the tensor product,
i.e., Φ⊗n may be nonpositive even if the linear mapping Φ is positive (see [13, 15, 20, 38]). Similarly,
the mappings Φ⊗n and Φ⊗m, m > n ≥ 2, can have different effects on entangled states: Φ⊗n can lead
to annihilation of the entanglement (see [11, 12, 17, 19–21, 37]) or to the absolute separability of the
output state (see [16]), while Φ⊗m does not possess these properties.

The properties of positivity and complete positivity of intermediate mappings (see [54]) Θt,t+s =

Φt+s ◦ Φ−1
t , s > 0, are often used for characterizing the Markov property of the dynamic process Φt

(see [5, 10, 43]). In particular, if Θt,t+s is completely positive for any t, s ≥ 0, then the process Φt is said
to be completely positively divisible (or Markov process), and the corresponding kinetic equation has
the form of the Gorini–Kossakovsky–Sudarshan—Lindblad equation (see [23, 34]) with time-dependent
coefficients (in this case, the decoherence rates remain nonnegative, see [24]). If Θt,t+s is positive for
all t, s ≥ 0, but is not completely positive for some t, s ≥ 0, then the process Φt is called a weakly
non-Markov process (see [8, 42, 55]). If Θt,t+s is not positive for some t, s ≥ 0, then the process Φt is
called a substantially non-Markov process (see [8]). The physical difference between these processes is
clearly demonstrated in collision models, where the quantum system sequentially interacts with the
microscopic particles of the reservoir (see [41, 47, 56, 57]). Markov processes can be easily implemented
by the factorized state of the reservoir (see [18]) in continuous or stroboscopic limit (see [22, 35, 36]);
at the same time, for non-Markov (weakly or substantially) processes, a correlated environment is
needed (see [18, 46]) (the correlations can be quantum or classical).

This paper is devoted to the analysis of one-parameter families of mappings Φt, t ≥ 0, Φ0 = Id, and
their tensor products Φ⊗2

t .
Let Φt be a semigroup with some linear generator L, i.e., Φt = exp(Lt). It was proved in [2] that the

positivity of the mapping exp(Lt)⊗2 is equivalent to the complete positivity of the mapping exp(Lt) (in
this case, the generator L is given by the Gorini–Kossakovsky—Sudarshan—Lindblad equation with
constant coefficients). In this paper, we show that if Φt is not a semigroup, then this property does
not hold. The first aim of this paper is to establish a relationship between the positivity properties of
the mappings Φt and Φ⊗2

t .
The examples mentioned above show that the processes Φt and Φ⊗n

t can possess different divisibility.
The second aim of this paper is to establish a correspondence between the divisibility properties of
the mappings Φt and Φ⊗2

t .
The third aim of this paper is to find a condition of annihilation of an entanglement by an arbitrary

two-qubit quantum channel Φ⊗2
t .

2. Positivity of the tensor product of mappings. Let Φ : B(H2) �→ B(H2) be a linear qubit
mapping. It was proved in [38] that Φ⊗n is positive for any n ∈ N if and only if Φ is completely positive
or completely copositive (i.e., is obtained by successive application of a completely positive mapping
and transposition in a certain basis). For the case n = 1, it is also known that any positive mapping
Φ : B(H2) �→ B(H2) is a conical combination of a completely positive mapping and a completely
copositive mapping (see [51]). The case of arbitrary n was examined in the recent work [15]. In
particular, if Υ is a unitary mapping of the form

Υ[�] =
1

2

⎛

⎝tr[�]I +

3∑

j=1

λ̃j tr
[
σj�

]
σj

⎞

⎠ , (2)
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where σ1, σ2, and σ3 are the standard Pauli operators and I is the identity operator on H2. Then
Υ⊗2 is positive if and only if Υ2 is completely positive (see [15]). Since the criterion of the complete
positivity of qubit mappings is known (see [45]), we find that Υ⊗2 is positive if and only if

1 + λ̃2
1 − λ̃2

2 − λ̃2
3 ≥ 0, 1− λ̃2

1 + λ̃2
2 − λ̃2

3 ≥ 0, 1− λ̃2
1 − λ̃2

2 + λ̃2
3 ≥ 0.

Example 1. Consider a time-dependent dissipator

Lt[�] =
α

2

3∑

k=1

γk(t)
(
σk�σk − �

)
, (3)

where α > 0, γ1(t) = γ2(t) = 1, and γ3(t) = − tanh(t). Since the mappings Lt1 and Lt2 for different
instants of time commute, the resulting mapping is

Υt = exp

⎛

⎝
t∫

0

L(t′)dt′
⎞

⎠ .

It is easy to obtain that

λ̃1(t) = λ̃2(t) = coshα(t)e−αt, λ̃3(t) = e−2αt.

The resulting mapping Υt is completely positive if and only if α ≥ 1 and is simply positive for α > 0
(see [3]). Using the positivity criterion for the mapping Υ⊗2

t (see [15]), we conclude that Υ⊗2
t is positive

if and only if α ≥ 1/2. Thus, if 1/2 ≤ α < 1, then all the mappings {Υ⊗2
t }t>0 are positive, while the

mappings {Υt}t>0 are not completely positive. This shows that the positivity of the mapping Υ⊗2
t in

the general case does not imply the complete positivity of Υt, in contrast to the case of the semigroup
considered in [2].

The obtained results can be presented in the form of the following diagram:

Φt ⊗ Φt is positive Φt is positive

Φt is completely positive

Φt ⊗ Φt is completely positive

\

It was proved in [1] that for any positive qubit mapping Φ that does not belong to the boundary of
positive mappings, there exist positive definite operators A and B such that

ΦA ◦ Φ ◦ΦB = Υ, (4)

where ΦA[X] = AXA†, ΦB [X] = BXB†, and Υ has the form (2). Due to the nondegeneracy of the
operators A and B, the mappings Φ⊗n and Υ⊗n have the same positivity properties. In [14], the

explicit forms of the operators A and B and the parameters λ̃j were found. In particular, for the
nonunital mapping

Φ[X] =
1

2

⎛

⎝tr[X]
(
I + t3σ3

)
+

3∑

j=1

λj tr
[
σj�

]
σj

⎞

⎠ , (5)
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the parameters λ̃j are defined by the expressions

λ̃1 =
2λ1√

(1 + λ3)2 − t23 +
√

(1− λ3)2 − t23
, (6)

λ̃2 =
2λ2√

(1 + λ3)2 − t23 +
√

(1− λ3)2 − t23
, (7)

λ̃3 =
4λ3(√

(1 + λ3)2 − t23 +
√

(1− λ3)2 − t23

)2 . (8)

As a result, we obtain the following criterion of the positivity of the mapping Φ⊗2.

Proposition 1. The mapping Φ⊗2, where Φ is given by Eq. (5) and |t3|+ |λ3| < 1, is positive if and
only if the parameters (6)–(8) satisfy the conditions

1 + λ̃2
1 − λ̃2

2 − λ̃2
3 ≥ 0, 1− λ̃2

1 + λ̃2
2 − λ̃2

3 ≥ 0, 1− λ̃2
1 − λ̃2

2 + λ̃2
3 ≥ 0.

Similarly, combining the results of [14, 15], we can obtain a criterion of the positivity of the map-
ping Φ⊗3. We do not present this criterion here because of its cumbersome form. Necessary and
(separately) sufficient conditions for the positivity of an arbitrary qubit mapping Φ⊗n can be obtained
in the same way.

3. Divisibility of the tensor product of mappings. Properties considered in the previous sec-
tion are applicable to the intermediate mapping Θt,t+s = Φt+s ◦Φ−1

t , which transforms the state at the
time t into the state at the time t+ s. Obviously, if the process Φt is completely positively divisible,
then the process Φt ⊗ Id is also completely positively divisible. However, if the process Φt is simply
positively divisible, then this does not imply the positive divisibility of the process Φt ⊗ Id since the
mapping Θt,t+s ⊗ Id is not always positive for positive mappings Θt,t+s. This example shows that
adding a trivial auxiliary system (governed by the identity evolution transformation Id) to this system
can affect the property of positive divisibility of the mapping.

If we pass to the tensor-product level of a self-mapping, then the following result is valid for the
dynamics of an arbitrary finite-dimensional system (see [3]).

Proposition 2. A one-parameter family {Φt}t≥0 of dynamical mappings of a finite-dimensional quan-
tum system is completely positively divisible if and only if the tensor product {Φt⊗Φt}t≥0 is positively
divisible.

On the other hand, Θt,t+s⊗Θt,t+s is completely positive if and only if Θt,t+s is completely positive.
Thus, we obtain the following statement.

Proposition 3. The positive divisibility and the completely positive divisibility of a finite-dimensional
dynamical mapping Φt ⊗ Φt are equivalent.

These results can be presented in the diagram form:

Φt ⊗ Φt is positive divisible

�
Φt is completely positively divisible

�
Φt ⊗ Φt is completely positively divisible.

Since the positivity of the mapping Θ⊗n+1
t,t+s implies the positivity of the mapping Θ⊗n

t,t+s, n ∈ N, we

conclude that Φt is completely positively divisible (Markov) mapping if Φ⊗n
t is positively divisible,

where n ≥ 2.
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4. Annihilation of entanglement by the tensor product of qubit mappings. A mapping

Φ⊗ Φ′ : B(H)⊗ B(H′) �→ B(H)⊗ B(H′)

is called a positive mapping annihilating entanglement if Φ⊗Φ′[�] is a separable density operator with
respect to the partition H|H′ for any density operators � ∈ B(H)⊗B(H′) (see [20]). The properties of
such mappings were partially investigated in [11, 12, 19, 21]. In this paper, we completely characterize
two-qubit mappings

Φ⊗ Φ′ : B(H2)⊗ B(H′
2) �→ B(H2)⊗ B(H′

2),

possessing the property of annihilation of entanglement. Since almost all nonunital positive qubit
mappings Φ are reduced to unital mappings of the form (2) by the formula (4) and the mappings ΦA

and ΦB do not change the entanglement property, our problem is reduced to the analysis of the

tensor product Υ ⊗ Υ′. To the mappings Υ and Υ′ we assign the vectors λ = (λ̃1, λ̃2, λ̃3)
� and

λ̃ = (λ̃1, λ̃2, λ̃3)
�.

Proposition 4. Let Υ and Υ′ be positive qubit mappings. The mapping Υ⊗Υ′ is a positive mapping

annihilating entanglement if and only if |λ̃�
PRλ̃

′| ≤ 1 for all permutation (3 × 3)-matrices and the
matrices

R ∈
{
I, diag(1,−1,−1), diag(−1, 1,−1), diag(−1,−1, 1)

}
.

Proof. Due to the convex structure of separable states, the mapping Υ⊗Υ′ annihilates entanglement
if and only if Υ ⊗ Υ′[|ψ〉〈ψ|] is separable for all pure states |ψ〉. The Schmidt decomposition of an
arbitrary two-qubit pure state |ψ〉 has the form

|ψ〉 = √
p|ϕ〉 ⊗ |χ〉+

√
1− p|ϕ⊥〉 ⊗ |χ⊥〉 = U ⊗ V |ψp〉,

where 0 ≤ p ≤ 1,

|ψp〉 = √
p|0〉 ⊗ |0〉+

√
1− p|1〉 ⊗ |1〉

and the operators U and V are unitary (the transition matrices from the basis {|0〉, |1〉} to the basis
{|ϕ〉, |ϕ⊥〉} and from the basis {|0〉, |1〉} to the basis {|χ〉, |χ⊥〉}).

We assume that ΦU [X] = UXU †; then

Υ⊗Υ′
[
|ψ〉〈ψ|

]
=

(
Υ ◦ ΦU

)⊗ (
Υ′ ◦ ΦV

)[|ψp〉〈ψp|
]
.

Since local unitary operations preserve separability, we apply additional unitary operations ΦU†⊗ΦV † .
In this case, Υ⊗Υ′[|ψ〉〈ψ|] is separable if and only if

(
ΦU† ◦Υ ◦ΦU

)
⊗

(
ΦV † ◦Υ′ ◦ ΦV

)[
|ψp〉〈ψp|

]

is separable.
The matrix representation

Mij(Υ) =
1

2
tr
[
σiΥ[σj]

]
, i, j = 0, . . . , 3,

of the mapping ΦU† ◦Υ ◦ ΦU is not diagonal:

M(ΦU† ◦Υ ◦ΦU ) =

(
1 0�

0 Q�
U

)
⎛

⎜⎜⎝

1 0 0 0

0 λ̃1 0 0

0 0 λ̃2 0

0 0 0 λ̃3

⎞

⎟⎟⎠

(
1 0�

0 QU

)
, (9)

where QU is an orthogonal (3×3)-matrix corresponding to the channel ΦU and 0 is a three-component
zero column. In the action on the state |ψp〉〈ψp|, only diagonal elements of the matrices M(ΦU†◦Υ◦ΦU )
and M(ΦV † ◦Υ′ ◦ΦV ) are significant; therefore,

(
ΦU† ◦Υ ◦ΦU

)⊗ (
ΦV † ◦Υ′ ◦ΦV

)[|ψp〉〈ψp|
]
= ΥU ⊗Υ′

V

[|ψp〉〈ψp|
]
,
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where

M(ΥU ) = diag
(
1, (QU λ̃)

�
)
, (QU )ij =

∣∣(Q�
U )ij

∣∣2, (10)

M(Υ′
V ) = diag

(
1, (QV λ̃

′
)�

)
, (QV )ij =

∣∣(Q�
V )ij

∣∣2. (11)

Note that the matrices QU and QV are bistochastic. For brevity, we introduce the notation μ = QU λ̃

and μ′ = QV λ̃
′
. In the basis

{|00〉, |01〉, |10〉, |11〉}, the density operator ΥU ⊗ Υ′
V [|ψp〉〈ψp|] has the

so-called X-form; therefore, it is nonnegative definite and separable by the Perez–Horodecki criterion
(see [29, 40]) if and only if

(
1 + μ3μ

′
3

)2 ≥ (
μ1μ

′
1 ± μ2μ

′
2

)2
+ (2p − 1)2

[(
μ3 + μ′

3

)2 − (
μ1μ

′
1 ± μ2μ

′
2

)2]
, (12)

(
1− μ3μ

′
3

)2 ≥ (
μ1μ

′
1 ± μ2μ

′
2

)2
+ (2p − 1)2

[(
μ3 − μ′

3

)2 − (
μ1μ

′
1 ± μ2μ

′
2

)2]
. (13)

The conditions (12) and (13) are automatically fulfilled for p = 0 or p = 1 since the mappings Υ
and Υ′ are positive and the state |ψp〉 in this case is factorized. Due to the monotonicity with respect
to the parameter (2p − 1)2, the conditions (12) and (13) are satisfied for all 0 ≤ p ≤ 1 if and only if
they are satisfied for p = 1/2: ∣∣∣μ�P̃−1R̃P̃μ′

∣∣∣ ≤ 1, (14)

where R̃ = I or R̃ = diag(1,−1,−1), and P̃ is a permutation (3× 3)-matrix. Recalling that μ = QU λ̃

and μ′ = QV λ̃
′
, we reduce the inequality (14) to the form

∣∣∣λ̃
�Q�

U P̃
−1R̃P̃QV λ̃

′∣∣∣ ≤ 1. (15)

By the Birkhoff–von Neumann theorem (see [4, 52]), the bistochastic matrices Q�
U and QV are the

convex sums of permutation matrices, and the inequality (15) holds for all Q�
U and QV if and only if

the condition ∣∣∣λ̃
�
P1R̃P2λ̃

′∣∣∣ ≤ 1 (16)

is satisfied for all permutation matrices P1 and P2. On the other hand, R̃P2 = P2R, where R is
one of the matrices I, diag(1,−1,−1), diag(−1, 1,−1), or diag(−1,−1, 1). Introducing the notation
P1P2 = P , we obtain that

(
ΦU† ◦Υ ◦ΦU

)
⊗

(
ΦV † ◦Υ′ ◦ ΦV

)[
|ψp〉〈ψp|

]

is separable, and hence Υ1 ⊗Υ2 annihilates entanglement if and only if
∣∣∣λ̃

�
PRλ̃

′∣∣∣ ≤ 1 for all permu-

tation (3× 3)-matrices and the matrices

R ∈
{
I, diag(1,−1,−1), diag(−1, 1,−1), diag(−1,−1, 1)

}
.

Proposition 4 is proved. �

Corollary 1. Let

1 ≥ λ̃1 ≥ λ̃2 ≥ λ̃3 ≥ 0, 1 ≥ λ̃′
1 ≥ λ̃′

2 ≥ λ̃′
3 ≥ 0.

A local two-bit unitary mapping Υ⊗Υ′ annihilates entanglement if and only if

λ̃
�
λ̃
′
= λ̃1λ̃

′
1 + λ̃2λ̃

′
2 + λ̃3λ̃

′
3 ≤ 1.

Corollary 2. A local two-bit unital mapping Υ⊗2 annihilates entanglement if and only if

λ̃2
1 + λ̃2

2 + λ̃2
3 ≤ 1.
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Corollary 3. The mapping Φ⊗2, where Φ is given by the formula (5), annihilates entanglement if
and only if

4
(
λ2
1 + λ2

2

)
(√

(1 + λ3)2 − t23 +
√
(1− λ3)2 − t23

)2 +
16λ2

3(√
(1 + λ3)2 − t23 +

√
(1− λ3)2 − t23

)4 ≤ 1. (17)

5. Conclusion. In this paper, we analyzed the properties of the tensor power of quantum mappings
Φ, in particular, of Φ⊗2. We presented a survey of positivity properties of unital qubit mappings Φ⊗2

and reduced the study of nonunital mappings to unital mappings. For arbitrary finite-dimensional sys-
tems, we proved the equivalence of the positive and completely positive divisibility of the dynamical
mappings Φ⊗2

t . Thus, the positive divisibility of the dynamical mapping Φ⊗2
t is equivalent to the com-

pletely positive divisibility (the Markov property) of the mapping Φt. For arbitrary qubit mappings Φ
and Φ′, a criterion of annihilation of entanglement by the mapping Φ ⊗ Φ′ is found. The results are
demonstrated by a particular case of a nonunital qubit channel (5).
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