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SUFFICIENT CONDITIONS FOR A
MULTIDIMENSIONAL SYSTEM OF PERIODIC
WAVELETS TO BE A FRAME

P. A. Andrianov∗ UDC 517.5

We study multidimensional periodic wavelet systems with matrix dilations. We obtain conditions
sufficient for such a system to be Bessel. The conditions are given in terms of Fourier coefficients.
We propose a method for constructing a wavelet Riesz basis that starts with a suitable sequence of
trigonometric polynomials. Bibliography: 19 titles.

1. Introduction

A natural way to define periodic systems of wavelets is periodization of wavelets from L2(R
d);

this is possible if the wavelet functions decay sufficiently fast at infinity. Such wavelet systems
are widely studied in the literature (see [5–9, 11–14], [10, Sec. 2.6, Sec. 3.1]). However, many
periodic objects that “deserve” to be called wavelet systems, cannot be obtained by periodiza-
tion, so there are other approaches to define wavelets on a period, in a more general sense.
As in the non-periodic case, the wavelets can be constructed on the basis of multiresolution
analyses. Namely, orthogonal bases and tight frames are constructed on the basis of a periodic
multiresolution analysis (PMRA, in brief); and biorthogonal bases and dual frames are con-
structed on the basis of two PMRA (see [1–4,17]). In the present work, we use the definition of
multidimensional PMRA given by I. Maksimenko and M. Skopina [19] (see also [18, Chap. 9]).
N. Atreas [16] showed that the Bessel property and certain technical conditions are sufficient
for the dual wavelet systems to be frames. In the present work, we obtain conditions sufficient
for the Bessel property of a multidimensional wavelet system. A one-dimensional analogue
of this result was obtained in [15]. Also, based the result obtained, we provide a method
for constructing biorthogonal dual wavelet bases for any suitable sequence of trigonometric
polynomials.

2. Notation and auxiliary results

We use the following standard notation: N is the set of natural numbers, x = (x1, . . . , xd),
y = (y1, . . . , yd) are elements (vectors) of the d-dimensional Euclidean space R

d, (x, y) =

x1y1 + . . . xdyd, 0=(0, . . . , 0)∈R
d, |x| = √

(x, x), Z
d is the integer lattice in R

d, Z = Z
1,

Z+ = {0, 1, . . .}, Td = (−1
2 ;

1
2 ]

d is the d-dimensional unit torus, δn,k is the Kronecker symbol,

f̂(k) =
∫
Td f(t)e

−2πi(k,t)dt is the Fourier coefficient of f ∈ L2(T
d) with number k, 〈f, g〉 is the

scalar product in L2(T
d).

If A is a d × d matrix, then ‖A‖ is its Euclidean operator norm from R
d to R

d, A∗ is
its hermitian conjugate matrix, A∗j = (A∗)j , Id is the unit d × d matrix. Given a non-
degenerate integer d × d matrix A, we say that vectors k, n are congruent modulo A and
we write k ≡ n (mod A) if k − n = Al, where l ∈ Z

d. The integer lattice Z
d splits into

cosets with respect to this congruency relation. The number of these cosets is |detA| (see,
e.g., [18, Proposition 2.2.1]). A set with exactly one element from each coset is called a set
of digits of the matrix A. If the exact set of selected digits is not important, then we assume
that this set is arbitrary and we denote it by D(A). Observe that the set H(A) := Z

d ∩ATd
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is a set of digits (see [18, Proposition 2.2.1]). Also, the following relation between the sets of
digits of A, Aj and Aj+1 is known.

Lemma 1 ([18], Lemma 2.2.3). Let A be a non-degenerate d× d matrix with integer entries,
|detA| > 1. Then the set {r +Ajp}, r ∈ D(Aj), p ∈ D(A), is the set of digits of Aj+1.

Throughout this work, M denotes a matrix from the class of square integer matrices with all
eigenvalues greater than one in modulus. Also, put m := |detM |. Observe that all eigenvalues
of the matrix M−1 are less than one in modulus, hence, the spectral radius of the matrix M−1

is also less than one. Therefore,
lim
n→∞ ‖M−n‖ = 0. (1)

Given a sequence {fj}j∈Z+ ⊂ L2(T
d), we consider the shifts fjk := fj(·+M−jk). A wavelet

system is the shift system {fjk}j∈Z+,k∈D(Mj) associated with the sequence {fj}j∈Z+ ⊂ L2(T
d);

we write {fjk}j,k. Given several sequences {f (ν)
j }j∈Z+ , ν = 1, . . . , n, n ∈ N, the union of the

corresponding wavelet systems is also called a wavelet system; we use notation {f (ν)
jk }j,k,ν. To

clarify the index sets, we write {f (ν)
jk }j∈Z+,k∈D(Mj),ν=1,...,n.

Also, we need several auxiliary lemmas.

Lemma 2 ( [18], Lemma 2.2.6). Let A be a non-degenerate d× d matrix with integer entries,
|detA| > 1. Then

∑

s∈D(A∗)

e2πi(A
−1r,s) =

{
|detA|, if r ≡ 0 (mod A),

0, in all other cases.
(2)

Lemma 3. Let f , g, ϕ, ϕ̃j ∈ L2(T
d) for all j ∈ Z+. Then

∑

k∈D(Mj)

〈f, ϕjk〉〈ϕ̃jk, g〉 =
∑

s∈D(M∗j)

( ∑

n∈Zd

f̂(M∗jn+ s)mj/2ϕ̂j(M∗jn+ s)

×
∑

n′∈Zd

ĝ(M∗jn′ + s)mj/2̂̃ϕj(M∗jn′ + s)
)
.

Proof. Firstly, observe that

ϕ̂jk(n) = ϕ̂j(n)e
2πi(M∗−jn,k). (3)

Since M is a non-degenerate matrix with integer entries, the equality p = Mk + s defines
a one-to-one correspondence between the set of p ∈ Z

d and the set of pairs (k, s), k ∈ Z
d,

s ∈ D(M). Using Parseval’s equality and replacing the summation index by Z
d, we have

∑

k∈D(Mj)

〈f, ϕjk〉〈ϕ̃jk, g〉 =
∑

k∈D(Mj)

( ∑

l∈Zd

f̂(l)ϕ̂j(l)e2πi(M
∗−j l,k)

∑

l′∈Zd

ĝ(l′)̂̃ϕj(l′)e2πi(M
∗−j l′,k)

)

=
∑

k∈D(Mj)

( ∑

n∈Zd

∑

s∈D(M∗j)

f̂(M∗jn+ s)ϕ̂j(M∗jn+ s)e2πi(M∗−js,k)

×
∑

n′∈Zd

∑

s′∈D(M∗j)

ĝ(M∗jn′ + s′)̂̃ϕj(M∗jn′ + s′)e2πi(M∗−js′,k)
)

=
∑

n∈Zd

∑

s∈D(M∗j)

∑

n′∈Zd

∑

s′∈D(M∗j)

f̂(M∗jn+ s)ϕ̂j(M∗jn+ s)

× ĝ(M∗jn′ + s′)̂̃ϕj(M∗jn′ + s′)
∑

k∈D(Mj)

e2πi(M∗−js,k)e2πi(M
∗−js′,k).
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By Lemma 2,
∑

k∈D(Mj)

e2πi(M
∗−j(s−s′),k) = mjδs,s′ , (4)

since the definition of the set D(M∗j) implies that the property s−s′≡0 (mod M∗j) holds
only if s = s′. Therefore, all summands with s 	= s′ are equal to zero; hence, the lemma is
proved. �

3. Main theorem

Theorem 1. Assume that the Fourier coefficients of functions ψj ∈L2(T
d), j∈Z+, have the

following properties:

∀j ∈ Z+, l ∈ Z
d |mj/2ψ̂j(l)| ≤ Cmin

{
|M∗−j l|−(d

2
+ε), |M∗−j l|α

}
(5)

for some C > 0, ε > 0, α > 0. Then {ψjk}j,k is a Bessel wavelet system.

Proof. Firstly, observe that

∀j ∈ Z+, l ∈ Z
d |mj/2ψ̂j(l)| ≤ C (6)

by the assumptions of the theorem. Now, choose f ∈ L2(T
d), j ∈ Z+, δ ∈ (0; 2ε

d+2ε). Applying
Lemma 3 and the Cauchy–Bunyakovsky inequality, we obtain

∑

k∈H(Mj)

|〈f, ψjk〉|2 =
∑

s∈H(M∗j)

∣∣
∣
∑

n∈Zd

f̂(M∗jn+ s)mj/2ψ̂j(M∗jn+ s)
∣∣
∣
2

≤
∑

s∈H(M∗j)

( ∑

n∈Zd

|f̂(M∗jn+ s)|2|mj/2ψ̂j(M
∗jn+ s)|2δ

×
∑

n′∈Zd

|mj/2ψ̂j(M
∗jn′ + s)|2(1−δ)

)
. (7)

Consider that sum over n′ ∈ Z
d. For n′ = 0, we use estimate (6). For n′ 	= 0, applying the

first estimate from (5), we have

|mj/2ψ̂j(M
∗jn′ + s)|2(1−δ) ≤ C2(1−δ)

( 1

|n′ +M∗−js|
)2(1−δ)(d

2
+ε)

.

It is easy to verify that 2(1 − δ)(d2 + ε) > d for δ under consideration. Using the property

M∗−js ∈ (−1
2 ;

1
2 ]

d for s ∈ H(M∗j), we obtain

sup
j∈Z+

( ∑

n′∈Zd

|mj/2ψ̂j(M
∗jn′ + s)|2(1−δ)

)

≤ sup
j∈Z+

(
C2(1−δ) + C2(1−δ)

∑

n′∈Zd

n′ �=0

( 1

|n′ +M∗−js|
)2(1−δ)(d

2
+ε)) ≤ C ′,

where C ′ depends on the matrix M only.
Summing inequalities (7) over j, we obtain

∑

j∈Z+

∑

k∈H(Mj)

|〈f, ψjk〉|2 ≤ C ′ ∑

j∈Z+

∑

s∈D(M∗j)

∑

n∈Zd

|f̂(M∗jn+ s)|2|mj/2ψ̂j(M
∗jn+ s)|2δ

= C ′ ∑

j∈Z+

∑

l∈Zd

|f̂(l)|2|mj/2ψ̂j(l)|2δ
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≤ C ′ sup
l∈Zd

( ∑

j∈Z+

|mj/2ψ̂j(l)|2δ
)
‖f‖2. (8)

Consider the expression under the above supremum. Choose the minimal J ∈ Z+ such that
‖M∗−J‖ < 1 (such a J exists by (1)) and fix an l ∈ Z

d. We split the sum over j into J parts
as follows:

∑

j∈Z+

|mj/2ψ̂j(l)|2δ =
J−1∑

k=0

∑

s∈Z+

|m (sJ+k)
2 ψ̂sJ+k(l)|2δ . (9)

Now, choose the maximal j′ ∈ Z+ such that |M∗−j′J l| ≥ 1, fix an index k and split the sum
over s ∈ Z+ as

∑

s∈Z+

=
∑

s≥0
s≤j′

+
∑

s>j′
:= σ1 + σ2.

For σ2, applying the second estimate from (5), we obtain

σ2 ≤ C2δ‖M∗−k‖2δα
∑

s>j′
|M∗−sJ l|2δα = C ′

k

∞∑

s=1

|M∗−(s+j′)J l|2δα

≤ C ′
k|M∗−(j′+1)J l|2δα

∞∑

s=1

‖M∗−J‖(s−1)2δα ≤ C ′′,

where C ′′ depends on the matrix M only, since |M∗−(j′+1)J l|2δα < 1 for J and j′ under
consideration, the number of constants C ′

k is finite and also depends on the matrix M only.
For σ1, we apply the first estimate from (5):

σ1 ≤ C2δ‖M∗−k‖−(d
2
+ε)2δ

∑

s≥0
s≤j′

|M∗−sJ l|−(d
2
+ε)2δ.

Put r = M∗−j′J l. Observe that |r| ≥ 1 by the choice of j′. Next,
∑

s≥0
s≤j′

|M∗−(s+j′−j′)J l|−(d
2
+ε)2δ =

∑

s≥0
s≤j′

|M∗−(s−j′)Jr|−(d
2
+ε)2δ

=

j′∑

i=0

|M∗iJr|−(d
2
+ε)2δ =

j′∑

i=0

( |M∗iJr|
|r| |r|

)−(d
2
+ε)2δ

=

j′∑

i=0

( |M∗−iJM∗iJr|
|M∗iJr|

1

|r|
)(d

2
+ε)2δ

≤
j′∑

i=0

‖M∗−iJ‖(d2+ε)2δ

≤
∞∑

i=0

‖M∗−J‖i(d2+ε)2δ ≤ C ′′′,

where C ′′′ depends on M only.
Therefore, the sums σ1 and σ2 are uniformly bounded in l; hence, the expression on the

right-hand side of (9) has the same property. Finally, returning to inequality (8), we have
∑

j∈Z+

∑

k∈H(Mj)

|〈f, ψjk〉|2 ≤ C̃‖f‖2,
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where C̃ depends on M only. �

4. Construction of polynomial wavelet bases

Definition 1 ([18, Definition 9.1.1]). Let Vj ⊂ L2(T
d), j ∈ Z+. The collection {Vj}∞j=0 is

called a periodic multiresolution analysis (PMRA, in brief) if the following properties (axioms)
hold:
MR1. Vj ⊂ Vj+1;

MR2.
⋃∞

j=0 Vj = L2(T
d);

MR3. dimVj = mj;

MR4. dim{f ∈ Vj : f(·+M−jn) = λnf ∀n ∈ Z
d} ≤ 1, ∀{λn}n∈Zd , λn ∈ C;

MR5. f ∈ Vj ⇔ f(·+M−jn) ∈ Vj ∀n ∈ Z
d;

MR6. f ∈Vj ⇒ f(M ·)∈Vj+1; f ∈Vj+1 ⇒
∑

s∈D(M) f(M
−1 ·+M−1s)∈Vj.

Definition 2 ([18, Definition 9.1.3]). Let {Vj}∞j=0 be a PMRA in L2(T
d). A functional sequence

{ϕj}j∈Z+ , ϕj ∈ Vj, is called scaling if the functions ϕjk, k ∈ D(M j), form a basis of Vj .

Theorem 2 ([18, Theorem 9.1.4]). Functions {ϕj}∞j=0 ⊂ L2(T
d) form a scaling sequence for

a PMRA if and only if
S1. ϕ̂0(k) = 0 for all k 	= 0;
S2. for any j ∈ Z+ and n ∈ Z

d, there exists k ≡ n (mod M∗j) such that ϕ̂j(k) 	= 0;

S3. for any k ∈ Z
d, there exists j ∈ Z+ such that ϕ̂j(k) 	= 0;

S4. for any j ∈ Z+, n ∈ Z
d, there exists γjn 	= 0 such that γjnϕ̂j(k) = ϕ̂j+1(M

∗k) for all
k ≡ n (mod M∗j);
S5. for any j ∈ N and n ∈ Z

d, there exists μj
n such that ϕ̂j−1(k) = μj

nϕ̂j(k) for all
k ≡ n (mod M∗j).

Observe that the numerical sequences {γjk}k∈Zd , {μj
k}k∈Zd in Theorem 2 are M∗j-periodic

in k for any j ∈ Z+.
Assume that {ϕj}∞j=0, {ϕ̃j}∞j=0 are scaling sequences, sk are arbitrarily enumerated digits

of the matrix M∗, and matrices A(r) = {a(r)nk}m−1
n,k=0, Ã(r) = {ã(r)nk }m−1

n,k=0 have the following
properties:

a
(r)
0k = μj+1

r+M∗jsk
, ã

(r)
0k = μ̃j+1

r+M∗jsk
(10)

and A(r)Ã(r)∗ = mIm for any r ∈ D(M∗j). For ν = 1, . . . ,m− 1, put

αν,j
r+M∗jsk

= a
(r)
νk , α̃ν,j

r+M∗jsk
= ã

(r)
νk . (11)

By Lemma 1, the vectors r +M∗jsk cover the whole set D(M∗j+1), i.e., these sequences are

extendable M∗j+1-periodically to Z
d. Define the functions ψ

(ν)
j , ψ̃

(ν)
j by means of their Fourier

coefficients as
̂
ψ
(ν)
j (l) = αν,j

l ϕ̂j+1(l),
̂̃
ψ
(ν)
j (l) = α̃ν,j

l
̂̃ϕj+1(l). (12)

The systems {ϕ0} ∪ {ψ(ν)
jk }j∈Z+,k∈D(Mj),ν=1,...,m−1 and {ϕ̃0} ∪ {ψ̃(ν)

jk }j,k,ν are called the dual

wavelet systems generated by the scaling sequences {ϕj}∞j=0, {ϕ̃j}∞j=0. Now, we formulate a
theorem on the frameness conditions for such systems. Observe that the Bessel condition is
important in the theorem; properties sufficient for this condition are given in the previous
section.
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Theorem 3 (see [16]). Assume that {ϕj}∞j=0, {ϕ̃j}∞j=0 are scaling sequences such that

lim
j→+∞

mjϕ̂j(k)̂̃ϕj(k) = 1 ∀k ∈ Z
d, (13)

{ϕ0} ∪ {ψ(ν)
jk }j,k,ν and {ϕ̃0} ∪ {ψ̃(ν)

jk }j,k,ν are the corresponding Bessel dual wavelet systems.

Then these systems are dual frames.

Put χS =
∑

k∈S eik·, where S ⊂ Z
d.

Theorem 4. Suppose that M is a matrix such that Td ⊂ M∗
T
d and {ϕj}∞j=0 is a sequence of

trigonometric polynomials such that
{
A ≤ |mj/2ϕ̂j(k)| ≤ B for k ∈ H(M∗j),
ϕ̂j(k) = 0 for k 	∈ H(M∗j),

(14)

where A,B > 0. Then
1. {ϕj}∞j=0 is a scaling sequence.

2. For any j ∈ Z+, the set H(M∗j+1) \H(M∗j) splits into subsets N
(ν)
j such that the wavelet

system {ϕ0} ∪ {ψ(ν)
jk }j∈Z+, k∈D(Mj), ν=1,...m−1 with

ψ
(ν)
j =

√
m(χ

N
(ν)
j

∗ ϕj+1)

is a Riesz basis in L2(T
d).

3. There exists a wavelet basis {ϕ̃0} ∪ {ψ̃(ν)
jk }j,k,ν, biorthogonal with basis {ϕ0} ∪ {ψ(ν)

jk }j,k,ν,
which also consists of trigonometric polynomials.

Proof. To verify the first claim, recall that H(M∗j) is the set of digits of the matrix M∗j .
Properties S1 and S2 follow immediately from (14). By (1), for any k ∈ Z

d, there exists
j ∈ Z+ such that M∗−jk ∈ T

d, hence, k ∈ H(M∗j) and ϕ̂j(k) 	= 0; this implies S3. Setting

μj
k =

ϕ̂j−1(k)

ϕ̂j(k)
, γjk =

ϕ̂j+1(M
∗k)

ϕ̂j(k)
(15)

for j ∈ Z+, k ∈ H(M∗j) and extending these sequences M∗j-periodically to Z
d by the lower

index, we easily see that properties S4, S5 also hold.
Now, we prove the second and the third claims.
For j ∈ Z+, put

̂̃ϕj(k) =

{
m−j

ϕ̂j(k)
, k ∈ H(M∗j),

0, k 	∈ H(M∗j).
(16)

It is easy to check that the assumptions of the theorem hold for the sequence {ϕ̃j}∞j=0 with

constants Ã = 1
B , B̃ = 1

A ; hence, this sequence is also scaling. Clearly, we have

lim
j→+∞

mjϕ̂j(k)̂̃ϕj(k) = 1 ∀k ∈ Z
d. (17)

Now, we construct the dual wavelet systems generated by the scaling sequences under con-
sideration. It is convenient to represent the sets of digits of the matrices M∗j in terms of
Lemma 1, namely,

D(M∗j) =
⋃

r∈D(M∗j−1)
p∈D(M∗)

{r +M∗j−1p}. (18)
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Observe that this set does not necessarily coincide with H(M∗j). Nevertheless, the coefficients

μj
n are M∗j-periodic, thus they are canonically defined on any set of digits (in particular, on

H(M∗j)) once they are defined on at least one set of digits.
By (15),

μj+1
k 	= 0 for k ∈ H(M∗j),

μj+1
k = 0 for k ∈ H(M∗j+1) \H(M∗j).

(19)

Putting D(M∗j) = H(M∗j) and D(M∗) = H(M∗) in Lemma 1, we rewrite (19) as

∀r ∈ H(M∗j) μj+1
r+M∗jp

{
	= 0 for p = 0,

= 0 for p 	= 0, p ∈ H(M∗).
(20)

Now, we construct A(r) and Ã(r). We renumerate the digits p ∈ H(M∗) in such a way that
p0 = 0. Define the first string as follows:

a
(r)
0k = μj+1

r+M∗jpk
, ã

(r)
0k = μ̃j+1

r+M∗jpk
, k = 0, 1, . . . ,m− 1. (21)

Starting from the second string, we put
√
m on the diagonal and zero elsewhere, and we obtain

square matrices.
By (20), the matrices under consideration are diagonal, namely,

A(r) =

⎡

⎢
⎢⎢
⎣

μj+1
r 0 . . . 0
0

√
m . . . 0

...
...

. . .
...

0 0 . . .
√
m

⎤

⎥
⎥⎥
⎦
, Ã(r) =

⎡

⎢
⎢⎢
⎣

μ̃j+1
r 0 . . . 0
0

√
m . . . 0

...
...

. . .
...

0 0 . . .
√
m

⎤

⎥
⎥⎥
⎦
.

It is easy to verify that A(r)Ã(r)∗ = mIm. Put

αν,j
r+M∗jpk

= a
(r)
νk , α̃ν,j

r+M∗jpk
= ã

(r)
νk .

Since r ∈ H(M∗j) and pk ∈ H(M∗j), the vectors r +M∗jpk, k = 1, . . . ,m − 1, cover the set

of digits D(M∗j+1). Therefore, the coefficients αν,j
l , α̃ν,j

l are M∗j+1-periodically extendable to

Z
d.
Now, for ν = 1, . . . ,m− 1, put

̂
ψ
(ν)
j (l) = αν,j

l ϕ̂j+1(l),
̂̃
ψ
(ν)
j (l) = αν,j

l
̂̃ϕj+1(l).

By the assumptions of the theorem,

̂
ψ
(ν)
j (l) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

√
mϕ̂j+1(l) for l ∈ H(M∗j+1), l ≡ r +M∗jpν

(mod M∗j+1),

r ∈ H(M∗j), pν ∈ H(M∗);
0 otherwise.

(22)

Hence, we have the following upper estimate:

|mj/2̂ψ(ν)
j (l)| ≤ |mj/2√mϕ̂j+1(l)| ≤

√
mB. (23)

Put

N
(ν)
j = {l ∈ H(M∗j+1) : l ≡ r +M∗jpν (mod M∗j+1),

r ∈ H(M∗j), pν ∈ H(M∗)}.
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We claim that the set N
(ν)
j is in H(M∗j+1) \ H(M∗j) for any j ∈ Z+, ν = 1, . . . ,m − 1.

By the definition of the set N
(ν)
j , it is sufficient to show that N

(ν)
j 	⊂ H(M∗j). Indeed, if

r +M∗jpν ∈ H(M∗j+1) for all ν = 1, . . . ,m − 1, then the required property is obvious, since
pν are non-zero digits. If r + M∗jpν 	∈ H(M∗j+1), then we have to prove that there is no
r′ ∈ H(M∗j) such that r′ = r +M∗jpν +M∗j+1k for pν , k 	= 0, k ∈ Z

d. Indeed, if not, then
we have the representation r′ − r = M∗j(M∗k + pν); this property holds for r, r′ ∈ H(M∗j)
only if M∗k + pν = 0. The last equality never holds, since pν ∈ H(M∗). Also, by Lemma 1,

{r +M∗jpν}r∈H(M∗j),ν=1,...,m−1 = D(M∗j+1) \H(M∗j). (24)

The sets N
(ν)
j consist of vectors from H(M∗j+1) congruent modulo M∗j+1 to vectors from

(24); the elements of the last set are not pairwise congruent modulo M∗j+1 by the definition

of the set of digits. Thus, a vector from N
(ν)
j is not congruent modulo M∗j+1 to two different

vectors from (24). Hence, the union of all sets N
(ν)
j with fixed j and set (24) have the same

number of elements. Since the set H(M∗j+1) \H(M∗j) has mj(m− 1) elements, we conclude

that the sets N
(ν)
j are pairwise disjoint and their union is H(M∗j+1)\H(M∗j). Therefore, the

set H(M∗j+1) \H(M∗j) indeed splits into the sets N
(ν)
j .

Therefore, l is in the set H(M∗j+1)\H(M∗j) for every non-zero coefficient
̂
ψ
(ν)
j (l). For such

an l, we have

M∗−jl ∈ H(M∗) \ Td

and, accordingly, we have the inequality

1

2
≤ |M∗−j l| ≤ ‖M∗‖

√
d. (25)

Obviously, we have to check (5) for non-zero coefficients only. For l ∈ H(M∗j+1) \H(M∗j),
by (23) and (25),

|mj/2̂ψ(ν)
j (l)| ≤ √

mB ≤ 2
√
mB|M∗−j l|,

|mj/2̂ψ(ν)
j (l)| ≤ √

mB ≤ ‖M∗‖ddd/2√mB|M∗−j l|−d,

thus, (5) holds for ε = d/2, α = 1.

Now, observe that {ϕ̃0}∪{ψ̃(ν)
jk }j,k,ν is also a Bessel system; in fact, this system has essentially

the same properties as {ϕ0}∪{ψ(ν)
jk }j,k,ν. Also, by construction, these systems are dual wavelet

systems generated by a pair of scaling sequences. Using this property and equality (17), we
conclude that all assumptions of Theorem 3 hold, thus these wavelet systems are dual frames.

Now, we verify that the systems {ϕjn}n∈D(Mj) and {ϕ̃jk}k∈D(Mj) are biorthonormal for all
j ∈ Z+. The Fourier coefficients of the functions in question are equal to zero outside of
H(M∗j), hence, by formula (3),

〈ϕjk, ϕ̃jl〉 =
∑

n∈Zd

ϕ̂jk(n)̂̃ϕjl(n) =
∑

s∈H(M∗j)

ϕ̂j(s)̂̃ϕj(s)e
2πi(M∗−js,k−l).

Thus, Lemma 2 and formula (16) imply the required property. Now, biorthogonality of the
wavelets follows from [18, Sec. 9.2, Theorem 9.2.4]; biorthogonality of the dual frames implies
that both frames are Riesz bases (see [10, Sec. 1.2]). �

197



Remark 1. The condition T
d ⊂ M∗

T
d in Theorem 4 is essential: without this condition,

property S5 from Theorem 2 may be missing for the sequence {ϕj}j . To give a concrete
example, put

M =

[
2 0
9 3

]
, k = (3, 1).

Obviously, the eigenvalues of the above matrix are greater than one in modulus; it is easy to
see that T

d 	⊂ MT
d. Also, k ∈ H(M∗) but k 	∈ H(M∗2). Whence ϕ̂1(k) 	= 0 but ϕ̂2(k) = 0;

thus, there is no μ2
k such that ϕ̂1(k) = μ2

kϕ̂2(k).

Remark 2. The condition T
d ⊂ M∗

T
d definitely holds if ‖M∗−1‖ ≤ 1√

d
.
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