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ON ASYMPTOTICALLY MINIMAX NONPARAMETRIC
DETECTION OF SIGNAL IN GAUSSIAN WHITE NOISE

M. S. Ermakov* UDC 519.2

For the problem of nonparametric detection of signal in Gaussian white noise, strong asymptot-
ically minimax tests are found. The sets of alternatives are balls in the Besov space BS_  with
“small” balls in Ly removed. The balls in the Besov space are defined in terms of orthogonal
expansions of functions in trigonometrical basis. Similar result is also obtained for nonparametric
hypothesis testing on a solution of ill-posed linear inverse problem with Gaussian random noise.
Bibliography: 19 titles.

1. INTRODUCTION

In the problem of nonparametric signal detection in Gaussian white noise, the rate of consis-
tency of nonparametric tests has been studied for wide class of functional spaces and completely
different setups (see [2,9,10,14,15] and references therein). At the same time asymptotically
minimax tests with strong asymptotics of type I and type II error probabilities are known only
in the following special cases:

if a priori information that the signal belongs to either ellipsoid in Ly (see [3,4]) or bodies
in Besov spaces defined in terms of orthogonal expansions with respect to wavelets (see [10])
is provided,

or if the signal satisfies the Lipshitz conditions (see [16]).

A goal of the present paper is to pay attention to the fact that asymptotically minimax
nonparametric tests with strong asymptotics of type I and type II error probabilities can
be obtained also for another sets of alternatives. For orthogonal trigonometrical system of
functions, these sets are, for some norm, the balls B5_ (), s > 0, Py > 0, in the Besov
spaces.

Using the balls B5__(Fp) in the problems of signal detection is rather natural.

The balls BS__(Fy) provide reasonable information on the smoothness of signal.

For the most widespread nonparametric tests, these balls are the largest sets (maxisets)
with given rate of consistency [6].

Maxisets are intensively explored in nonparametric estimation (see [12,13,18] and references
therein). In particular, Kerkyacharian and Picard [12] have shown that the balls B _(F) in a
Besov space are maxisets for linear estimators. For the balls BS__(FPp), asymptotically minimax
estimators [5] are the estimators of the Tikhonov regularizing algorithm. In nonparametric
hypothesis testing, the maxisets have been explored in [1,6].

In the present paper, the statement of the problem is as follows.

We observe a realization of a random process Y, (t), t € [0,1), defined by the stochastic
differential equation

dY,(t) = f(t)dt + jn dw(t), te0,1, o >0, (1.1)

where f € L2(0,1) is unknown signal and dw(t) is Gaussian white noise.
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We have a priori information that

feBs(P)={f:f= EZ@@wmm%§)ﬂ<HheeR}
A>

J>A

Here, the ¢; form an orthonormal system of functions in Ly(0,1) and s > 0.
We need to test the hypothesis Hg :  f(t) =0, t € [0,1), against the alternatives

1
H, : /fz(t)dt > P,
0

_ 4S o, . . .
where p, < n 1+4s as n — oco. Under some conditions on the basis of ¢;, 1 < j < oo, the

space

w={rir= Zequ], supA2SZH2<oo 6; R}

7j=1

is the Besov space B (see [18]). In particular, Bgoo is the Besov space Bj_ if the ¢,
1 <j < o0, form a trigonometrical basis.
The balls in the Nikolskii class (see [19]),

1
[+ = 0@ < oo, [ Paya<cn,
0

with [ = [s], are balls in Bj_

Here and below, we use C' and c¢ as generic notation of positive constants.

We put Vi, = {f : £ = pu, f € By (R)}-

For any test K, we denote by a (K, ) and B¢(K,,) the type I and type II error probabilities
of K, for the alternative f € V,.

Put

B(Kmvn) = sup ﬁf(Kn)
fE€VR

A sequence of tests L, is said to be asymptotically minimax if for any sequence of tests K,
a(Ky) < a(Ly,), we have

lim sup B(Ky, V) — B(Ln, Vi) > 0.
n—oo

A goal of the present paper is to point out asymptotically minimax sequences of tests L,, for
the sets of the alternatives V,,. When the sets of alternatives are ellipsoids with removed small
balls in Ly, asymptotically minimax tests has been found in [3]. For problems of nonparametric
hypothesis testing, this result can be considered as an analog of the Pinsker theorem [11,17,19]
in nonparametric estimation.

We note that for the bodies

oo 2k

IB2<>0(P0 {f [ = Zzequbk]’ Sup22k5292 < Po}

k=1 j=1

defined in terms of the wavelets ¢y;, asymptotically minimax tests have been found in [9]. In
this setup, a completely different extremal problem arises in construction of asymptotically
minimax test statistics.
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2. MAIN RESULTS

The results are given in terms of a sequence model.
Using an orthonormal system of functions ¢;, 1 < j < oo, one can rewrite stochastic
differential equation (1.1) in the form

n jngj, 1<j < oo, (2.1)

where

1 1 1
Yi =0/¢de”(15), 3 Zo/¢j dw(t), and 6 :O/f%' dt.

Put 0 = {0;}52,
0 1/2
The vector @ belongs to the Hilbert space H with norm ||@|| = (Z 03) . In what follows,
i=1
|| - || denotes the norm in H.
We need to test the hypothesis Hy : 8 = 0 against the alternatives
H,:0cV,=1{0:|0| > pn, 0 €B5.(P)}.
We note that in Sec. 1, the sets V,, have been defined for functions. Here, an equivalent
definition is given for the coefficients of the orthogonal expansions of the functions. In what

follows, we use this notation.
Set k = k, and k? = k2 to be a solution of the equations

1
28@”%3 =P (2.2)
and
knk2 + k:_2sP0 = pn. (2.3)
Put/i?:/i? = K2 for1<j<kn,and/£ —/1 . =2sPyj~ %71 for j > k.

We define the test statistics
T3 (Yn) =0~ Zn Z KA

and put

2
A, =0 *n E ﬁ],

Cp = o 2np,.
For the type I error probabilities «, 0 < a < 1, we define the critical regions
St =={y: (T3(y) — Cn)(24,)"/* > z0,y € R™},

where z,, is defined from the equation a = 1 —®(z,). Here, ®(z) is a value of standard normal
distribution function at the point z € R*.

Theorem 2.1. Let
0< hm 1an <limsup 4,, < o0. (2.4)

n—oo
Then the tests LY with critical regions S% are asymptotically minimaz, a(L$) = a(1 4+ o(1)),
and

BLG, Vi) = ®(a — (A0/2)'?)(1 + 0(1)) (2.5)

as n — o0.
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Example. Let p, = R(c?/n) 14 (I1+0(1)) as n — co. Then

1+4s §2
An = o (1+ 45)(1 + 25) (1429 o) 721 +0(1)
= R? 85° (1 +25)Py) "V 25(1 4 0(1)).

(1+4s)(1+2s)

Ingster, Sapatinas, Suslina [10] and Laurent, Loubes, Marteau [14] have explored the problem
of signal detection for linear inverse ill-posed problems. The setup was explored in terms of
the sequence model

yi =Nt + &, 1<) <oo,

o
vn
where the §; are i.i.d. random vectors having standard normal distribution and the A; are the
eigenvalues of a linear operator.

It is easy to see (see [6]) that if [A;| =< j~7, then for the tests statistics defined as quadratic

forms of y;, 1 < j < oo, the maxisets are the balls B with r = 1+42s§r4,y. Thus it is of interest

to find asymptotically minimax test statistics for the problem of testing of the hypothesis
Hp : 8 = 0 against the alternatives H,, : 8 € V,.
We define the test statistics

[ee]
THY,) =0 2n Z /f?y?,
j=1

where /i? = /1?” is defined by the equations /1? = an)\j_z for j < k,, and /1? = 23P0)\? 1725 for

j > ky, and the constants a,, and k,, are the solutions of the equations

kn
Gn Z)\j—4 + Pk % =p, and an)\];f = 25Pyk; 4.
j=1
In this notation, the sequences A,, and critical regions S are as in Theorem 2.1.

Theorem 2.2. Let |\;| < j~7. Then in the above notation and statement of the problem, the
conclusion of Theorem 2.1 holds.

Example. Let )\? = Aj72 and let p, < nHZﬁ‘W. Then
_y o ltistiy 8s2(1 + 4v) 1+2s+4y N\~ 5
A = o2y, 2 A2 ( P) * (14 0(1)).
n= o T pn (1425 +47)(1+4s+47)\ 144y °° (1+o(1))

The proof of Theorem 2.2 is similar to the proof of Theorem 2.1 and hence is omitted.

3. PROOF OF THEOREM 2.1

Fix 9,0 < 6 < 1. Put /1?(5) =0 for j > 6 k,(1+ o(1)), and define ﬁ?(é), 1<) <k =
8 Yk, by equations (2.2) and (2.3) with Py and p. replaced with Py(1 — &) and p, (1 + 4),
respectively. Similarly to [3], we define a Bayes test for a priori distribution 8; = n; = 1;(0),
1 < j < oo, where the 7; are Gaussian independent random variables such that En; = 0
and E77J2- = /1?(5). We show that these tests are asymptotically minimax for some sequence
6 =0, - 0asn— oo.
Lemma 3.1. For every §, 0 < < 1, we have

P(n(0) = {n;(0)}721 € Va) = 1+ 0(1) (3.1)

as n — o0.
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Put
Ay=o" n2zﬁ

A straightforward calculation shows that

lim lim A,A;'(8) =1. (3.2)

d—0n—oo

Put 7]2-(5) = m?(é)(n‘ng + K7 26)~ L.

By the Neymann—Pearson lemma, the Bayes critical region is defined by the inequality
kné
C1 < [J@m) %61 (0)
j=1

ks (3.3)
< [exp{= Do @20)7 (0 13000 duexp{~Tos(v2)

j=1
= Cexp{~Tus(Ya) (1 + 0(1))

where u = {u;}52, and

Tos(Yn) =no™ 2> 30y
j=1

We define the test statistics Ry5(Yy) = (Tns(Yn) — Cns)(24,(8)) /% with
On6 - EOTn6 =0 nz%

and the critical region S,5 = {y : Rus(y) > 24,y € ]ROO}.
Denote by L,s the test with critical region S,,s.
Let 7]2 = ’y]z (0), 1 < j < oo. The test statistics T),, Ry, critical regions S,,, and constants C,

are defined in the same way with 7]2- (6) replaced by '7]2 as the test statistics 7,5, Rys, critical
regions S5, and constants Cpg, respectively. Denote by L, the test having critical region .5,

and put
= o~ 4n? Z /£292

Lemma 3.2. Let the hypothesis Hy hold. Then the distributions of the tests statistics R%(Yy,)
and R,(Y,) converge to the standard normal distribution. Moreover, for any family 6, =

{Hjn} S Vn,
P, ((T“( ) — C — A (0))(2An)_1/2 < xa) = B(za)(1 + o(1)) (3.4)
and
Py, ((Tn(Yn) — Oy — An(e)) (24,)712 < xa) = B(24)(1 + o(1)) (3.5)
as n — oQ.
From Lemma 3.1, we get the following statement.

Lemma 3.3. We have
B(Ln, Vi) = B(Ly, Vi) (1 + o(1)) (3.6)

as n — o0.
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Lemma 3.4. Let the hypothesis Hy hold. Then the distributions of the tests statistics (Tys(Yy)
—Ch5)(24,)7Y2 converge to the standard normal distribution. Moreover,

P65y (Tns(Yn) — Crs — Ané(nn))@Ané)_l/z < Za) = (za)(1 +o(1)) (3.7)
as n — oo.

Lemma 3.5. We have

Lim Lim Ey5)5y) (Lng) = 1m En By (Ln), (3.8)
where 1y = {7]0]-}]0-‘;1 and no; are i.i.d. Gaussian random variables, E [no;] = 0, and E[ngj] =
/1?, 1< <o0.

We define the Bayes a priori distribution P, as the conditional distribution of  under the
condition 1 € V;,. Denote by K,, = K,; the Bayes test with a priori distribution P, and set
W, to be the critical region of Km;.

For any sets A and B, put AAB = (A\ B)U(B\ A).

Lemma 3.6. We have

%1_1)1(1) n11_}1(1;o Py(Sps AW,5)dPy, =0 (3.9)
Vn
and
%12% nh_)ngo Po(SnsAWys) = 0. (3.10)
Lemma 3.7. We have
Enoﬂno (Ln) = Bn(Ln)(1 + o(1)). (3.11)
Lemma 3.8. We have
li i = .
lim nh_)rréo Py(Sps AWy5)dPy, =0 (3.12)
Vn
and
lim lim P A =0. 1
lim lim Po(Sn5AWns) = 0 (3.13)

In the proof of Lemma 3.8, we show that the integrals on the right hand-side of (3.3) with
integration domain V,, converge to one in probability as n — oo. This statement is proved
both for the hypothesis and the Bayes alternative (see [3]).

Lemmas 3.1-3.8 imply that if a(K,,) = a(L,,), then

/ﬁg )dP, = /ﬁg (I+ o /5770 )dP (14 0o(1)). (3.14)

Lemma 3.9. We have
EnoBno (Ln) = Bn(Ln)(1 + o(1)). (3.15)
Lemmas 3.2, 3.5, formulas (3.2), (3.14), and Lemma 3.9 imply Theorem 2.1.
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3.1. Proof of lemmas. The proofs of Lemmas 3.2, 3.3, and 3.5 are similar to the proofs of
the corresponding statements in [3] and are omitted.

Proof of Lemma 3.1. A straightforward calculation shows that

ZE% ) > p(1+6/2) (3.16)
and
Var (Z 17]2(5)) < Cn2A, < p2k L. (3.17)
By the Chebyshev inequality, we get
P(Z 2(8) > pn) =1+ 0(1) (3.18)
j=1
as n — oo. ([l
It remains to note that
kné
P,(n ¢ B (R)) = (1513? e Zn] Py(1—61/2) > P051/2) S (319)
" i=1

where
(2527’}] Py 1—51/2)>P051/2)

To estimate J;, we make use of the followmg statement (see [7]).

Proposition 3.1. Let & = {¢; é:l be a Gaussian random vector with i.i.d. random variables
& such that B[¢] =0 and E[¢?] = 1. Let A€ R! x R! and ¥ = AT A. Then

P(||A¢|]? > tr(Z) + 2¢/tr(22)t + 2||2)|t) < exp{—t}. (3.20)
We put X; = {Ulj}ff:i where 0j; = j2712% POS and o7; = 01if [ # 5.
Let ¢ < k,,. Then
it Z o ((kp — )& (0) + k%7 P)) < Ck; ! (3.21)
and
134 < i%K? < Ck;, L. (3.22)
Therefore,
2\/tr(2§)t + 2|31t < C(\/k,;lt + ko tt). (3.23)
Hence, putting t = k:rl/ % and using Proposition 3.1, we get
kn
> " Ji < Chyexp{—Ck}/*}. (3.24)
i=1
Let ¢ > k,,. Then
tr(X?) < Cim! and [|%]| < CiTL (3.25)
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Hence, putting ¢ = */2 and using Proposition 3.1, we get

né kns
Z Ji < Z exp{—Ci'/?} < exp{—C1k}/?}. (3.26)
i=kn+1 i=kn+1

Now (3.19), (3.24), and (3.26) together imply Lemma 3.1.

Proof of Lemma 3.8. Using the same argument as in the proof of Lemma 4 in [3], we see that

Lemma 3.8 follows if

P (3 (03(0) + 5(0)0 022 > po) =1+ o(1) (3.27)
7=1
and -
P (supi® 3" (1j(0) + y7;(D)o /%)% > p,) =1+ o(1), (3.28)
Jj=t

where the y;,1 < j < 0o, are distributed according to the hypothesis or Bayes alternative. [J

We prove (3.28) in the case of the Bayes alternative only. In the other cases, the argument
is similar.

We have
i3 " (0(8) + y;v; () nt/?)? 28277]
= (3.29)
+i Z n;(8)y;7; ()0 nt/? 4% Zy]% o Pn = Ji; + Joi + Jai.
The required probability for Ji, is provided by Lemma 3.1.
We have
Joi < JiPTM2 (3.30)
Thus it remains to show that for every C,
P, (sup i%8 Zyjfy] Jo?n > C’é) =o(1) (3.31)

as n — oo.
We note that y; = (; +on 1/26], where (; and &;, 1 < j < oo, are i.i.d. Gaussian random
variables such that E¢; = 0, EC2 = K; 2(0), E¢; = 0, and E£2 = 1. Hence,

o~ nZyJ'yj )=o0" nZ% —I—J n1/2Z'yj (0)¢5€;
(3.32)
+Z’Y] (0)67 = Ins + Iy; + I

Since n'y? = o(1), the estimates for the probability of i2°I1; are obvious. It suffices to follow

estimates (3.19). We have Iy; < Il-/2fl-/2 Thus it remains to show that for every C,
(supzzSZ’yj 5] > 5/0) =o(1) (3.33)

as n — o0o. Since ’yjz = /ij(l + 0(1)) = o(1), this estimate is obtained in the same way as
estimates (3.19).
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Proof of Lemma 3.9. By Lemmas 3.2, 3.3, and 3.5, it suffices to show that

inf o'n"?A4,(0) = 1nf ZK292 Z,‘i (3.34)

ocv,

o
Put ug = k% 3 9]2-. We note that uy < Py. Then 9]2- = u;j "% —ujp1(j +1)7%°. Hence,

j=k
oln~ 25292_52292+ Z (w72 — e (4 1)7%)
J=kn
'n o0
=K 07+ KPup, k2 + 2Py Y w(iTT = (G- 1)) (3.35)
j=1 j=kn+1
o
— 52/)71 +2sP Z Uj(j_48_l _ (] _ 1)—28—1j—28).
Since j7471 — (j — 1)72571j72 is negative, the inf A(f) is attained for u; = Py. Therefore,
19]2»:/1§f0rj>k:6. O
Thus the problem is reduced to finding
Ekn 00
2. 2 4
K 161%f29j + Z Kj (3.36)
Jj=1 j=kn+1

under the constraints

kn 00
2 2
05 + Z Kj = Pn
and
o
ket > 65 <Py, 1<j<oo,
J=kn

with 9]2- = /1? for j > k.
It is easily seen that this infimum is attained if 9]2- = /1? = k2 for j < ky.
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Translated by the author.
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