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ON ASYMPTOTICALLY MINIMAX NONPARAMETRIC
DETECTION OF SIGNAL IN GAUSSIAN WHITE NOISE

M. S. Ermakov∗ UDC 519.2

For the problem of nonparametric detection of signal in Gaussian white noise, strong asymptot-
ically minimax tests are found. The sets of alternatives are balls in the Besov space B

s
2∞ with

“small” balls in L2 removed. The balls in the Besov space are defined in terms of orthogonal
expansions of functions in trigonometrical basis. Similar result is also obtained for nonparametric
hypothesis testing on a solution of ill-posed linear inverse problem with Gaussian random noise.
Bibliography: 19 titles.

1. Introduction

In the problem of nonparametric signal detection in Gaussian white noise, the rate of consis-
tency of nonparametric tests has been studied for wide class of functional spaces and completely
different setups (see [2, 9, 10, 14, 15] and references therein). At the same time asymptotically
minimax tests with strong asymptotics of type I and type II error probabilities are known only
in the following special cases:

if a priori information that the signal belongs to either ellipsoid in L2 (see [3, 4]) or bodies
in Besov spaces defined in terms of orthogonal expansions with respect to wavelets (see [10])
is provided,

or if the signal satisfies the Lipshitz conditions (see [16]).

A goal of the present paper is to pay attention to the fact that asymptotically minimax
nonparametric tests with strong asymptotics of type I and type II error probabilities can
be obtained also for another sets of alternatives. For orthogonal trigonometrical system of
functions, these sets are, for some norm, the balls B

s
2∞(P0), s > 0, P0 > 0, in the Besov

spaces.
Using the balls Bs

2∞(P0) in the problems of signal detection is rather natural.
The balls Bs

2∞(P0) provide reasonable information on the smoothness of signal.
For the most widespread nonparametric tests, these balls are the largest sets (maxisets)

with given rate of consistency [6].
Maxisets are intensively explored in nonparametric estimation (see [12,13,18] and references

therein). In particular, Kerkyacharian and Picard [12] have shown that the balls Bs
2∞(P0) in a

Besov space are maxisets for linear estimators. For the balls Bs
2∞(P0), asymptotically minimax

estimators [5] are the estimators of the Tikhonov regularizing algorithm. In nonparametric
hypothesis testing, the maxisets have been explored in [1, 6].

In the present paper, the statement of the problem is as follows.
We observe a realization of a random process Yn(t), t ∈ [0, 1), defined by the stochastic

differential equation

dYn(t) = f(t) dt+
σ√
n
dw(t), t ∈ [0, 1], σ > 0, (1.1)

where f ∈ L2(0, 1) is unknown signal and dw(t) is Gaussian white noise.
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We have a priori information that

f ∈ B̄
s
2∞(P0) =

{
f : f =

∞∑
j=1

θjφj , sup
λ>0

λ2s
∑
j>λ

θ2j ≤ P0, θj ∈ R
1
}
.

Here, the φj form an orthonormal system of functions in L2(0, 1) and s > 0.
We need to test the hypothesis H0 : f(t) = 0, t ∈ [0, 1), against the alternatives

Hn :

1∫

0

f2(t) dt ≥ ρn,

where ρn � n− 4s
1+4s as n → ∞. Under some conditions on the basis of φj , 1 ≤ j < ∞, the

space

B̄
s
2∞ =

{
f : f =

∞∑
j=1

θjφj, sup
λ>0

λ2s
∑
j>λ

θ2j < ∞, θj ∈ R
1
}

is the Besov space B
s
2∞ (see [18]). In particular, B̄

s
2∞ is the Besov space B

s
2∞ if the φj,

1 ≤ j < ∞, form a trigonometrical basis.
The balls in the Nikolskii class (see [19]),

∫
(f (l)(x+ t)− f (l)(x))2dx ≤ C|t|2(s−l),

1∫

0

f2(t) dt < C1,

with l = [s], are balls in B
s
2∞.

Here and below, we use C and c as generic notation of positive constants.
We put Vn = {f : ‖f‖2 ≥ ρn, f ∈ B̄

s
2∞(P0)}.

For any test Kn, we denote by α(Kn) and βf (Kn) the type I and type II error probabilities
of Kn for the alternative f ∈ Vn.

Put

β(Kn, Vn) = sup
f∈Vn

βf (Kn).

A sequence of tests Ln is said to be asymptotically minimax if for any sequence of tests Kn,
α(Kn) ≤ α(Ln), we have

lim sup
n→∞

β(Kn, Vn)− β(Ln, Vn) ≥ 0.

A goal of the present paper is to point out asymptotically minimax sequences of tests Ln for
the sets of the alternatives Vn. When the sets of alternatives are ellipsoids with removed small
balls in L2, asymptotically minimax tests has been found in [3]. For problems of nonparametric
hypothesis testing, this result can be considered as an analog of the Pinsker theorem [11,17,19]
in nonparametric estimation.

We note that for the bodies

B̃
s
2∞(P0) =

{
f : f =

∞∑
k=1

2k∑
j=1

θkjφkj , sup
k

22ks
2k∑
j=1

θ2kj ≤ P0

}
,

defined in terms of the wavelets φkj, asymptotically minimax tests have been found in [9]. In
this setup, a completely different extremal problem arises in construction of asymptotically
minimax test statistics.
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2. Main results

The results are given in terms of a sequence model.
Using an orthonormal system of functions φj , 1 ≤ j < ∞, one can rewrite stochastic

differential equation (1.1) in the form

yj = θj +
σ√
n
ξj , 1 ≤ j < ∞, (2.1)

where

yj =

1∫

0

φjdYn(t), ξj =

1∫

0

φj dw(t), and θj =

1∫

0

fφj dt.

Put θ = {θj}∞j=1.

The vector θ belongs to the Hilbert space H with norm ‖θ‖ =
( ∞∑
i=1

θ2i

)1/2
. In what follows,

‖ · ‖ denotes the norm in H.
We need to test the hypothesis H0 : θ = 0 against the alternatives

Hn : θ ∈ Vn = {θ : ‖θ‖ ≥ ρn, θ ∈ B̄
s
2∞(P0)}.

We note that in Sec. 1, the sets Vn have been defined for functions. Here, an equivalent
definition is given for the coefficients of the orthogonal expansions of the functions. In what
follows, we use this notation.

Set k = kn and κ2 = κ2n to be a solution of the equations

1

2s
k1+2s
n κ2n = P0 (2.2)

and
knκ

2
n + k−2s

n P0 = ρn. (2.3)

Put κ2j = κ2jn = κ2n for 1 ≤ j ≤ kn, and κ2j = κ2jn = 2sP0j
−2s−1 for j > kn.

We define the test statistics

T a
n (Yn) = σ−2n

∞∑
j=1

κ2jy
2
j

and put

An = σ−4n2
∞∑
j=1

κ4j ,

Cn = σ−2nρn.

For the type I error probabilities α, 0 < α < 1, we define the critical regions

Sa
n == {y : (T a

n (y)−Cn)(2An)
−1/2 > xα,y ∈ R

∞},
where xα is defined from the equation α = 1−Φ(xα). Here, Φ(x) is a value of standard normal
distribution function at the point x ∈ R

1.

Theorem 2.1. Let
0 < lim inf

n→∞ An ≤ lim sup
n→∞

An < ∞. (2.4)

Then the tests La
n with critical regions Sa

n are asymptotically minimax, α(La
n) = α(1 + o(1)),

and
β(La

n, Vn) = Φ(xα − (An/2)
1/2)(1 + o(1)) (2.5)

as n → ∞.
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Example. Let ρn = R(σ2/n)
4s

1+4s (1 + o(1)) as n → ∞. Then

An = σ−4n2ρ
1+4s
2s

n
8s2

(1 + 4s)(1 + 2s)
((1 + 2s)P0)

−1/2s(1 + o(1))

= R2 8s2

(1 + 4s)(1 + 2s)
((1 + 2s)P0)

−1/2s(1 + o(1)).

Ingster, Sapatinas, Suslina [10] and Laurent, Loubes, Marteau [14] have explored the problem
of signal detection for linear inverse ill-posed problems. The setup was explored in terms of
the sequence model

yj = λjθj +
σ√
n
ξj , 1 ≤ j < ∞,

where the ξj are i.i.d. random vectors having standard normal distribution and the λj are the
eigenvalues of a linear operator.

It is easy to see (see [6]) that if |λj | � j−γ , then for the tests statistics defined as quadratic
forms of yj, 1 ≤ j < ∞, the maxisets are the balls Bs

2∞ with r = 2s
1+4s+4γ . Thus it is of interest

to find asymptotically minimax test statistics for the problem of testing of the hypothesis
H0 : θ = 0 against the alternatives Hn : θ ∈ Vn.

We define the test statistics

T a
n (Yn) = σ−2n

∞∑
j=1

κ2jy
2
j ,

where κ2j = κ2jn is defined by the equations κ2j = anλ
−2
j for j ≤ kn, and κ2j = 2sP0λ

2
jj

−1−2s for
j > kn, and the constants an and kn are the solutions of the equations

an

kn∑
j=1

λ−4
j + P0k

−2s
n = ρn and anλ

−4
kn

= 2sP0k
−1−4s
n .

In this notation, the sequences An and critical regions Sa
n are as in Theorem 2.1.

Theorem 2.2. Let |λj | � j−γ . Then in the above notation and statement of the problem, the
conclusion of Theorem 2.1 holds.

Example. Let λ2
j = Aj−2γ , and let ρn � n

−4s
1+4s+4γ . Then

An = σ−4n2ρ
1+4s+4γ

2s
n A2 8s2(1 + 4γ)

(1 + 2s+ 4γ)(1 + 4s+ 4γ)

(1 + 2s+ 4γ

1 + 4γ
P0

)− 1+4γ
2s

(1 + o(1)).

The proof of Theorem 2.2 is similar to the proof of Theorem 2.1 and hence is omitted.

3. Proof of Theorem 2.1

Fix δ, 0 < δ < 1. Put κ2j (δ) = 0 for j > δ−1kn(1 + o(1)), and define κ2j (δ), 1 ≤ j < knδ =

δ−1kn, by equations (2.2) and (2.3) with P0 and ρε replaced with P0(1 − δ) and ρn(1 + δ),
respectively. Similarly to [3], we define a Bayes test for a priori distribution θj = ηj = ηj(δ),
1 ≤ j < ∞, where the ηj are Gaussian independent random variables such that Eηj = 0
and Eη2j = κ2j (δ). We show that these tests are asymptotically minimax for some sequence
δ = δn → 0 as n → ∞.

Lemma 3.1. For every δ, 0 < δ < 1, we have

P(η(δ) = {ηj(δ)}∞j=1 ∈ Vn) = 1 + o(1) (3.1)

as n → ∞.
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Put

An,δ = σ−4n2
∞∑
j=1

κ4j (δ).

A straightforward calculation shows that

lim
δ→0

lim
n→∞AnA

−1
n (δ) = 1. (3.2)

Put γ2j (δ) = κ2j (δ)(n
−1σ2 + κ2j(δ))

−1.
By the Neymann–Pearson lemma, the Bayes critical region is defined by the inequality

C1 <

knδ∏
j=1

(2π)−1/2κ−1
j (δ)

×
∫

exp
{
−

knδ∑
j=1

(2γ2j (δ))
−1(uj − γ2j (δ)yj)

2
}
du exp{−Tnδ(Yn)}

= C exp{−Tnδ(Yn)}(1 + o(1)),

(3.3)

where u = {uj}∞j=1 and

Tnδ(Yn) = nσ−2
∞∑
j=1

γ2j (δ)y
2
j .

We define the test statistics Rnδ(Yn) = (Tnδ(Yn)− Cnδ)(2An(δ))
−1/2 with

Cnδ = E0Tnδ(Yn) = σ−2n
∞∑
j=1

γ2j (δ),

and the critical region Snδ = {y : Rnδ(y) > xα,y ∈ R
∞}.

Denote by Lnδ the test with critical region Snδ.
Let γ2j = γ2j (0), 1 ≤ j < ∞. The test statistics Tn, Rn, critical regions Sn, and constants Cn

are defined in the same way with γ2j (δ) replaced by γ2j as the test statistics Tnδ, Rnδ, critical
regions Snδ, and constants Cnδ, respectively. Denote by Ln the test having critical region Sn,
and put

An(θ) = σ−4n2
∞∑
j=1

κ2jθ
2
j .

Lemma 3.2. Let the hypothesis H0 hold. Then the distributions of the tests statistics Ra
n(Yn)

and Rn(Yn) converge to the standard normal distribution. Moreover, for any family θn =
{θjn} ∈ Vn,

Pθn

((
T a
n (Yn)− Cn −An(θ)

)
(2An)

−1/2 < xα

)
= Φ(xα)(1 + o(1)) (3.4)

and

Pθn

((
Tn(Yn)− Cn −An(θ)

)
(2An)

−1/2 < xα

)
= Φ(xα)(1 + o(1)) (3.5)

as n → ∞.

From Lemma 3.1, we get the following statement.

Lemma 3.3. We have

β(Ln, Vn) = β(La
n, Vn)(1 + o(1)) (3.6)

as n → ∞.
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Lemma 3.4. Let the hypothesis H0 hold. Then the distributions of the tests statistics (Tnδ(Yn)
−Cnδ)(2An)

−1/2 converge to the standard normal distribution. Moreover,

Pη(δ)((Tnδ(Yn)− Cnδ −Anδ(ηn))(2Anδ)
−1/2 < xα) = Φ(xα)(1 + o(1)) (3.7)

as n → ∞.

Lemma 3.5. We have

lim
δ→0

lim
n→∞Eη(δ)βη(δ)(Lnδ) = lim

n→∞Eη0βη0(Ln), (3.8)

where η0 = {η0j}∞j=1 and η0j are i.i.d. Gaussian random variables, E [η0j ] = 0, and E[η20j ] =

κ2j , 1 ≤ j < ∞.

We define the Bayes a priori distribution Py as the conditional distribution of η under the
condition η ∈ Vn. Denote by Kn = Knδ the Bayes test with a priori distribution Py, and set
Wnδ to be the critical region of Knδ.

For any sets A and B, put A
B = (A \B) ∪ (B \ A).
Lemma 3.6. We have

lim
δ→0

lim
n→∞

∫

Vn

Pθ(Snδ
Wnδ)dPy = 0 (3.9)

and

lim
δ→0

lim
n→∞P0(Snδ
Wnδ) = 0. (3.10)

Lemma 3.7. We have

Eη0βη0(Ln) = βn(Ln)(1 + o(1)). (3.11)

Lemma 3.8. We have

lim
δ→0

lim
n→∞

∫

Vn

Pθ(Snδ
Wnδ)dPy = 0 (3.12)

and

lim
δ→0

lim
n→∞P0(Snδ
Wnδ) = 0. (3.13)

In the proof of Lemma 3.8, we show that the integrals on the right hand-side of (3.3) with
integration domain Vn converge to one in probability as n → ∞. This statement is proved
both for the hypothesis and the Bayes alternative (see [3]).

Lemmas 3.1–3.8 imply that if α(Kn) = α(Ln), then

∫

Vn

βθ(Kn) dPy =

∫

Vn

βθ(Ln) dPy (1 + o(1)) =

∫
βη0(Ln) dPη0(1 + o(1)). (3.14)

Lemma 3.9. We have

Eη0βη0(Ln) = βn(Ln)(1 + o(1)). (3.15)

Lemmas 3.2, 3.5, formulas (3.2), (3.14), and Lemma 3.9 imply Theorem 2.1.
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3.1. Proof of lemmas. The proofs of Lemmas 3.2, 3.3, and 3.5 are similar to the proofs of
the corresponding statements in [3] and are omitted.

Proof of Lemma 3.1. A straightforward calculation shows that

∞∑
j=1

Eη2j (δ) ≥ ρn(1 + δ/2) (3.16)

and

Var
( ∞∑
j=1

η2j (δ)
)
< Cn2An � ρ2nk

−1
n . (3.17)

By the Chebyshev inequality, we get

P
( ∞∑
j=1

η2j (δ) > ρn

)
= 1 + o(1) (3.18)

as n → ∞. �

It remains to note that

Pμ(η /∈ B
s
2∞(P0)) = P

(
max

1≤i≤knδ

i2s
knδ∑
j=i

η2j − P0(1− δ1/2) > P0δ1/2
)
≤

knδ∑
i=1

Ji, (3.19)

where

Ji = P
(
i2s

knδ∑
j=i

η2j − P0(1− δ1/2) > P0δ1/2
)
.

To estimate Ji, we make use of the following statement (see [7]).

Proposition 3.1. Let ξ = {ξi}li=1 be a Gaussian random vector with i.i.d. random variables
ξi such that E[ξi] = 0 and E[ξ2i ] = 1. Let A ∈ R

l × R
l and Σ = ATA. Then

P(||Aξ||2 > tr(Σ) + 2
√

tr(Σ2)t+ 2‖Σ‖t) ≤ exp{−t}. (3.20)

We put Σi = {σlj}kεδl,j=i where σjj = j−2s−1i2s P0−δ
2s and σlj = 0 if l �= j.

Let i ≤ kn. Then

tr(Σ2
i ) = i4s

∞∑
j=i

κ4j (δ) < i4s((kn − i)κ4(δ) + k−4s−1
n P0) < Ck−1

n (3.21)

and

‖Σi‖ ≤ i2sκ2 < Ck−1
n . (3.22)

Therefore,

2
√

tr(Σ2
i )t+ 2‖Σi‖t ≤ C(

√
k−1
n t+ k−1

n t). (3.23)

Hence, putting t = k
1/2
n and using Proposition 3.1, we get

kn∑
i=1

Ji ≤ Ckn exp{−Ck1/2n }. (3.24)

Let i ≥ kn. Then

tr(Σ2
i ) < Ci−1 and ||Σi|| ≤ Ci−1. (3.25)
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Hence, putting t = i1/2 and using Proposition 3.1, we get

knδ∑
i=kn+1

Ji ≤
knδ∑

i=kn+1

exp{−Ci1/2} < exp{−C1k
1/2
n }. (3.26)

Now (3.19), (3.24), and (3.26) together imply Lemma 3.1.

Proof of Lemma 3.8. Using the same argument as in the proof of Lemma 4 in [3], we see that
Lemma 3.8 follows if

P
( ∞∑
j=1

(ηj(δ) + yjγj(δ)σ
−1n1/2)2 > ρn

)
= 1 + o(1) (3.27)

and

P
(
sup
i

i2s
∞∑
j=i

(ηj(δ) + yjγj(δ)σ
−1n1/2)2 > ρn

)
= 1 + o(1), (3.28)

where the yj, 1 ≤ j < ∞, are distributed according to the hypothesis or Bayes alternative. �
We prove (3.28) in the case of the Bayes alternative only. In the other cases, the argument

is similar.
We have

i2s
∞∑
j=i

(ηj(δ) + yjγj(δ)σ
−1n1/2)2 = i2s

∞∑
j=i

η2j (δ)

+ i2s
∞∑
j=i

ηj(δ)yjγj(δ)σ
−1n1/2 + i2s

∞∑
j=i

y2jγ
2
j (δ)σ

−2n = J1i + J2i + J3i.

(3.29)

The required probability for J1n is provided by Lemma 3.1.
We have

J2i ≤ J
1/2
1i J

1/2
3i . (3.30)

Thus it remains to show that for every C,

Pη(δ)

(
sup
i

i2s
∞∑
j=i

y2jγ
4
j (δ)σ

−2n > Cδ
)
= o(1) (3.31)

as n → ∞.
We note that yj = ζj + σn−1/2ξj, where ζj and ξj , 1 ≤ j < ∞, are i.i.d. Gaussian random

variables such that Eζj = 0, Eζ2j = κ2j (δ), Eξj = 0, and Eξ2j = 1. Hence,

σ−2n

∞∑
j=i

y2jγ
4
j (δ) = σ−2n

∞∑
j=i

γ4j (δ)ζ
2
j + σ−1n1/2

∞∑
j=i

γ4j (δ)ζjξj

+
∞∑
j=i

γ4j (δ)ξ
2
j = I1i + I2i + I3i.

(3.32)

Since nγ2j = o(1), the estimates for the probability of i2sI1i are obvious. It suffices to follow

estimates (3.19). We have I2i ≤ I
1/2
1i I

1/2
3i . Thus it remains to show that for every C,

Pη(δ)

(
sup
i

i2s
∞∑
j=i

γ4j (δ)ξ
2
j > δ/C

)
= o(1) (3.33)

as n → ∞. Since γ2j = κ2j (1 + o(1)) = o(1), this estimate is obtained in the same way as

estimates (3.19).
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Proof of Lemma 3.9. By Lemmas 3.2, 3.3, and 3.5, it suffices to show that

inf
θ∈Vn

σ4n−2An(θ) = inf
θ∈Vn

∞∑
j=1

κ2jθ
2
j =

∞∑
j=1

κ4j . (3.34)

Put uk = k2s
∞∑
j=k

θ2j . We note that uk ≤ P0. Then θ2j = ujj
−2s − uj+1(j + 1)−2s. Hence,

σ4n−2An(θ) =

∞∑
j=1

κ2jθ
2
j = κ2

kn∑
j=1

θ2j +

∞∑
j=kn

κ2j (ujj
−2s − uj+1(j + 1)−2s)

= κ2
kn∑
j=1

θ2j + κ2uknk
−2s
n + 2sP0

∞∑
j=kn+1

uj(j
−4s−1 − (j − 1)−2s−1j−2s)

= κ2ρn + 2sP0

∞∑
j=kn+1

uj(j
−4s−1 − (j − 1)−2s−1j−2s).

(3.35)

Since j−4s−1 − (j − 1)−2s−1j−2s is negative, the inf A(θ) is attained for uj = P0. Therefore,
θ2j = κ2j for j > kε. �

Thus the problem is reduced to finding

κ2 inf
θj

kn∑
j=1

θ2j +
∞∑

j=kn+1

κ4j (3.36)

under the constraints
kn∑
j=1

θ2j +
∞∑

j=kn+1

κ2j = ρn

and

k2sn

∞∑
j=kn

θ2j < P0, 1 ≤ j < ∞,

with θ2j = κ2j for j ≥ kn.

It is easily seen that this infimum is attained if θ2j = κ2j = κ2 for j ≤ kn.

The research was supported by the RFBR grant No. 17-01-00828.

Translated by the author.
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