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EXAMPLES OF INTEGRABLE SYSTEMS WITH DISSIPATION
ON THE TANGENT BUNDLES OF FOUR-DIMENSIONAL MANIFOLDS

M. V. Shamolin UDC 517.933

Abstract. In this paper, we prove the integrability of certain classes of dynamical systems on the
tangent bundles of four-dimensional manifolds (systems with four degrees of freedom). The force field
considered possessed so-called variable dissipation; they are generalizations of fields studied earlier.
This paper continues earlier works of the author devoted to systems on the tangent bundles of two-
and three-dimensional manifolds.
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Introduction. Configuration spaces of of many dynamical systems are four-dimensional smooth man-
ifolds; naturally, their phase spaces are tangent bundles of these manifolds. For example, the motion
of a five-dimensional generalized spherical pendulum in a nonconservative force field is described by
a dynamical system on the tangent bundle of the four-dimensional sphere whose metric is induced
by an additional symmetry group (see [9, 12, 13]). In this case, dynamical systems that describe the
motion of such a pendulum possess variable dissipation, and a complete list of first integrals consists
of transcendental functions that can be expressed as finite combinations of elementary functions.

Another class of problems consists of problems on the motion of a particle on a four-dimensional
surface whose metric is induced by the Euclidean metric of the ambient space. In some cases, one
manages to find a complete list of transcendental first integrals for systems with variable dissipation.
These results are especially important for systems in nonconservative force fields (see [1, 4, 7, 19]).

In this paper, we prove the integrability of certain classes of dynamical systems on tangent bundles
of smooth four-dimensional manifolds in the case of systems with variable dissipation (see [1, 4, 19]),
which are generalizations of systems studied earlier. Similar results for manifolds of dimensions 2
and 3 were obtained by the author in [10, 11, 17]).
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1. Equations of geodesics, changes of coordinates, and first integrals. As is well known,
in the case of a four-dimensional smooth Riemannian manifold M4 with coordinates (α, β), where
β = (β1, β2, β3), and an affine connection Γi

jk(x), the equations of geodesic lines on the tangent bundle

T∗M4
{
α̇, β̇1, β̇2, β̇3; α, β1, β2, β3

}
have the following form (differentiation is performed with respect to

the natural parameter):

ẍi +

4∑

j,k=1

Γi
jk(x)ẋ

j ẋk = 0, i = 1, . . . , 4, (1)

where α = x1, β1 = x2, β2 = x3, β3 = x4, and x = (x1, x2, x3, x4). We examine the behavior of
Eqs. (1) under the change of coordinates on the tangent bundle T∗M4. We perform the following
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change of coordinates on the tangent space depending on a point x of the manifold:

ẋi =
4∑

j=1

Rij(x)zj (2)

and assume that it can be inverted almost everywhere:

zj =

4∑

i=1

Tji(x)ẋ
i;

here Rij and Tji, i, j = 1, . . . , 4, are functions of x1, x2, x3, and x4 such that RT = E, where R = (Rij),
and T = (Tji). Equations (2) are called the new kinematic relations, i.e., they are relations on the
tangent bundle T∗M4.

The following identities hold:

żj =

4∑

i=1

Ṫjiẋ
i +

4∑

i=1

Tjiẍ
i, Ṫji =

4∑

k=1

Tji,kẋ
k, (3)

where

Tji,k =
∂Tji

∂xk
, i, j, k = 1, . . . , 4.

Substituting Eqs. (1) to (3) we obtain

żi =

4∑

j,k=1

Tij,kẋ
jẋk −

4∑

j,p,q=1

TijΓ
j
pqẋ

pẋq; (4)

where one must substitute the formulas (2) instead of ẋi, i = 1, . . . , 4.
In other words, Eq. (4) can be rewritten in the form

żi +

4∑

j,k=1

Qijkẋ
j ẋk

∣
∣
(2)

= 0, (5)

where

Qijk(x) =

4∑

s=1

Tis(x)Γ
s
jk(x)− Tij,k(x). (6)

Proposition 1. In a domain where detR(x) �= 0, the system (1) is equivalent to the composite
system (2), (4).

Thus, the result of the transition from the equations of geodesic (1) to an equivalent system of
Eqs. (2), (4) depends on the change of variables (2) on the tangent space (i.e., on the kinematic
relations introduced) and on the affine connection Γi

jk(x).

2. Almost general case. Further, we consider the following form of kinematic relations:

α̇ = −z4, β̇1 = z3f1(α), β̇2 = z2f2(α)g1(β1), β̇3 = z1f3(α)g2(β1)h(β2), (7)

where fk(α), k = 1, 2, 3, gl(β1), l = 1, 2, and h(β2) are certain smooth functions. Such coordinates
z1, z2, z3, and z4 on the tangent space can be introduced if one considers the following equations of
geodesics (in particular, on spheres and more general surfaces of revolution):

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

α̈+ Γα
11(α, β)β̇

2
1 + Γα

22(α, β)β̇
2
2 + Γα

33(α, β)β̇
2
3 = 0,

β̈1 + 2Γ1
α1(α, β)α̇β̇1 + Γ1

22(α, β)β̇
2
2 + Γ1

33(α, β)β̇
2
3 = 0,

β̈2 + 2Γ2
α2(α, β)α̇β̇2 + 2Γ2

12(α, β)β̇1β̇2 + Γ2
33(α, β)β̇

2
3 = 0,

β̈3 + 2Γ3
α3(α, β)α̇β̇3 + 2Γ3

13(α, β)β̇1β̇3 + 2Γ3
23(α, β)β̇2β̇3 = 0,

(8)
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(see [4, 5, 18]); the other connection coefficients vanish. In the case (7), Eqs. (4) become

ż1 =

[
2Γ3

α3(α, β) +
d ln |f3(α)|

dα

]
z1z4 −

[
2Γ3

13(α, β) +
d ln |g2(β1)|

dβ1

]
f1(α)z1z3

−
[
2Γ3

23(α, β) +
d ln |h(β2)|

dβ2

]
f2(α)g1(β1)z1z2,

ż2 =

[
2Γ2

α2(α, β) +
d ln |f2(α)|

dα

]
z2z4 −

[
2Γ2

12(α, β) +
d ln |g1(β1)|

dβ1

]
f1(α)z2z3

− Γ2
33(α, β)

f2
3 (α)

f2(α)

g22(β1)

g1(β1)
h2(β2)z

2
1 , (9)

ż3 =

[
2Γ1

α1(α, β) +
d ln |f1(α)|

dα

]
z3z4 − Γ1

22(α, β)
f2
2 (α)

f1(α)
g21(β1)z

2
2

− Γ1
33(α, β)

f2
3 (α)

f1(α)
g22(β1)h

2(β2)z
2
1 ,

ż4 = Γα
11f

2
1 (α)z

2
3 + Γα

22f
2
2 (α)g

2
1(β1)z

2
2 + Γα

33f
2
3 (α)g

2
2(β1)h

2(β2)z
2
1 ,

and Eqs. (8) are equivalent almost everywhere to the composite system (7), (9) on the tangent bundle
T∗M4

{
z4, z3, z2, z1;α, β1, β2, β3

}
.

For complete integration of the system (7), (9), we need, generally speaking, seven independent first
integrals. However, in the case considered, the number of needed first integrals is less; we prove this
below for dissipative systems.

Proposition 2. If the system of equalities
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2Γ1
α1(α, β) +

d ln |f1(α)|
dα

+ Γα
11(α, β)f

2
1 (α) ≡ 0,

2Γ2
α2(α, β) +

d ln |f2(α)|
dα

+ Γα
22(α, β)f

2
2 (α)g

2
1(β1) ≡ 0,

[
2Γ2

12(α, β) +
d ln |g1(β1)|

dβ1

]
f2
1 (α) + Γ1

22(α, β)f
2
2 (α)g

2
1(β1) ≡ 0,

2Γ3
α3(α, β) +

d ln |f3(α)|
dα

+ Γα
33(α, β)f

2
3 (α)g

2
2(β1)h

2(β2) ≡ 0,
[
2Γ3

13(α, β) +
d ln |g2(β1)|

dβ1

]
f2
1 (α) + Γ1

33(α, β)f
2
3 (α)g

2
2(β1)h

2(β2) ≡ 0,

[
2Γ3

23(α, β) +
d ln |h(β2)|

dβ2

]
f2
2 (α)g

2
1(β1) + Γ2

33(α, β)f
2
3 (α)g

2
2(β1)h

2(β2) ≡ 0,

(10)

is valid, then the system (7), (9) has an analytic first integral of the form

Φ1(z4, . . . , z1) = z21 + . . .+ z24 = C2
1 = const . (11)

At first glance, the problem on the existence of a sufficiently simple first integral of the form (11)
can be solved by an easier method than the solution of the sufficiently complicate system of quasilinear
equations (10) (which contains, in general, partial differential equations that can be reduced to ordinary
equations). In this paper, we apply another method, which allows one to find complete sets of first
integrals for dissipative systems by solving the system (10).

One can prove a separate theorem on the existence of a solution fk(α), k = 1, 2, 3, gl(β1), l = 1, 2,
h(β2) to the system (10) of quasilinear equations and hence prove the existence of an analytical first
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integral (11) for the system (7), (9) of the equations of geodesics (8). However, in the study of
dissipative dynamical systems we do not use the conditions (10). Nevertheless, we assume below that
for Eqs. (7) the following conditions hold:

f1(α) = f2(α) = f3(α) = f(α); (12)

the functions gl(β1), l = 1, 2, and h(β2) must satisfy the transformed equations from (10), namely,
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

2Γ2
12(α, β) +

d ln |g1(β1)|
dβ1

+ Γ1
22(α, β)g

2
1(β1) ≡ 0,

2Γ3
13(α, β) +

d ln |g2(β1)|
dβ1

+ Γ1
33(α, β)g

2
2(β1)h

2(β2) ≡ 0,

2Γ3
23(α, β) +

d ln |h(β2)|
dβ2

+ Γ2
33(α, β)h

2(β2) ≡ 0.

(13)

Thus, the function gl(β1), l = 1, 2, and h(β2) depend on the connection coefficients due to the sys-
tem (13); restrictions for the function f(α) will be specified below.

Proposition 3. If the properties (12) and (13) are fulfilled and the equalities

Γ1
α1(α, β) = Γ2

α2(α, β) = Γ3
α3(α, β) = Γ1(α) (14)

hold, then the system (7), (9) has the following smooth first integral :

Φ2(z3, z2, z1;α) =
√

z21 + z22 + z23Φ0(α) = C2 = const,

Φ0(α) = f(α) exp

⎧
⎨

⎩
2

α∫

α0

Γ1(b)db

⎫
⎬

⎭
.

(15)

Proposition 4. If the conditions of Proposition 3 and the condition

g1(β1) = g2(β1) = g(β1) (16)

are fulfilled and, moreover, the equalities

Γ2
12(α, β) = Γ3

13(α, β) = Γ2(β1) (17)

hold, then the system (7), (9) has the following smooth first integral :

Φ3(z2, z1;α, β1) =
√

z21 + z22Φ0(α)Ψ1(β1) = C3 = const,

Ψ1(β1) = g(β1) exp

⎧
⎪⎨

⎪⎩
2

β1∫

β10

Γ2(b)db

⎫
⎪⎬

⎪⎭
.

(18)

Proposition 5. If the conditions of Propositions 3 and 4 are fulfilled and the equality

Γ3
23(α, β) = Γ3(β2), (19)

holds, then the system (7), (9) has the following smooth first integral :

Φ4(z1;α, β1, β2) = z1Φ0(α)Ψ1(β1)Ψ2(β2) = C4 = const,

Ψ2(β2) = h(β2) exp

⎧
⎪⎨

⎪⎩
2

β2∫

β20

Γ3(b)db

⎫
⎪⎬

⎪⎭
.

(20)
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Proposition 6. If the conditions of Propositions 3, 4, and 5 are fulfilled, then the system (7), (9)
has the following first integral :

Φ5(z2, z1;α, β) = β3 ±
β2∫

β20

C4h(b)√
C2
3Φ

2
2(b)− C2

4

db = C5 = const, (21)

after the calculation of the integral in (21), one must substitute the left-hand sides of Eqs. (18) and (20)
instead of the constants C3 and C4, respectively.

The set of the first integrals (11), (15), (18), (20), and (21) is a complete set of independent first
integrals of the system (7), (9) under the conditions listed above. We explain below that the complete
set consists of five (not of seven) first integrals.

The problem on the smoothness of the first integrals (21) is quite difficult. Generally speaking, it can
be expressed as a finite combination of elementary functions, for example, rational functions. However,
since the dynamical system considered does not possess asymptotic limit sets, the function (21) cannot
be transcendental (from the standpoint of complex analysis): indeed, it has no essential singular points.
But from the standpoint of the theory of elementary functions, it can be transcendental (see also [6,
8]).

3. Equations of motion on a potential force field and their first integrals. Now we mod-
ify the system (7), (9) under the conditions (12)–(14), (16), (17), and (19) and obtain a conservative
system. Namely, the presence of a force field is described by a sufficiently smooth coefficient F (α) in the
second equation of the system (22). The system on the tangent bundle T∗M4

{
z4, z3, z2, z1;α, β1, β2, β3

}

takes the form

α̇ = −z4, (22a)

ż4 = F (α) + Γα
11f

2
1 (α)z

2
3 + Γα

22f
2
2 (α)g

2
1(β1)z

2
2 + Γα

33f
2
3 (α)g

2
2(β1)h

2(β2)z
2
1 , (22b)

ż3 =

[
2Γ1

α1(α, β) +
d ln |f1(α)|

dα

]
z3z4 − Γ1

22(α, β)
f2
2 (α)

f1(α)
g21(β1)z

2
2

− Γ1
33(α, β)

f2
3 (α)

f1(α)
g22(β1)h

2(β2)z
2
1 , (22c)

ż2 =

[
2Γ2

α2(α, β) +
d ln |f2(α)|

dα

]
z2z4 −

[
2Γ2

12(α, β) +
d ln |g1(β1)|

dβ1

]
f1(α)z2z3

− Γ2
33(α, β)

f2
3 (α)

f2(α)

g22(β1)

g1(β1)
h2(β2)z

2
1 , (22d)

ż1 =

[
2Γ3

α3(α, β) +
d ln |f3(α)|

dα

]
z1z4 −

[
2Γ3

13(α, β) +
d ln |g2(β1)|

dβ1

]
f1(α)z1z3

−
[
2Γ3

23(α, β) +
d ln |h(β2)|

dβ2

]
f2(α)g1(β1)z1z2, (22e)

β̇1 = z3f(α), (22f)

β̇2 = z2f(α)g(β1), (22g)

β̇3 = z1f(α)g(β1)h(β2); (22h)
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it is equivalent to the following system almost everywhere:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

α̈+ F (α) + Γα
11(α, β)β̇

2
1 + Γα

22(α, β)β̇
2
2 + Γα

33(α, β)β̇
2
3 = 0,

β̈1 + 2Γ1(α)α̇β̇1 + Γ1
22(α, β)β̇

2
2 + Γ1

33(α, β)β̇
2
3 = 0,

β̈2 + 2Γ1(α)α̇β̇2 + 2Γ2(β1)β̇1β̇2 + Γ2
33(α, β)β̇

2
3 = 0,

β̈3 + 2Γ1(α)α̇β̇3 + 2Γ2(β1)β̇1β̇3 + 2Γ3(β2)β̇2β̇3 = 0.

Proposition 7. If the condition of Proposition 2 are fulfilled, then the system (22) possesses the
following smooth first integral :

Φ1(z4, . . . , z1;α) = z21 + . . .+ z24 + F1(α) = C1 = const, F1(α) = 2

α∫

α0

F (a)da. (23)

Proposition 8. If the conditions of Propositions 3, 4, and 5 are fulfilled, then the system (22) pos-
sesses three smooth first integrals (15), (18), and (20).

Proposition 9. If the conditions of Proposition 6 are fulfilled, then the system (22) possesses the
first integral (21).

The set of first integrals (23), (15), (18), (20), and (21) is a complete set of independent first
integrals of the system (22) under the conditions specified above; below we explain that the complete
set consists of five (not seven) first integrals.

As above, the problem on the smoothness of the first integrals (21) is quite difficult. Since the
dynamical system considered does not possess asymptotic limit sets even under the action of a smooth
conservative force field, the function (21) cannot be transcendental from the standpoint of complex
analysis since it has no essential singular points. But from the standpoint of the theory of elementary
functions, it can be transcendental (see also [8]).

4. Equations of motion in a dissipative force field and their first integrals. Now we com-
plicate the system (22) and obtain a dissipative system. The dissipation (generally speaking, sign-
alternating dissipation) is described by the sufficiently smooth coefficient bδ(α) in the first equation
of the following system:

α̇ = −z4 + bδ(α), (24a)

ż4 = F (α) + Γα
11f

2
1 (α)z

2
3 + Γα

22f
2
2 (α)g

2
1(β1)z

2
2 + Γα

33f
2
3 (α)g

2
2(β1)h

2(β2)z
2
1 , (24b)

ż3 =

[
2Γ1

α1(α, β) +
d ln |f1(α)|

dα

]
z3z4 − Γ1

22(α, β)
f2
2 (α)

f1(α)
g21(β1)z

2
2

− Γ1
33(α, β)

f2
3 (α)

f1(α)
g22(β1)h

2(β2)z
2
1 , (24c)

ż2 =

[
2Γ2

α2(α, β) +
d ln |f2(α)|

dα

]
z2z4 −

[
2Γ2

12(α, β) +
d ln |g1(β1)|

dβ1

]
f1(α)z2z3

− Γ2
33(α, β)

f2
3 (α)

f2(α)

g22(β1)

g1(β1)
h2(β2)z

2
1 , (24d)

ż1 =

[
2Γ3

α3(α, β) +
d ln |f3(α)|

dα

]
z1z4 −

[
2Γ3

13(α, β) +
d ln |g2(β1)|

dβ1

]
f1(α)z1z3

−
[
2Γ3

23(α, β) +
d ln |h(β2)|

dβ2

]
f2(α)g1(β1)z1z2, (24e)
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β̇1 = z3f(α), (24f)

β̇2 = z2f(α)g(β1), (24g)

β̇3 = z1f(α)g(β1)h(β2). (24h)

This system is equivalent to the following system almost everywhere:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

α̈− bα̇δ′(α) + F (α) + Γα
11(α, β)β̇

2
1 + Γα

22(α, β)β̇
2
2 + Γα

33(α, β)β̇
2
3 = 0,

β̈1 − bβ̇1δ(α)f(α) + 2Γ1(α)α̇β̇1 + Γ1
22(α, β)β̇

2
2 + Γ1

33(α, β)β̇
2
3 = 0,

β̈2 − bβ̇2δ(α)f(α) + 2Γ1(α)α̇β̇2 + 2Γ2(β1)β̇1β̇2 + Γ2
33(α, β)β̇

2
3 = 0,

β̈3 − bβ̇3δ(α)f(α) + 2Γ1(α)α̇β̇3 + 2Γ2(β1)β̇1β̇3 + 2Γ3(β2)β̇2β̇3 = 0.

Now we integrate the eighth-order system (24) under the conditions (12), (13), and (16), and the
equalities

Γα
11(α, β) = Γα

22(α, β)g
2(β1) = Γα

33(α, β)g
2(β1)h

2(β2) = Γ4(α). (25)

Similarly to (13), we impose the following restriction for the function f(α): it must satisfy the first
equality from (10) transformed as follows:

2Γ1(α) +
d ln |f(α)|

dα
+ Γ4(α)f

2(α) ≡ 0. (26)

For complete integration of the system (24), one needs, in general, seven independent first integrals.
However, after the substitution

w4 = z4, w3 =
√

z21 + z22 + z23 , w2 =
z2
z1

, w1 =
z3√

z21 + z22
,

the system (24) splits as follows:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

α̇ = −w4 + bδ(α),

ẇ4 = F (α) + Γ4(α)f
2(α)w2

3 ,

ẇ3 =

[
2Γ1(α) +

d ln |f(α)|
dα

]
w3w4,

(27)

⎧
⎪⎪⎨

⎪⎪⎩

ẇ2 = ±w3

√
1 + w2

2f(α)g(β1)

[
2Γ3(β2) +

d ln |h(β2)|
dβ2

]
,

β̇2 = ± w2w3√
1 + w2

2

f(α)g(β1),
(28)

⎧
⎪⎪⎨

⎪⎪⎩

ẇ1 = ±w3

√
1 + w2

1f(α)

[
2Γ2(β1) +

d ln |g(β1)|
dβ1

]
,

β̇1 = ± w1w3√
1 + w2

1

f(α),
(29)

β̇3 = ± w3√
1 + w2

2

f(α)g(β1)h(β2). (30)

We see that for the complete integrability of the system (27)–(30), it suffices to find two independent
first integrals of the system (27), one first integral for each of the systems (28) and (29) (changing
independent variables in them), and an additional first integral, which “links” Eq. (30). So, the total
number of first integrals is five.

Theorem 1. Assume that for certain κ, λ ∈ R, the equalities

Γ4(α)f
2(α) = κ

d

dα
ln |δ(α)|, F (α) = λ

d

dα

δ2(α)

2
(31)
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are fulfilled. Then under the conditions (12), (13), (16), (25), and (26), the system (24) possesses a
complete set (namely, five) independent (generally speaking, transcendental) first integrals.

First, to the third-order system (27), we assign the following nonautonomous second-order system:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dw4

dα
=

F (α) + Γ4(α)f
2(α)w2

3

−w4 + bδ(α)
,

dw3

dα
=

[
2Γ1(α) +

d ln |f(α)|
dα

]
w3w4

−w3 + bδ(α)
.

(32)

Further, introducing the homogeneous variables by the formulas

w4 = u4δ(α), w3 = u3δ(α), (33)

we reduce the system (32) to the following form:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

δ(α)
du4
dα

+ δ′(α)u4 =
F (α) + Γ4(α)f

2(α)δ2(α)u23
−u4δ(α) + bδ(α)

,

δ(α)
du3
dα

+ δ′(α)u3 =

[
2Γ1(α) +

d ln |f(α)|
dα

]
δ2(α)u3u4

−u4δ(α) + bδ(α)
.

(34)

This system is equivalent to the following system almost everywhere:
⎧
⎪⎪⎨

⎪⎪⎩

δ(α)
du4
dα

=
F3(α) + Γ4(α)f

2(α)δ(α)u23 + δ′(α)u24 − bδ′(α)u4
−u4 + b

,

δ(α)
du3
dα

=
−Γ4(α)f

2(α)δ(α)u3u4 + δ′(α)u3u4 − bδ′(α)u
−u4 + b

;

(35)

here F3(α) = F (α)/δ(α).
If the conditions (31) hold, then the system (35) is reduced to the first-order equation

du4
du3

=
λ+ κu23 + u24 − bu4
(1− κ)u3u4 − bu3

. (36)

Equation (36) is an Abel equation (see [6]). In particular, for κ = −1 it possesses the first integral

u24 + u23 − bu4 + λ

u3
= C1 = const, (37)

which in the initial variables has the form

Θ1(w4, w3;α) = G1

(
w4

δ(α)
,
w3

δ(α)

)
=

w2
4 + w2

3 − bw4δ(α) + λδ2(α)

w3δ(α)
= C1 = const . (38)

Further, we find an explicit form of the additional first integral of the third-order system (27) for
κ = −1. We transform the invariant relation (37) for u3 �= 0 as follows:

(
u4 − b

2

)2

+

(
u3 − C1

2

)2

=
b2 + C2

1

4
− λ. (39)

Clearly, the parameters of this invariant relations must satisfy the condition

b2 + C2
1 − 4λ ≥ 0, (40)

and the phase space of the system (23) splits into surfaces determined by Eq. (39).
Thus, due to the relation (37), the first equation of the system (35) for κ = −1 has the form

δ(α)

δ′(α)
du4
dα

=
2(λ− bu4 + u24)− C1U1(C1, u4)

−u4 + b
, (41)
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where

U1(C1, u4) =
1

2

{
C1 ±

√
C2
1 − 4(u24 − bu4 + λ)

}
; (42)

the integration constant C1 is determined by the condition (40). Then the additional first integral for
the system (27) has the form

Θ2(w4, w3;α) = G2

(
δ(α),

w4

δ(α)
,
w3

δ(α)

)
= C2 = const; (43)

for κ = −1, it can be found from the quadrature

ln |g(α)| =
∫

(b− u4)du4

2(λ− bu4 + u24)− C1

{
C1 ±

√
C2
1 − 4(u24 − bu4 + λ)

}
/2

,

where u4 = w4/δ(α). After calculating this integral, one must substitute the left-hand side of Eq. (38)
instead of C1. The right-hand side of this equality is expressed as a finite combination of elementary
functions, whereas the left-hand side depends on the function δ(α). Therefore, the expression of the
first integrals (38) and (43) as finite combinations of elementary functions depends on quadratures
and on the explicit form of the function δ(α).

The first integrals (28) and (29) for the system have the form

Θs+2(ws;βs) =

√
1 +w2

s

Ψs(βs)
= Cs+2 = const, s = 1, 2; (44)

the functions Ψs(βs), s = 1, 2, are defined by (18) and (20). The additional first integral, which “links”
Eq. (30), is similar to (21):

Θ5(w2, w1;α, β) = β3 ±
β2∫

β20

C4h(b)√
C2
3Ψ

2
2(b)− C2

4

db = C5 = const;

after calculating this integral, one must substitute the corresponding left-hand sides of Eqs. (44)
instead of the constants C3 and C4.

5. Remark on the structure of first integrals of dissipative systems. If α is a 2π-periodic
coordinate, then the system (27) becomes a dynamical system with variable dissipation with zero
mean (see [14–16]). Moreover, for b = 0 it turns into a conservative system possessing two smooth
first integrals (23) and (15). Due to (31), we have

Φ1(z4, . . . , z1;α) = z21 + . . .+ z24 + 2

α∫

α0

F (a)da ∼= w2
4 + w2

3 + λδ2(α), (45)

where ∼= means equality up to an additive constant. Moreover, due to (26) and (31), we have

Φ2(z3, z2, z1;α) =
√

z21 + z22 + z23 f(α) exp

⎧
⎨

⎩
2

α∫

α0

Γ1(b)db

⎫
⎬

⎭
� w3δ(α) = C2 = const, (46)

where � means equality up to a multiplicative constant.
Obviously, the ratio of the first integrals (45) and (46) (or (23) and (15)) is also a first integral of

the system (27) for b = 0. However, for b �= 0, the functions

w2
4 + w2

3 − bw4δ(α) + λδ2(α) (47)

and (46) are not first integrals of the system (27), but the ratio of the functions (47) and (46) is a first
integral of the system (27) (for κ = −1) for any b.
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In general, for dissipative systems, the transcendence of first integrals (in the sense of the presence
of essential singularities) follows from the presence of attracting or repulsive limit sets in the system
(see [8]).

6. Conclusion. Similarly to low-dimensional cases, we indicate the following two important cases
for the function f(α), which determines the metric on the sphere:

(a) f(α) =
cosα

sinα
, (b)f(α) =

1

cosα sinα
. (48)

The case (48)(a) corresponds to the class of systems that describe the motion of a dynamically
symmetric five-dimensional rigid body on zero levels of cyclic integral, generally speaking, in a non-
conservative force field (see [14–16]). The case (48)(b) corresponds to the class of systems that describe
the motion of a particle on the four-dimensional sphere, also, generally speaking, in a nonconservative
force field. In particular, for δ(α) ≡ F (α) ≡ 0, the system considered describes a geodesic flow on the
four-dimensional sphere. In the case (48), if δ(α) = F (α)cosα, then the system describes the spatial
motion of a five-dimensional rigid body in a force field F (α) under the action of a tracing force (see [2,
3, 9]). In particular, if F (α) = sinα cosα and δ(α) = sinα, then the system also describes a general-
ized five-dimensional spherical pendulum in a nonconservative force field and possesses a complete set
of transcendental first integrals, which can be expressed as finite combinations of elementary functions
(see [14–16]).

If the function δ(α) is not periodic, then the dissipative system considered is a system with variable
dissipation with nonzero mean (i.e., it is properly dissipative). However, in this case one can also
obtain an explicit form of transcendental first integrals that can be expressed as finite combinations
of elementary functions. This fact is a new nontrivial result on the explicit integrability of dissipative
systems.

The author expresses his deep gratitude to Academician V. V. Kozlov and Professor A. V. Mikhalev
for valuable comments.

REFERENCES

1. O. I. Bogoyavlenskii, “Some integrable cases of Euler equation,” Dokl. Akad. Nauk SSSR, 287,
No. 5, 1105–1108 (1986).

2. S. A. Chaplygin, “On motion of heavy bodies in an incompressible fluid,” in: Complete Collection
of Works [in Russian], Vol. 1, Izd. Akad. Nauk SSSR, Leningrad (1933), pp. 133–135.

3. S. A. Chaplygin, Selected Works [in Russian], Nauka, Moscow (1976).
4. B. A. Dubrovin and S. P. Novikov, “On Poisson brackets of hydrodynamic type,” Dokl. Akad.

Nauk SSSR, 279, No. 2, 294–297 (1984).
5. B. A. Dubrovin, S. P. Novikov, and A. T. Fomenko, Modern Geometry. Theory and Applications

[in Russian], Nauka, Moscow (1979).
6. E. Kamke, Differentialgleichungen. Lösungsmethoden und Lösungen. I. Gewöhnliche Differential-
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