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FIXED POINTS AND COMPLETENESS IN METRIC
AND GENERALIZED METRIC SPACES

S. Cobzaş UDC 515.126.4

Abstract. The famous Banach contraction principle holds in complete metric spaces, but completeness is
not a necessary condition: there are incomplete metric spaces on which every contraction has a fixed point.
The aim of this paper is to present various circumstances in which fixed point results imply completeness.
For metric spaces, this is the case of Ekeland’s variational principle and of its equivalent, Caristi’s fixed
point theorem. Other fixed point results having this property will also be presented in metric spaces, in
quasi-metric spaces, and in partial metric spaces. A discussion on topology and order and on fixed points
in ordered structures and their completeness properties is included as well.

All roads lead to Rome.
An old saying

All topologies come from generalized metrics.
Ralph Kopperman

Am. Math. Mon., 95, No. 2, 89–97 (1988)

Introduction

The famous Banach contraction principle holds in complete metric spaces, but completeness is not
a necessary condition – there are incomplete metric spaces on which every contraction has a fixed point
(see, e.g., [54]). The aim of the present paper is to present various circumstances in which fixed point
results imply completeness. For metric spaces this is the case of Ekeland’s variational principle (and of
its equivalent, Caristi’s fixed point theorem) (see, for instance, [30,112,171]) but this is also true in quasi-
metric spaces [39, 89] and in partial metric spaces [3, 151]. Other fixed point results having this property
will also be presented. Various order completeness conditions of some ordered structures implied by fixed
point properties will be considered as well.

Concerning proofs, in several cases we give proofs, mainly to the converse results, i.e., completeness
implied by fixed point results. In Sec. 3, we give full proofs to results relating topology and order as well
as in Sec. 5 in what concerns the properties of partial metric spaces.

1. Banach Contraction Principle in Metric Spaces

The Banach contraction principle was proved by S. Banach in his thesis from 1920, published in
1922 [24]. Although the idea of successive approximations in some concrete situations (solving differential
and integral equations) appears in some works of P. L. Chebyshev, E. Picard, R. Caccioppoli, et al., it
was Banach who placed it in the right abstract setting, making it suitable for a wide range of applications
(see the expository paper [99]).

1.1. Contractions and Weakly Contractive Mappings. Let (X, ρ) and (Y, d) be metric spaces.
A mapping f : X → Y is called Lipschitz if there exists a number α ≥ 0 such that

∀x, y ∈ X d
(
f(x), f(y)

) ≤ αρ(x, y). (1.1)
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The number α is called a Lipschitz constant for f , and one says sometimes that the mapping f is
α-Lipschitz. If α = 0, then the mapping f is constant f(x) = f(x0) for some point x0 ∈ X. If α = 1, i.e.,

∀x, y ∈ X d
(
f(x), f(y)

) ≤ ρ(x, y), (1.2)

then the mapping f is called nonexpansive. If

∀x, y ∈ X d
(
f(x), f(y)

)
= ρ(x, y), (1.3)

then f is called an isometry.
Suppose now Y = X. An α-Lipschitz mapping f : X → X with 0 ≤ α < 1 is called a contraction.

A mapping f : X → X satisfying the relation

∀x, y ∈ X, x �= y, ρ
(
f(x), f(y)

)
< ρ(x, y) (1.4)

is called weakly contractive.
A point x0 ∈ X such that f(x0) = x0 is called a fixed point of the mapping f : X → X. The study of

the fixed points of mappings is one of the most important branches of mathematics, with numerous appli-
cations to the solution of various kinds of equations (differential, integral, partial differential, operator),
optimization, game theory, etc.

The following theorem is, perhaps, the most known fixed point result.

Theorem 1.1 (Banach contraction principle). Any contraction on a complete metric space has a fixed
point.

More precisely, suppose that for some α, 0 ≤ α < 1, f is an α-contraction on a complete metric space
(X, ρ). Then, for an arbitrary point x1 ∈ X, the sequence (xn) defined by the recurrence relation

xn+1 = f(xn), n ∈ N, (1.5)

converges to a fixed point x0 of the mapping f , and the following estimations hold :

(a) ∀n ∈ N ρ(xn, xn+1) ≤ αn−1ρ(x1, x2);

(b) ∀n ∈ N ∀ k ∈ N ρ(xn, xn+k) ≤ 1 − αk

1 − α
αn−1ρ(x1, x2);

(c) ∀n ∈ N ρ(xn, x0) ≤ αn−1

1 − α
ρ(x1, x2).

Under a supplementary condition, weakly contractive mappings also have fixed points.

Theorem 1.2 (M. Edelstein (1962) [50, 51]). Let (X, ρ) be a metric space and f : X → X be a weakly
contractive mapping. If there exists x ∈ X such that the sequence of iterates

(
fn(x)

)
has a limit point

ξ ∈ X, then ξ is the unique fixed point of f .

Theorem 1.2 has the following important consequence.

Corollary 1.3 (Nemytskǐı (1936) [131]). If the metric space (X, ρ) is compact, then every weakly con-
tractive mapping f : X → X has a unique fixed point in X.

Moreover, for any x1 ∈ X the sequence defined by xn+1 = f(xn), n ∈ N, converges to the fixed point
of the mapping f .

Fixed point results for isometries were proved by Edelstein in [52].

1.2. Converses of Banach’s Contraction Principle. Supposing that a function f acting on a metric
space (X, ρ) has a unique fixed point, one looks for conditions ensuring the existence of a metric ρ̄ on X,
topologically equivalent to ρ such that f is a contraction on (X, ρ̄). The first result of this kind was
obtained by Bessaga [32]. Good presentations of various aspects of fixed points for contraction mappings
and their generalizations as well as converse-type results are contained in [73,99,108,138,155,157,160].

We say that a metric d on a set X is complete if (X, d) is a complete metric space.
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Theorem 1.4 (Bessaga (1959) [32]). Let X be a nonempty set, f : X → X, and α ∈ (0, 1).
(1) If for every n ∈ N, fn has at most one fixed point, then there exists a metric ρ on X such that f

is an α-contraction with respect to ρ.
(2) If, in addition, some fn has a fixed point, then there exists a complete metric ρ on X such that

f is an α-contraction with respect to ρ.

A different proof of Theorem 1.4 was given Wong [199], a version of which is included in [45, p. 191-
192]. Other proofs as well as some extensions were given by Babu [23], Jachymski [78] (see also [74]),
Palczewski and Miczko [140, 141], and Wang et al. [194] (cf. the MR review). Angelov [16, 17] proved
a converse result in the context of uniform spaces.

In the case of compact metric spaces, Janoš [84] proved the following result.

Theorem 1.5. Let (X, ρ) be a compact metric space and f : X → X be a continuous mapping such that,
for some ξ ∈ X,

∞⋂

n=1

fn(X) = {ξ}. (1.6)

Then for every α ∈ (0, 1), there exists a metric ρα on X, topologically equivalent to ρ, such that f is an
α-contraction with respect to ρα (with ξ as the unique fixed point).

A mapping f satisfying (1.6) is called squeezing.
Another proof of Janoš’ theorem was given by Edelstein [53].
Kasahara [91] showed that compactness is also necessary for the validity of Janoš’ result.

Theorem 1.6. Let (X, ρ) be a metric space. If for every squeezing mapping f : X → X and every
α ∈ (0, 1) there exists a metric ρα on X, topologically equivalent to ρ, such that f is an α-contraction
with respect to ρα, then the space X is compact.

Janoš extended in [85] this result to uniform spaces (more precisely, to completely regular spaces
whose topology is generated by a family of semimetrics); see also [15–18]. Rus [156] extended Janoš’
result to weakly Picard mappings. An operator f on a metric space (X, ρ) is called weakly Picard if, for
every x ∈ X, the sequence

(
fn(x)

)
of iterates converges to a fixed point of f . Further, if the limit is

independent of x (i.e., f has a unique fixed point), then f is called a Picard operator (see [158] or [160]).
Other extensions of Janoš’ result were given by Leader [109] (see also [110,111,128–130]. For a metric

space (X, ρ) and ξ ∈ X consider the following properties:
(i) fn(x) → ξ for every x ∈ X;
(ii) the convergence in (i) is uniform on some neighborhood U of ξ.

The condition (ii) means that

∀ ε > 0 ∃n0 = n0(ε) such that ∀n ≥ n0 fn(U) ⊂ B[ξ, ε]. (1.7)

To designate the uniform convergence on a subset A of X of the sequence (fn) to a point ξ, one uses
the notation

fn(A) → ξ.

Leader [109] proved the following results.

Theorem 1.7. Let (X, ρ) be a metric space and f : X → X.
(1) There exists a metric ρ̄ topologically equivalent to ρ on X such that f is a Banach contraction

under ρ̄ with fixed point ξ if and only if f is continuous and both (i) and (ii) hold.
(2) There exists a bounded metric ρ̄ topologically equivalent to ρ on X such that f is a Banach

contraction under ρ̄ with fixed point ξ if and only if f is continuous and fn(X) → ξ.
(3) There exists a bounded metric ρ̄ uniformly equivalent to ρ on X such that f is a Banach contraction

under ρ̄ if and only if f is uniformly continuous and

diamρ

(
fn(X)

) → 0 as n → ∞. (1.8)
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In the case of an ultrametric space, the situation is simpler. An ultrametric space is a metric space
(X, ρ) such that ρ satisfies the so called strong triangle (or ultrametric) inequality

ρ(x, z) ≤ max{ρ(x, y), ρ(y, z)}, (1.9)

for all x, y, z ∈ X.
Below, we present some specific properties of these spaces.

Proposition 1.8. Let (X, ρ) be an ultrametric space. Then for all x, y, z ∈ X and r > 0,
(i) ρ(x, y) �= ρ(y, z) =⇒ ρ(x, z) = max{ρ(x, y), ρ(y, z)};
(ii) y ∈ B[x, r] =⇒ B[x, r] = B[y, r];
(iii) r1 ≤ r2 and B[x, r1] ∩ B[x, r2] �= ∅ =⇒ B[x, r1] ⊂ B[x, r2].

Similar relations hold for the open balls B(x, r).

An ultrametric space (X, ρ) is called spherically complete if for every collection Bi = B[xi, ri], i ∈ I,
of closed ball in X such that Bi ∩ Bj �= ∅ for all i, j ∈ I, has nonempty intersection,

⋂

i∈I

Bi �= ∅. It

is obvious that a spherically complete ultrametric space is complete. In an arbitrary metric space, this
property is called the binary intersection property (or the property (2.∞.I.P.)).

Prieß-Crampe [149] proved the following converse to Edelstein’s theorem on weakly contractive map-
pings.

Theorem 1.9. An ultrametric space (X, ρ) is spherically complete if and only if every weakly contractive
mapping on X has a (unique) fixed point.

Remark 1.10. In fact, Prieß-Crampe [149] proved this result in the more general context of an ultra-
metric ρ taking values in a totally ordered set Γ having a least element 0 such that 0 < γ for all γ ∈ Γ.

Fixed point theorems for weakly contractive and for nonexpansive mappings on spherically complete
non-Archimedean normed spaces were proved by Petalas and Vidalis [145].

Concerning contractions, we mention the following result obtained by Hitzler and Seda [66].

Theorem 1.11. Let (X, τ) be a T1 topological space and f : X → X be a function on X. The following
are equivalent :

(1) (i) The mapping f has a unique fixed point ξ ∈ X and
(ii) for every x ∈ X the sequence

(
fn(x)

)
converges to ξ with respect to the topology τ .

(2) There exists a complete ultrametric ρ on X such that ρ
(
f(x), f(y)

) ≤ 2−1d(x, y) for all x, y ∈ X.

For applications of these fixed point results to logic programming, see [67].

Remark 1.12. We are not sure that the metric ρ from (2) generates the topology τ , but for every x ∈ X
the sequence

(
fn(x)

)
converges to ξ with respect to the topology τ and the metric ρ.

1.3. Neither Completeness Nor Compactness Is Necessary. In this subsection, we shall provide
some examples of peculiar topological spaces having the fixed point property (FPP) for various classes of
mappings. Let F be a class of mappings on a set X. One says that X has the fixed point property for
the class F if every mapping f ∈ F has a fixed point in X.

Examples 1.13 (Elekes [54]).
(1) The space X =

{(
x, sin(1/x)

)
: x ∈ (0, 1]

}
is a nonclosed (hence incomplete) subset of R

2 having
the FPP for contractions.

(2) For every n ∈ N every open subset of R
n possessing the Banach fixed point property coincides

with R
n, hence is closed.

(3) Every simultaneously Fσ and Gδ subset of R with the Banach fixed point property is closed.
(4) There exists a nonclosed Gδ set X ⊂ R with the Banach fixed point property. Moreover, X ⊂ [0, 1]

and every contraction mapping of X into itself is constant.
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(5) There exists a nonclosed Fσ subset of [0, 1] with the Banach fixed point property.
(6) There is a bounded Borel (even Fσ) subset of R with the Banach fixed point property that is not

complete with respect to every equivalent metric.
(7) For every integer n > 0 there exists a nonmeasurable set in R

n with the Banach fixed point
property.

We give the proof only for (1), following [54]. A proof based on some similar ideas was given by
Borwein [34].

Proof of the assertion (1). Let X =
{(

x, sin(1/x)
)
: x ∈ (0, 1]

}
and f : X → X be a contraction with

constant 0 < α < 1. For H ⊂ (0, 1] put XH := {(x, y) ∈ X : x ∈ H}.
Let 0 < ε < 1 be such that α

√
ε2 + 4 < 2. Then for all z = (x, y) and z′ = (x′, y′) in X with

0 < x, x′ < ε,
‖f(z) − f(z′)‖ ≤ α

√
(x − x′)2 + (y − y′)2 < α

√
ε2 + 4 < 2.

Consequently, X(0,ε) does not contain both a local minimum and a local maximum of the graph. Since
X(0,ε) is connected, it follows that it is contained in at most two consecutive monotone parts of the graph
of sin(1/x). Therefore, there exists δ1 > 0 such that f

(
X(0,ε)

) ⊂ X[δ1,1] for some δ1 > 0. By compactness
f
(
X[ε,1]

) ⊂ X[δ2,1] for some δ2 > 0.
Taking δ = min{δ1, δ2}, it follows that f(X) ⊂ X[δ,1] and so f

(
X[δ,1]

) ⊂ X[δ,1]. Applying the Banach
fixed point theorem to X[δ,1], it follows that f has a fixed point.

Some examples of spaces having the FPP for continuous mappings were given by Connell [42]. These
examples show that, in the author’s words: “in the general case, compactness and the FPP are only
vaguely related.”

We first mention the following result of Klee.

Theorem 1.14 (Klee [102]). A locally connected, locally compact metric space with the FPP for contin-
uous mappings is compact.

Examples 1.15. (Connell [42])
(1) There exists a Hausdorff topological space X having the FPP for continuous mappings such that

the only compact subsets of X are the finite ones.
(2) There exists a metric space X having the FPP for continuous mappings such that X2 does not

have the FPP for continuous mappings.
(3) There exists a separable, locally contractible metric space that has the FPP for continuous map-

pings, yet it is not compact.
(4) There exists a compact metric space X that does not have the FPP for continuous mappings, yet

it contains a dense subset Y that does have the FPP for continuous mappings.

1.4. Completeness and Other Properties Implied by FPP. We shall present some fixed point
results that imply the completeness of the underlying space. The papers [30,112,171] contain surveys on
this topic. A good analysis is given in the Master Thesis of Nicolae [132].

We first mention the following characterization of the field of real numbers among totally ordered
fields.

Suppose R is an ordered field. Call a continuous map f : R → R a contraction if there exists r < 1
(in R) such that |f(x) − f(y)| ≤ r|x − y| for all x, y ∈ R (where |x| := max{x,−x}).

The following result is taken from http://mathoverflow.net/questions/65874/
converse-to-banach-s-fixed-point-theorem-for-ordered-fields.

Asking a question posed by James Propp, George Lowther proved the following result.

Theorem 1.16. If R is an ordered field such that every contraction on R has a fixed point, then R ∼= R.

The proof is done in two steps.
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(I) One shows first that the order of R is Archimedean.
(II) One proves that every Cauchy sequence is convergent (i.e., the completeness of R).

These are two properties that characterize the field R among the ordered fields.
The first characterization of completeness in terms of contraction was done by Hu [70].

Theorem 1.17. A metric space (X, ρ) is complete if and only if, for every nonempty closed subset Y
of X, every contraction on Y has a fixed point in Y .

Proof. The idea of the proof is simple. One takes a Cauchy sequence (xn) in X. If it has a convergent
subsequence, then it converges. Supposing that this is not the case, then

β(xn) := inf{ρ(xn, xm) : m > n} > 0 for all n ∈ N.

For a given α with 0 < α < 1, one constructs inductively a subsequence (xnk
) such that ρ(xi, xj) ≤

αβ(xnk−1
) for all i, j ≥ nk. Then Y = {xnk

: k ∈ N} is a closed subset of X and the function f(xnk
) =

xnk+1
, k ∈ N, is an α-contraction on Y without fixed points.

Subrahmanyam [169] proved the following completeness result.

Theorem 1.18. A metric space (X, ρ) in which every mapping f : X → X satisfying the conditions
(i) there exists α > 0 such that ρ

(
f(x), f(y)

) ≤ α max
{
ρ
(
x, f(x)

)
, ρ

(
y, f(y)

)}
for all x, y ∈ X,

(ii) f(X) is countable,
has a fixed point, is complete.

The condition (i) in this theorem is related to the Kannan and Chatterjea conditions: there exists
α ∈ (0, 1/2) such that for all x, y ∈ X,

ρ
(
f(x), f(y)

) ≤ α
[
ρ
(
x, f(x)

)
+ ρ

(
y, f(y)

)]
, (K)

respectively,
ρ
(
f(x), f(y)

) ≤ α
[
ρ
(
x, f(y)

)
+ ρ

(
y, f(x)

)]
. (Ch)

Kannan and Chatterjea proved that any mapping f on a complete metric space satisfying (K) or (Ch)
has a fixed point (see, for instance, [160]). As is remarked in [169], Theorem 1.18 provides completeness
of metric spaces on which every Kannan, or every Chatterjea map, has a fixed point.

Another case where the fixed point property for contractions implies completeness was discovered by
Borwein [34].

A metric space (X, ρ) is called uniformly Lipschitz connected if there exists L ≥ 0 such that for any
pair x0, x1 of points in X there exists a mapping g : [0, 1] → X such that g(0) = x0, g(1) = x1, and

ρ
(
g(s), g(t)

) ≤ L|s − t|ρ(
g(0), g(1)

)
, (1.10)

for all s, t ∈ [0, 1].
Obviously, a convex subset C of a normed space X is uniformly Lipschitz connected, the mapping g

connecting x0, x1 ∈ C being given by g(t) = (1 − t)x0 + tx1, t ∈ [0, 1]. In this case,

‖g(s) − g(t)‖ = |s − t| ‖x1 − x0‖,
for all s, t ∈ [0, 1].

From the following theorem it follows that a convex subset C of a normed space X is complete if and
only if any contraction on C has a fixed point. In particular, this holds for the normed space X.

Theorem 1.19. Let C be a uniformly Lipschitz connected subset of a complete metric space (X, ρ). Then
the following conditions are equivalent.

(1) The set C is closed.
(2) Every contraction on C has a fixed point.
(3) Any contraction on X that leaves C invariant has a fixed point in C.
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Proof. The implication (1) =⇒ (2) is the Banach fixed point theorem, and (2) =⇒ (3) is obvious.
It remains to prove (3) =⇒ (1). Supposing that C is not closed, there exists a point x̄ ∈ C̄ \ C. Let

(xk)k∈N0 be a sequence of pairwise distinct points in C such that

ρ(xk, x̄) ≤ min
{

1
2k+4

,
L

2k+4

}
(1.11)

for k = 0, 1, . . . , where L > 0 is the constant given by the uniform Lipschitz connectedness of C. It follows
that

ρ(xk, xk+1) ≤ min
{

1
2k+3

,
L

2k+3

}
for all k ∈ N0. (1.12)

Let gk : [0, 1] → C be such that gk(0) = xk, gk(1) = xk+1, and

ρ
(
gk(s), gk(t)

) ≤ L|s − t|ρ(xk, xk+1) (1.13)

for all s, t ∈ [0, 1]. Define g : (0,∞) → C by

g(t) =

{
x0 for 1 < t < ∞,

gk(2k+1t − 1) for 1/2k+1 < t ≤ 1/2k.
(1.14)

It follows that g(2−k) = gk(1) = xk+1.
Let Δk = (2−(k+1), 2−k]. Then for s, t ∈ Δk, taking into account (1.13) and (1.12), one obtains

ρ
(
g(s), g(t)

) ≤ L · 2k+1|s − t|ρ(xk, xk+1) ≤ L · 2k+1 · |s − t| · 1
2k+3

=
L

4
· |s − t| ≤ L · |s − t|, s, t ∈ Δk.

Since |s − t| < 1/2k+1, it follows also that

ρ
(
g(s), g(t)

) ≤ L · 2k+1 · 1
2k+1

· 1
2k+3

=
L

2k+3
for all s, t ∈ Δk.

If s ∈ Δk and t ∈ Δp with k ≤ p, then the above inequality and (1.11) yield

ρ
(
g(s), g(2−k)

) ≤ L

2k+3
,

ρ(xk+1, xp+1) ≤ ρ(xk+1, x̄) + ρ(x̄, xp+1) ≤ L

(
1

2k+5
+

1
2p+5

)
,

ρ
(
g(2−p), g(t)

) ≤ L

2p+3
,

so that

ρ
(
g(s), g(t)

) ≤ ρ
(
g(s), g(2−k)

)
+ ρ(xk+1, xp+1) + ρ

(
g(2−p), g(t)

) ≤ L ·
(

1
2k+3

+
1

2k+5
+

1
2p+5

+
1

2p+3

)
.

Observe that
s − t >

1
2k

− 1
2p+1

,

and so if we show that
1

2k+3
+

1
2k+5

+
1

2p+5
+

1
2p+3

≤ 1
2k

− 1
2p+1

, (1.15)

then
ρ
(
g(s), g(t)

) ≤ L|s − t|. (1.16)
Since all the fractions with p at the denominator are less than or equal to the corresponding ones

with k at the denominator, it follows that
1

2k+3
+

1
2k+5

+
1

2p+5
+

1
2p+3

+
1

2p+1
≤ 1

2k+2
+

1
2k+4

+
1

2k+1
=

13
2k+4

<
1
2k

,

so that (1.15) holds.
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Now put g(0) = x̄. If t ∈ Δk, then

ρ
(
g(0), g(t)

) ≤ ρ(x̄, xk+1) + ρ
(
xk+1, g(t)

) ≤ L

(
1

2k+5
+

1
2k+3

)
< L · 1

2k+1
< L · t,

showing that g satisfies (1.16) for all s, t ∈ [0,∞). Let h : X → [0,∞) and f : X → X be defined for
x ∈ X by

h(x) := (2L)−1ρ(x, x̄) and f(x) := (g ◦ h)(x),
respectively. Then, for all x, x′ ∈ X,

ρ
(
f(x), f(x′)

)
= ρ

(
g

(
1

2L
ρ(x, x̄)

)
, g

(
1

2L
ρ(x′, x̄)

))
≤ L · 1

2L
|ρ(x, x̄) − ρ(x′, x̄)| ≤ 1

2
· ρ(x, x′),

i.e., f is a (1/2)-contraction on X. Since

f(C) = g
(
h(C)

) ⊂ g
(
(0,∞)

) ⊂ C,

it follows that C is invariant for f . Since

x̄ = g(0) = g
(
h(x̄)

)
= f(x̄),

it follows that the only fixed point of f is x̄, which does not belong to C, in contradiction to the hypothesis.

We mention the following consequences.

Corollary 1.20.
(1) A uniformly Lipschitz connected metric space (X, ρ) is complete if and only if it has the fixed

point property for contractions.
(2) A convex subset C of a normed space X is complete if and only if any contraction on C has a fixed

point. In particular, this holds for the normed space X.

Proof. For (1) consider X as a uniformly Lipschitz connected subset of its completion X̃. The results in
(2) were discussed before Theorem 1.19.

Example 1.21 (Borwein [34]). There is a starshaped nonclosed subset of R
2 having the fixed point

property for contractions, but not for continuous functions.

One takes

Lk = co
({

(0, 0),
(

1,
1
2k

)})
, k ∈ N,

and
C =

⋃
{Lk : k ∈ N}.

Then C is starshaped with respect to (0, 0) and nonclosed, because co({(0, 0), (1, 0)}) ⊂ C \C. One shows
that C has the required properties (see [34] for details).

Xiang [200] completed and extended Borwein’s results results. Let (X, ρ) be a metric space. By an
arc we mean a continuous function g : Δ → X, where Δ is an interval in R. An arc g : (0, 1] → X is called
semi-closed if

∀ ε > 0 ∃ δ > 0 such that ρ
(
g(s), g(t)

)
< ε for all s, t ∈ (0, δ). (1.17)

The arc g is called Lipschitz semi-closed if the mapping g is Lipschitz and satisfies (1.17).
The metric space (X, ρ) is called arcwise complete if for every semi-closed arc g : (0, 1] → X there

exists the limit lim
t↘0

g(t). If this holds for every Lipschitz semi-closed arc g : (0, 1] → X, then X is called

Lipschitz complete.
Some examples, [200, Examples 1.1, 1.2, and 2.3], show that the arcwise completeness is weaker than

the usual completeness even in an arcwise connected space, and so is Lipschitz completeness. It is obvious
from the definitions that Lipschitz completeness is weaker than arcwise completeness.
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A metric space (X, ρ) is called locally arcwise connected (locally Lipschitz connected) if there exists
δ > 0 such that any pair x0, x1 of points in X with ρ(x0, x1) ≤ δ can be linked by an arc (respectively,
by a Lipschitz arc).

Theorem 1.22 ([200, Theorems 3.1 and 3.2]). Let (X, ρ) be a metric space.
(1) If (X, ρ) has the fixed point property for contractions, then X is Lipschitz complete.
(2) If (X, ρ) is locally Lipschitz connected, then X has the fixed point property for contractions if and

only if it is Lipschitz complete.

One says that the metric space (X, ρ) has the strong contraction property if every mapping f : X → X
that is a contraction with respect to some metric ρ̄ on X, uniformly equivalent to ρ, has a fixed point.

Theorem 1.23 ([200, Theorems 4.1 and 4.4]). Let (X, ρ) be a metric space.
(1) If (X, ρ) has the strong contraction property, then X is arcwise complete.
(2) If (X, ρ) is locally arcwise connected, then X has the strong contraction property if and only if it

is arcwise complete.

Suzuki [177] found an extension of Banach contraction principle that implies completeness. He con-
sidered the function θ : [0, 1) → (1/2, 1]

θ(r) =

⎧
⎪⎨

⎪⎩

1 if 0 ≤ r ≤ (
√

5 − 1)/2,

(1 − r)r−2 if (
√

5 − 1)/2 ≤ r ≤ 2−1/2,

(1 + r)−1 if 2−1/2 ≤ r < 1
(1.18)

and proved the following fixed point result.

Theorem 1.24. Let (X, ρ) be a complete metric space and f : X → X.
(1) If there exists r ∈ [0, 1) such that

θ(r)ρ
(
x, f(x)

) ≤ d(x, y) =⇒ ρ
(
f(x), f(y)

) ≤ rρ(x, y), (1.19)

for all x, y ∈ X, then f has a fixed point x̄ in X and lim
n

fn(x) = x̄ for every point x ∈ X.

(2) Moreover, θ(r) is the best constant in (1.19) for which the result holds, in the sense that for every
r ∈ [0, 1), there exist a complete metric space (X, ρ) and a function f : X → X without fixed
points and such that

θ(r)ρ
(
x, f(x)

)
< ρ(x, y) =⇒ ρ

(
f(x), f(y)

) ≤ rρ(x, y), (1.20)

for all x, y ∈ X.

Extensions of the Suzuki fixed point theorem to partial metric spaces and to partially ordered metric
spaces were given by Paesano and Vetro [139].

The converse result is the following one.

Theorem 1.25 ([177, Corollary 1]). For a metric space (X, ρ), the following are equivalent.
(1) The space (X, ρ) is complete.
(2) There exists r ∈ (0, 1) such that every mapping f : X → X satisfying

1
10000

ρ
(
x, f(x)

) ≤ ρ(x, y) =⇒ ρ
(
f(x), f(y)

) ≤ rρ(x, y), (1.21)

for all x, y ∈ X, has a fixed point.

It is clear that the function θ(r) given by (1.18) satisfies the equality lim
r↗1

θ(r) = 1/2. The critical

case of functions acting on a subset X of a Banach space E satisfying the condition
1
2
‖x − f(x)‖ ≤ ‖x − y‖ =⇒ ‖f(x) − f(y)‖ ≤ ‖x − y‖, (1.22)
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for all x, y ∈ X was examined by Suzuki [176]. Condition (1.22) was called condition (C) and the
functions satisfying this condition are called generalized nonexpansive. It is clear that every nonexpansive
mapping satisfies (1.22), but there are discontinuous functions satisfying (1.22), so that the class of
generalized nonexpansive mappings is strictly larger than that of nonexpansive ones. The term generalized
nonexpansive is justified by the fact that the generalized nonexpansive mappings share with nonexpansive
mappings several properties concerning fixed points; in some Banach spaces E they have fixed points on
every weakly compact convex subset of E, and for every closed bounded convex subset X of E and every
generalized nonexpansive mapping f on X there exists an almost fixed point sequence, i.e., a sequence
(xn) in X such that ‖xn − f(xn)‖ → 0 as n → ∞ (see [176]). Also a generalized nonexpansive mapping f
is quasi-nonexpansive, in the sense that ‖f(x)−y‖ ≤ ‖x−y‖ for all x ∈ X and y ∈ Fix(f) (the set of fixed
points of f). It is known that every nonexpansive mapping having a fixed point is quasi-nonexpansive
(for fixed points of nonexpansive mappings and other fixed point results see [60,101]).

For further results and extensions, see [47–49,56,117,118].
Amato [11–13] proposed another approach to study the connections between fixed points and com-

pleteness in metric spaces. For a metric space (E, d) he considers a pair (Y, Ψ), where Y is a subset of
X and Ψ is a class of mappings on Y . The pair (Y, Ψ) is said to be a completion class for E if Ψ/ρ
is a completion of (E, d), where ρ is a semimetric on Ψ (defined in a concrete manner) and Ψ/ρ is the
quotient space with respect to the equivalence relation

f ≡ g ⇐⇒ ρ(f, g) = 0.

Among other results, he proves that if E is an infinite dimensional normed space and K is a compact
subset of E, then it is possible to take Y = E \ K and Ψ the class of all compact contractions of Y .

We mention also the following characterization of completeness in terms of fixed points of set-valued
mappings. For a metric space (X, ρ) denote by Pcl(X) the family of all nonempty closed subsets of X.

For a mapping F : X → Pcl(X) consider the following two properties:
(J1) F

(
F (x)

) ⊂ F (x) for every x ∈ X;
(J2) ∀x ∈ X ∀ ε > 0 ∃y ∈ F (x) with diamF (y) < ε.
For F : X → 2X , a point x̄ ∈ X is called
• a fixed point of F if x̄ ∈ F (x̄);
• a stationary point of F if F (x̄) = {x̄}.

Theorem 1.26 ([82, Corollary 1]). For any metric space (X, ρ), the following conditions are equivalent.
(1) The space (X, ρ) is complete.
(2) Every set-valued mapping F : X → Pcl(X) satisfying (J1) and (J2) has a fixed point.
(3) Every set-valued mapping F : X → Pcl(X) satisfying (J1) and (J2) has a stationary point.

Characterizations of the completeness of a metric space in terms of the existence of fixed points for
various classes of set-valued mappings acting on them were done by Jiang [86] and Liu [116].

We present the results from Jiang [86]. Let (X, ρ) be a metric space. For a bounded subset Y of X
denote by α(Y ) the Kuratowski measure of noncompactness of the set Y defined by

α(Y ) := inf{ε > 0: Y can be covered by the union of a finite family

of subsets of X, each of diameter ≤ ε}. (1.23)

For a set-valued mapping F : X → Pcl(X) one considers the following conditions:
(a) F

(
F (x)

) ⊂ F (x) for every x ∈ X;
(b) there exists a sequence (xn) in X such that xn+1 ∈ F (xn) for all n ∈ N and lim

n
diam

(
F (xn)

)
= 0;

(c) there exists a sequence (xn) in X such that xn+1 ∈ F (xn) for all n ∈ N and lim
n

α
(
F (xn)

)
= 0;

(d) lim ρ(xn, xn+1) = 0 for each sequence (xn) in X such that xn+1 ∈ F (xn) for all n ∈ N.
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Remark 1.27. Condition (a) is identical to (J1) and it is easy to check that (J2) implies (b). Condition (d)
is condition (iv) from Theorem 2.12.

One considers also the following classes of set-valued mappings F : X → Pcl(X):

AB(X) := {F : F satisfies (a) and (b)};
AC(X) := {F : F satisfies (a) and (c)};
AD(X) := {F : F satisfies (a) and (d)}.

Theorem 1.28 (Jiang [86, Theorems 3.1 and 3.2]). For any metric space (X, ρ), the following conditions
are equivalent.

(1) The metric space (X, ρ) is complete.
(2) Every F in AB(X) has a fixed point.
(3) Every F in AC(X) has a fixed point.
(4) Every F in AD(X) has a fixed point.
(5) Every F in AB(X) has a stationary point.
(6) Every F in AD(X) has a stationary point.

2. Ekeland’s Variational Principle and Completeness

This section is concerned with Ekeland’s variational principle in metric and in quasi-metric spaces
and its relations to the completeness of these spaces.

2.1. The Case of Metric Spaces. The general form of Ekeland’s variational principle is the following.

Theorem 2.1 (Ekeland’s variational principle). Let (X, ρ) be a complete metric space and
f : X → R ∪ {+∞} be a lower semicontinuous (lsc) proper function bounded from below. Let ε > 0
and xε ∈ X be such that

f(xε) ≤ inf f(X) + ε. (2.1)
Then given λ > 0 there exists z = zε,λ ∈ X such that

(a) f(z) +
ε

λ
ρ(z, xε) ≤ f(xε);

(b) ρ(z, xε) ≤ λ;

(c) f(z) < f(x) +
ε

λ
ρ(z, x) for all x ∈ X, x �= z.

An important consequence is obtained by taking λ =
√

ε in Theorem 2.1.

Corollary 2.2. Under the hypotheses of Theorem 2.1, for every ε > 0 there exists yε ∈ X such that

(a) f(yε) +
√

ερ(yε, xε) ≤ f(xε);

(b) ρ(yε, xε) ≤
√

ε;

(c) f(yε) < f(x) +
√

ερ(yε, x) for all x ∈ X, x �= yε.

Taking λ = 1 in Theorem 2.1, one obtains the following form of the Ekeland’s variational principle,
known as the weak form of the Ekeland’s variational principle.

Corollary 2.3 (Ekeland’s variational principle — weak form). Let (X, ρ) be a complete metric space and
f : X → R ∪ {+∞} an lsc proper function bounded from below. Then for every ε > 0 there exists an
element yε ∈ X such that

f(yε) ≤ inf f(X) + ε (2.2)
and

f(yε) < f(y) + ερ(y, yε) for all y ∈ X \ {yε}. (2.3)
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Note that the validity of Ekeland’s variational principle (in its weak form) implies the completeness
of the metric space X. This was discovered by Weston [196] in 1977 and rediscovered by Sullivan [170] in
1981 (see also the survey [171]). More precisely, the following result holds.

Proposition 2.4. Let (X, ρ) be a metric space. Then X is complete if and only if for every lsc proper
function f : X → R ∪ {∞} bounded from below and ε > 0 there exists yε ∈ X such that the conclusions
(2.2) and (2.3) of Corollary 2.3 hold.

Proof. If X is complete, one appeals to Corollary 2.3 to conclude.
The proof of the converse is simple. For a Cauchy sequence (xn) in X, the inequality

|ρ(x, xn) − ρ(x, xn+k)| ≤ ρ(xn, xn+k) ,

shows that
(
ρ(x, xn)

)
is a Cauchy sequence in R for every x ∈ X.

Consequently, the function f : X → [0,∞) given by f(x) = lim
n→∞ ρ(xn, x), x ∈ X, is well defined. The

inequalities |ρ(xn, x) − ρ(xn, x′)| ≤ ρ(x, x′), n ∈ N, yield for n → ∞, |f(x) − f(x′)| ≤ ρ(x, x′), showing
that f is continuous. For every ε > 0 there exists n0 such that ρ(xn, xn+k) < ε, for all n ≥ n0 and k ∈ N.
Letting k → ∞, one obtains that f(xn) ≤ ε for all n ≥ n0. Consequently, lim

n→∞ f(xn) = 0, implying

inf f(X) = 0. Let 0 < ε < 1. By the hypothesis, there exists y ∈ X such that

f(y) ≤ f(x) + ερ(x, y), (2.4)

for every x ∈ X. Putting x = xn in (2.4) and letting n → ∞, one obtains f(y) ≤ εf(y), implying
f(y) = 0, which is equivalent to lim

n→∞ ρ(xn, y) = 0, i.e., (xn) converges to y.

Remark 2.5. The proof of Proposition 2.4 shows that it is sufficient to suppose that the conclusions of
the weak form of Ekeland’s variational principle hold only for Lipschitz (even nonexpansive) functions
f : X → R.

Ekeland’s variational principle is equivalent to many important fixed point and geometric results (the
drop property, Caristi’s fixed point theorem, the flower petal theorem, etc., see [144]). We mention here
only Caristi’s fixed point theorems — for both single-valued and set-valued mappings.

Theorem 2.6 (Caristi–Kirk fixed point theorem). Let (X, ρ) be a complete metric space and ϕ : X → R

an lsc function bounded from below. If the mapping f : X → X satisfies the condition

ρ
(
x, f(x)

) ≤ ϕ(x) − ϕ
(
f(x)

)
, x ∈ X, (2.5)

then f has a fixed point in X.

Another consequence of Ekeland’s variational principle is a set-valued version of Caristi’s fixed point
theorem.

Theorem 2.7. Let (X, ρ) be a complete metric space, ϕ : X → R ∪ {+∞} be an lsc function bounded
from below, and F : X ⇒ X be a set-valued mapping. If the mapping F satisfies the condition

∀x ∈ X ∀ y ∈ F (x) ρ(x, y) ≤ ϕ(x) − ϕ(y) (2.6)

then F has a fixed point, i.e., there exists x0 ∈ X such that x0 ∈ F (x0).

It follows that the validity of Caristi’s fixed point theorem also implies the completeness of the
underlying metric space.

Corollary 2.8. Let (X, ρ) be a complete metric space. If every function f : X → X satisfying the hy-
potheses of Caristi’s fixed point theorem for some lsc function ϕ : X → R has a fixed point in X, then the
metric space X is complete.

Remark 2.9. Replacing in both Theorems 2.6 and 2.7 and in Corollary 2.8 the function ϕ by ϕ−inf ϕ(X),
one can consider, without restricting the generality, that the function ϕ is lsc and takes values in R+.
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Remark 2.10. Suzuki [181] proved that some forms of the strong Ekeland’s variational principle, as
proved by Georgiev [57], in a Banach space X, imply the reflexivity of X. In the case of a metric space
X, one obtains the compactness of every bounded closed subset of X (such a metric space X is called
boundedly compact).

A characterization of completeness of a metric space in terms of the existence of weak sharp minima
of proper lsc functions bounded from below defined on it was done by Huang [71].

2.2. Other Principles. In this section, we shall present some results equivalent to Ekeland’s variational
principle. The first one was proved by Takahashi [184] (see also [87] and [186, Theorem 2.1.1]).

Theorem 2.11 (Takahashi principle). Let (X, ρ) be a complete metric space and f : X → R ∪ {∞} be
a proper lsc function bounded from below. If for every x ∈ X with inf f(X) < f(x) there exists yx ∈ X\{x}
such that

f(yx) + ρ(x, yx) ≤ f(x), (2.7)

then there exists x0 ∈ X such that f(x0) = inf f(X).

Another result, also equivalent to Ekeland’s variational principle, was proved by Dancs, Hegedűs, and
Medvegyev [43].

Theorem 2.12. Let (X, ρ) be a complete metric space and F : X ⇒ X be a set-valued function satisfying
the following conditions:

(i) F (x) is closed for every x ∈ X;
(ii) x ∈ F (x) for every x ∈ X;
(iii) x2 ∈ F (x1) =⇒ F (x2) ⊂ F (x1) for all x1, x2 ∈ X;
(iv) lim

n
ρ(xn, xn+1) = 0 for every sequence (xn) in X such that xn+1 ∈ F (xn) for all n ∈ N.

Then there exists x0 ∈ X such that F (x0) = {x0}. Moreover, for every x̄ ∈ X, there exists such a point
in F (x̄).

This result admits an equivalent formulation in terms of an order on X.

Theorem 2.13. Let (X, ρ) be a complete metric space and � a continuous partial ordering on X. If
lim
n

ρ(xn, xn+1) = 0 for every increasing sequence x1 � x2 � . . . in X, then there is a maximal element

in X. In fact, for every x̄ ∈ X there exists a maximal element in the set {x ∈ X : x̄ � x}.
Remark 2.14. If F : X ⇒ X is a set-valued mapping, then for every x0 ∈ X, a sequence (xn) satisfying
xn ∈ F (xn−1), n ∈ N, is called a generalized Picard sequence. For the properties of set-valued Picard
operators, defined in terms of the convergence of generalized Picard sequences, see the surveys [146,147].

An order � on a metric space is said to be closed if xn � yn, for all n ∈ N, implies lim
n

xn � lim
n

yn,

provided both limits exist. This is equivalent to the fact that the graph of �, Graph(�) := {(x, y) ∈
X × X : x � y} is closed in X × X with respect to the product topology.

Remark 2.15. As each of these results in a metric space (X, ρ) is equivalent to Ekeland’s variational
principle, it follows that the validity of each of them implies the completeness of the underlying metric
space (X, ρ). In fact, the converse completeness property is mentioned in [43, Theorem 3.3].

2.3. Ekeland’s Variational Principle in Quasi-Metric Spaces. This subsection is concerned with
Ekeland’s variational principle and Caristi’s fixed point theorem in the context of quasi-metric spaces.

Quasi-metric spaces. We shall briefly present the fundamental properties of quasi-metric spaces. Details
and references can be found in [41].
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Definition 2.16. A quasi-semimetric on an arbitrary set X is a mapping ρ : X × X → [0;∞) satisfying
the following conditions:

(QM1) ρ(x, y) ≥ 0, ρ(x, x) = 0,

(QM2) ρ(x, z) ≤ ρ(x, y) + ρ(y, z),

for all x, y, z ∈ X. If, further,

(QM3) ρ(x, y) = ρ(y, x) = 0 =⇒ x = y,

for all x, y ∈ X, then ρ is called a quasi-metric. The pair (X, ρ) is called a quasi-semimetric space,
respectively, a quasi-metric space. The conjugate of the quasi-semimetric ρ is the quasi-semimetric
ρ̄(x, y) = ρ(y, x), x, y ∈ X. The mapping ρs(x, y) = max{ρ(x, y), ρ̄(x, y)}, x, y ∈ X, is a semimetric
on X that is a metric if and only if ρ is a quasi-metric.

If (X, ρ) is a quasi-semimetric space, then for x ∈ X and r > 0 we define the balls in X by the
formulas

Bρ(x, r) = {y ∈ X : ρ(x, y) < r} (the open ball),

Bρ[x, r] = {y ∈ X : ρ(x, y) ≤ r} (the closed ball).

The topology τρ of a quasi-semimetric space (X, ρ) can be defined starting from the family Vρ(x) of
neighborhoods of an arbitrary point x ∈ X:

V ∈ Vρ(x) ⇐⇒ ∃ r > 0 such that Bρ(x, r) ⊂ V

⇐⇒ ∃ r′ > 0 such that Bρ[x, r′] ⊂ V.

The convergence of a sequence (xn) to x with respect to τρ, called ρ-convergence and denoted by
xn

ρ−→ x, can be characterized in the following way:

xn
ρ−→ x ⇐⇒ ρ(x, xn) → 0. (2.8)

Also
xn

ρ̄−→ x ⇐⇒ ρ̄(x, xn) → 0 ⇐⇒ ρ(xn, x) → 0. (2.9)

As a space equipped with two topologies, τρ and τρ̄, a quasi-metric space can be viewed as a bitopo-
logical space in the sense of Kelly [95]. The problem of quasi-metrizability of topologies is discussed
in [107].

An important example of quasi-metric space is the following.

Example 2.17. On X = R let q(x, y) = (y − x)+, where α+ stands for the positive part of a real
number α. Then q̄(x, y) = (x = y)+ and qs(x, y) = |y − x|. The balls are given by

Bq(x, r) = (−∞, x + r) and Bq̄(x, r) = (x − r,∞).

The following topological properties are true for quasi-semimetric spaces.

Proposition 2.18 (see [41]). If (X, ρ) is a quasi-semimetric space, then
(1) the ball Bρ(x, r) is τρ-open and the ball Bρ[x, r] is τρ̄-closed. The ball Bρ[x, r] need not be τρ-closed ;
(2) if ρ is a quasi-metric, then the topology τρ is T0, but not necessarily T1 (and so nor T2 as in the

case of metric spaces). The topology τρ is T1 if and only if ρ(x, y) > 0 whenever x �= y;
(3) for every fixed x ∈ X, the mapping ρ(x, ·) : X → (R, | · |) is τρ-usc and τρ̄-lsc. For every fixed

y ∈ X, the mapping ρ(·, y) : X → (R, | · |) is τρ-lsc and τρ̄-usc;
(4) if the mapping ρ(x, ·) : X → (R, | · |) is τρ-continuous for every x ∈ X, then the topology τρ

is regular. If ρ(x, ·) : X → (R, | · |) is τρ̄-continuous for every x ∈ X, then the topology τρ̄ is
semi-metrizable.
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Completeness in quasi-metric spaces. The lack of symmetry in the definition of quasi-metric and quasi-
uniform spaces causes a lot of trouble, mainly concerning completeness, compactness, and total bounded-
ness in such spaces. There are a lot of completeness notions in quasi-metric and in quasi-uniform spaces,
all agreeing with the usual notion of completeness in the case of metric or uniform spaces, each of them
having its advantages and weaknesses.

As in what follows we shall work only with one of these notions; we shall present only it, referring
to [41] for other notions of Cauchy sequence and for their properties.

A sequence (xn) in (X, ρ) is called left ρ-K-Cauchy if for every ε > 0 there exists nε ∈ N such that

∀n, m with nε ≤ n < m ρ(xn, xm) < ε ⇐⇒ ∀n ≥ nε ∀ k ∈ N ρ(xn, xn+k) < ε.

Similarly, a sequence (xn) in (X, ρ) is called right ρ-K-Cauchy if for every ε > 0 there exists nε ∈ N such
that

∀n, m with nε ≤ n < m ρ(xm, xn) < ε ⇐⇒ ∀n ≥ nε ∀ k ∈ N ρ(xn+k, xn) < ε.

Remarks 2.19. Let (X, ρ) be a quasi-semimetric space.
(1) Obviously, a sequence is left ρ-K-Cauchy if and only if it is right ρ̄-K-Cauchy.
(2) Let (xn) be a left ρ-K-Cauchy sequence. If (xn) contains a subsequence that is τ(ρ)- (τ(ρ̄)-

) convergent to some x ∈ X, then the sequence (xn) is τ(ρ)- (respectively, τ(ρ̄)-) convergent
to x [41, P. 1.2.4].

(3) If a sequence (xn) in X satisfies
∞∑

n=1
ρ(xn, xn+1) < ∞ (

∞∑

n=1
ρ(xn+1, xn) < ∞), then it is left-

(right-) ρ-K-Cauchy.
(4) There are examples showing that a ρ-convergent sequence need not be left ρ-K-Cauchy, showing

that in the asymmetric case the situation is far more complicated than in the symmetric one
(see [41, Sec. 1.2]).

(5) If each convergent sequence in a regular quasi-metric space (X, ρ) admits a left K-Cauchy subse-
quence, then X is metrizable (see [41, P. 1.2.1]).

A quasi-metric space (X, ρ) is called left ρ-K-complete if every left ρ-K-Cauchy sequence is ρ-conver-
gent, with the corresponding definition of the right ρ-K-completeness. The quasi-metric space (X, ρ) is
called left (right) Smyth complete if every left (right) ρ-K-Cauchy sequence is ρs-convergent and bicom-
plete if the associated metric space (X, ρs) is complete.

Remark 2.20. In spite of the obvious fact that left ρ-K-Cauchy is equivalent to right ρ̄-K-Cauchy, left
ρ-K- and right ρ̄-K-completeness do not agree, due to the fact that right ρ̄-completeness means that
every left ρ-Cauchy sequence converges in (X, ρ̄), while left ρ-completeness means the convergence of
such sequences in the space (X, ρ). Also, it is easy to check that Smyth completeness (left or right)
of a quasi-metric space (X, ρ) implies the completeness of the associated metric space (X, ρs) (i.e., the
bicompleteness of the quasi-metric space (X, ρ)).

Example 2.21. The spaces (R, q) and (R, q̄) from Example 2.17 are not right q-K-complete. The sequence
xn = n, n ∈ N, is right q-K-Cauchy and not convergent in (R, q), and the sequence yn = −n, n ∈ N, is
right q̄-K-Cauchy and not convergent in (R, q̄).

Indeed, q(xn+k, xn) = (n − n − k)+ = 0 for all n, k ∈ N. For x ∈ R let nx ∈ N be such that nx > x.
Then q(x, xn) = n − x ≥ nx − x > 0 for all n ≥ nx. The case of the space (R, q̄) and of the sequence
yn = −n, n ∈ N, can be treated similarly.

The following version of Ekeland’s variational principle in quasi-metric spaces was proved in [39].

Theorem 2.22 (Ekeland’s variational principle). Suppose that (X, ρ) is a T1 quasi-metric space and
f : X → R ∪ {∞} is a proper function bounded below. For given ε > 0, let xε ∈ X be such that

f(xε) ≤ inf f(X) + ε. (2.10)

(1) If (X, ρ) is right ρ-K-complete and f is ρ-lsc, then for every λ > 0 there exists z = zε,λ ∈ X such
that
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(a) f(z) + (ε/λ)ρ(z, xε) ≤ f(xε);
(b) ρ(z, xε) ≤ λ;
(c) f(z) < f(x) + (ε/λ)ρ(x, z) for all x ∈ X \ {z}.

(2) If (X, ρ) is right ρ̄-K-complete and f is ρ̄-lsc, then for every λ > 0 there exists z = zε,λ ∈ X such
that
(a′) f(z) + (ε/λ)ρ(xε, z) ≤ f(xε);
(b′) ρ(xε, z) ≤ λ;
(c′) f(z) < f(x) + (ε/λ)ρ(z, x) for all x ∈ X \ {z}.

Again, taking λ = 1 in Theorem 2.22, one obtains the weak form of Ekeland’s variational principle in
quasi-metric spaces.

Corollary 2.23 (Ekeland’s variational principle — weak form). Suppose that (X, ρ) is a T1 quasi-metric
space and f : X → R ∪ {∞} is a bounded below proper function.

(1) If X is right ρ-K-complete and f is ρ-lsc, then for every ε > 0 there exists an element yε ∈ X
such that
(i) f(yε) ≤ inf f(X) + ε,
(ii) ∀x ∈ X \ {yε} f(yε) < f(x) + ερ(x, yε).

(2) If X is right ρ̄-K-complete and f is ρ̄-lsc, then for every ε > 0 there exists an element yε ∈ X
such that
(i) f(yε) ≤ inf f(X) + ε,
(ii) ∀x ∈ X \ {yε} f(yε) < f(x) + ερ(yε, x).

Caristi’s fixed point theorem version in quasi-metric spaces is the following.

Theorem 2.24 (Caristi–Kirk fixed point theorem [39]). Let (X, ρ) be a T1 quasi-metric space, f : X → X,
and ϕ : X → R.

(1) If X is right ρ-K-complete, ϕ is bounded below and ρ-lsc, and the mapping f satisfies the condition

ρ(f(x), x) ≤ ϕ(x) − ϕ
(
f(x)

)
, x ∈ X, (2.11)

then f has a fixed point in X.
(2) If X is right ρ̄-K-complete, ϕ is bounded below and ρ̄-lsc, and the mapping f satisfies the condition

ρ
(
x, f(x)

) ≤ ϕ(x) − ϕ
(
f(x)

)
, x ∈ X, (2.12)

then f has a fixed point in X.

In this case, we have also a set-valued version.

Theorem 2.25 (Caristi–Kirk fixed point theorem — set-valued version [39]). Let (X, ρ) be a T1 quasi-
metric space, F : X ⇒ X be a set-valued mapping such that F (x) �= ∅ for every x ∈ X, and ϕ : X → R.

(1) If X is right ρ-K-complete, ϕ is bounded below and ρ-lsc, and the mapping F satisfies the condition

∀x ∈ X ∀ y ∈ F (x) ρ(y, x) ≤ ϕ(x) − ϕ(y), (2.13)

then F has a fixed point in X.
(2) If X is right ρ̄-K-complete, ϕ is bounded below and ρ̄-lsc, and the mapping F satisfies the condition

∀x ∈ X ∀ y ∈ F (x) ρ(x, y) ≤ ϕ(x) − ϕ(y), (2.14)

then F has a fixed point in X.

As in the symmetric case, the weak form of Ekeland’s variational principle is equivalent to Caristi’s
fixed point theorem [39].
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Proposition 2.26. Let (X, ρ) be a T1 quasi-metric space. Consider the following assertions.
(wEk) For any ρ-closed subset Y of X, for every bounded below ρ-lsc proper function f : Y → R ∪ {∞},

and for every ε > 0, there exists xε ∈ Y such that

∀ y ∈ Y \ {xε} f(xε) < f(y) + ερ(y, xε). (2.15)

(C) For every ρ-closed subset Y of X and for any ρ-lsc function ϕ : Y → R, any function g : Y → Y
satisfying (2.11) on Y has a fixed point.

Then (wEk) ⇐⇒ (C).

As we have seen, in the case of a metric space X, the validity of the weak form of Ekeland’s variational
principle implies the completeness of X (Proposition 2.4). The following proposition contains some partial
converse results in the quasi-metric case.

Proposition 2.27 ([39]). Let (X, ρ) be a T1 quasi-metric space.
(1) If for every ρ-lsc function f : X → R and for every ε > 0 there exists yε ∈ X such that

∀x ∈ X f(yε) ≤ f(x) + ερ(yε, x), (2.16)

then the quasi-metric space X is left ρ-K-complete.
(2) If for every ρ̄-lsc function f : X → R and for every ε > 0 there exists yε ∈ X such that

∀x ∈ X f(yε) ≤ f(x) + ερ(x, yε), (2.17)

then the quasi-metric space X is left ρ̄-K-complete.

Proof. The proof is similar to that of Proposition 2.4, accounting for the fact that a quasi-metric has
weaker continuity properties than a metric (see Proposition 2.18).

To prove (1), suppose that (xn) is a left ρ-K-Cauchy sequence in X. We show first that, for every
n ∈ N, the sequence

(
ρ(x, xn)

)
is bounded. Indeed, if n1 ∈ N is such that ρ(xn1 , xn1+k) ≤ 1 for all k ∈ N,

then
ρ(x, xn1+k) ≤ ρ(x, xn1) + ρ(xn1 , xn1+k) ≤ ρ(x, xn1 + 1,

for all k ∈ N, proving the boundedness of the sequence
(
ρ(x, xn)

)
. Consequently, the function

f : X → [0,∞) given by
f(x) = lim sup

n→∞
ρ(x, xn), x ∈ X,

is well defined.
For x, x′ ∈ X,

ρ(x, xn) ≤ ρ(x, x′) + ρ(x′, xn),
for all n ∈ N. Passing to lim sup in both sides of this inequality, one obtains

f(x′) ≥ f(x) − ρ(x, x′).

Then for every ε > 0, ρ(x, x′) < ε implies f(x′) > f(x) − ε, proving that f is ρ-lsc at every x ∈ X.
Similarly,

ρ(x′, xn) ≤ ρ(x′, x) + ρ(x, xn), n ∈ N,

implies
f(x′) ≤ f(x) + ρ(x′, x),

from which it follows that the function f is ρ̄-usc at every x.
We show now that

lim
n→∞ f(xn) = 0. (2.18)

Indeed, for every ε > 0 there exists nε ∈ N such that

∀n ≥ nε ∀ k ∈ N ρ(xn, xn+k) < ε,
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implying
∀n ≥ nε 0 ≤ f(xn) = lim sup

k
ρ(xn, xn+k) ≤ ε,

i.e., lim
n

f(xn) = 0.

Now let y ∈ X satisfy (2.16) for ε = 1/2. Taking x = xn, it follows that

∀n ∈ N f(y) ≤ f(xn) +
1
2

ρ(y, xn).

Passing to lim sup and taking into account (2.18) one obtains

f(y) =
1
2

f(y),

which implies f(y) = 0. Since

f(y) = 0 ⇐⇒ lim sup
n

ρ(y, xn) = 0 ⇐⇒ lim
n

ρ(y, xn) = 0,

it follows that the sequence (xn) is ρ-convergent to y, proving the left ρ-K-completeness of the quasi-metric
space X.

The proof of (2) is similar, working with the function g : X → [0,∞) given by

g(x) = lim sup
n

ρ(xn, x), x ∈ X,

which is ρ̄-lsc and ρ-usc.

Remark 2.28. Note that Proposition 2.27 does not contain a proper converse (in the sense of complete-
ness) of the weak Ekeland Principle. We have in fact a kind of “cross” converse, as can be seen from the
following explanations.

From Corollary 2.23.2 it follows that if the quasi-metric space (X, ρ) is right ρ̄-K-complete, then for
every ρ̄-lsc function f : X → R and every ε > 0, there exists a point yε ∈ X satisfying (2.16).

On the other hand, the fulfillment of (2.16) for any ρ-lsc function implies the left ρ-K-completeness
of the quasi-metric space (X, ρ).

Of course, in the metric case, both of these conditions reduce to the completeness of X.
Taking into account the fact that a sequence (xn) in X is right ρ̄-K-Cauchy if and only if it is left

ρ-K-Cauchy, one obtains the following completeness results:

(X, ρ) is right ρ̄-K-complete ⇐⇒ ∀ (xn) a left ρ-K-Cauchy sequence in X ∃x ∈ X such that xn
ρ̄−→ x,

while

(X, ρ) is left ρ-K-complete ⇐⇒ ∀ (xn) a left ρ-K-Cauchy sequence in X ∃x ∈ X such that xn
ρ−→ x.

The right converse was given by Karapinar and Romaguera [89]. To do this, they need to slightly
modify the notion of lsc function.

Let (X, ρ) be a quasi-metric space. A proper function f : X → R ∪ {∞}, is called nearly ρ-lsc at
x ∈ X if f(x) ≤ lim infn f(xn) for every sequence (xn) of distinct points in X that is ρ-convergent to x.

It is clear that a ρ-lsc function is nearly ρ-lsc and if the topology τρ is T1 (equivalent to ρ(x, y) > 0
for all distinct points x, y ∈ X), then the converse is also true. The following simple example shows that
these notions are different in T0 quasi-metric spaces.

Example 2.29. Let X = {0, 1}, ρ(0, 0) = ρ(0, 1) = ρ(1, 1) = 0 and ρ(1, 0) = 1. Then every function
f : X → R ∪ {∞} is nearly ρ-lsc (there are no sequences formed of distinct points), but the function
f(0) = 1, f(1) = 0 is not ρ-lsc at x = 0.

Indeed, xn = 1 satisfies ρ(0, xn) = 0 → 0, f(xn) = 0, and f(0) = 1 > 0 = lim infn f(xn).

Theorem 2.30. For a quasi-semimetric space (X, ρ) the following conditions are equivalent.
(1) (X, ρ) is right K-sequentially complete.
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(2) For every self mapping T of X and every proper bounded below and nearly ρ-lsc function
ϕ : X → R ∪ {∞} satisfying the inequality

ρ(T (x), x) + ϕ
(
T (x)

) ≤ ϕ(x), (2.19)

for all x ∈ X, there exists z = zT,ϕ ∈ X such that ϕ(z) = ϕ
(
T (z)

)
.

(3) For every proper bounded below and nearly ρ-lsc function f : X → R ∪ {∞} and for every ε > 0
there exists yε ∈ X such that
(i) f(yε) ≤ inf f(X) + ε;
(ii) f(yε) < f(x) + ερ(x, yε) for all x ∈ X \ {yε};
(iii) f(yε) ≤ f(x) for all x ∈ {yε}.

Proof. We shall present only the proof of the implication (3) =⇒ (1).
We proceed by contradiction. Suppose that the space (X, ρ) is not right K-complete. Then there

exists a right K-Cauchy sequence (xn) in X that has no limit. This implies that (xn) has no convergent
subsequences, see Remarks 2.19.

We shall distinguish two situations.
Suppose that

∃m ∀ k ≥ m ∃nk > k ρ(xnk
, xk) > 0. (2.20)

Then, for n1 = m there exists n2 > n1 such that ρ(xn2 , xn1) > 0. Taking k = n2, there follows the existence
of n3 > n2 such that ρ(xn3 , xn2) > 0. Continuing in this manner we obtain a sequence n1 < n2 < . . .
such that ρ(xnk+1

, xnk
) > 0 for all k ∈ N.

Passing to a further subsequence, if necessary, and relabeling, we can suppose that

0 < ρ(xn+1, xn) <
1

2n+1
, (2.21)

for all n ∈ N.
If (2.20) does not hold, then

∀m ∃ k ≥ m such that ∀n > k ρ(xn, xk) = 0. (2.22)

For m = 1 let k = n1 ≥ 1 be such that ρ(xn, xn1) = 0 for all n > n1. Now, for m = 1+n1 let n2 > n1

be such that ρ(xn, xn2) = 0 for all n > n2. It follows that ρ(xn2 , xn1) = 0.
Continuing in this manner we obtain a sequence n1 < n2 < . . . such that ρ(xnk+1

, xnk
) = 0 for all

k ∈ N.
Relabeling, if necessary, we can suppose that the sequence (xn) satisfies

ρ(xn+1, xn) = 0, (2.23)

for all n ∈ N.
Put

B := {xn : n ∈ N}
and define f : X → R by

f(x) =

{
1/2n−1 if x = xn for some n ∈ N,

2 for x ∈ X \ B.
(2.24)

The function f is nearly ρ-lsc. Indeed, let x ∈ X and (yn) be a sequence of distinct points in X
converging to x. If the set {n ∈ N : yn ∈ B} is infinite, then there exists natural numbers m1 < m2 < . . .
and n1 < n2 < . . . such that ymk

= xnk
, k ∈ N. But, this would imply that (xn) has a subsequence (xnk

)
convergent to x, in contradiction to the hypothesis. Consequently, (yn) must be eventually in X \B, and
so f(x) ≤ 2 = lim

n
f(yn).

For ε = 1 let y ∈ X satisfy the conditions (i)–(iii). Since

{x ∈ X : f(x) ≤ inf f(X) + 1} = {x ∈ X : f(x) ≤ 1} = B,

it follows that y = xm ∈ B for some m ∈ N.
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If (2.21) holds, then

f(xm+1) + ρ(xm+1, xm) <
1

2m
+

1
2m+1

=
3

2m+1
<

1
2m−1

= f(xm), (2.25)

showing that condition (ii) from (3) is not satisfied, i.e., (3) does not hold.
If (2.23) holds, then, by the triangle inequality,

ρ(xm+k, xm) ≤
k∑

i=1

ρ(xm+i, xm+i−1) = 0,

i.e. xn ∈ {xm} for all n ≥ m. By (iii),

f(xm) ≤ f(xn) =
1

2n−1
,

for all n ≥ m, implying f(xm) = 0, a value not taken by f .

Remark 2.31. In the proof of Theorem 2 in [89], the possibility that ρ(xn+1, xn) = 0 for all n ∈ N (when
one can not use xm+1 to obtain the contradiction from (2.25)) is not discussed. So the proof given above
fills in this gap.

Smyth completeness. We present now some results on Caristi’s FPT and Smyth completeness in quasi-
metric spaces obtained by Romaguera and Tirado [152].

Let (X, ρ) be a quasi-metric space, ϕ : X → [0,∞) and T : X → X such that

ρ(x, Tx) ≤ ϕ(x) − ϕ(Tx), (2.26)

for all x ∈ X.
The mapping T is called ρ̄-Caristi if ϕ is ρ̄-lsc and ρs-Caristi if ϕ is ρs-lsc.

Theorem 2.32 (Romaguera and Tirado [152]). Let (X, ρ) be a quasi-metric space.
(1) If (X, ρ) is right ρ̄-K-complete, then every ρ̄-Caristi map on X has a fixed point.
(2) If (X, ρ) is right ρ-K-complete, then every ρ-Caristi map on X has a fixed point.
(3) A quasi-metric space (X, ρ) is right ρ̄-Smyth complete if and only if every ρs-Caristi map has

a fixed point.

Remark 2.33. Some versions of Ekeland’s variational principle in asymmetric locally convex spaces were
proved in [40]. Other characterizations of completeness of quasi-metric spaces are given by Romaguera
and Valero [153].

Some results of Bao and Soubeyran. Inspired by the results of Dancs, Hegedűs, and Medvegyev [43] (see
Theorem 2.12), Bao, Cobzaş, and Soubeyran [25], Bao and Soubeyran [28], and Bao and Théra [29] proved
versions of Ekeland’s principle in quasi-semimetric spaces and obtained characterizations of completeness.
They consider a set-valued mapping attached to a function ϕ and λ > 0, as in the following proposition.

Proposition 2.34. Let (X, ρ) be a quasi-semimetric space, ϕ : X → R∪{+∞} be a proper function, and
Sλ : X ⇒ X the set-valued mapping defined by

Sλ(x) = {y ∈ X : λρ(x, y) ≤ ϕ(x) − ϕ(y)}. (2.27)

Then Sλ enjoys the following properties:
(i) (nonemptiness) x ∈ Sλ(x) for all x ∈ dom(ϕ);
(ii) (monotonicity) y ∈ Sλ(x) =⇒ ϕ(y) ≤ ϕ(x) and Sλ(y) ⊂ Sλ(x).

Recall that a generalized Picard sequence corresponding to a set-valued mapping F : X ⇒ X is
a sequence (xn) in X such that xn+1 ∈ F (xn) for all n.

Theorem 2.35. Let (X, ρ) be a quasi-semimetric space, and let ϕ : X → R ∪ {+∞} be proper. Given
x0 ∈ dom(f) and λ > 0, consider the set-valued mapping Sλ : X ⇒ X defined by (2.27). Assume that
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(C1) (boundedness from below) ϕ is bounded from below on Sλ(x0);
(C2) (nonempty intersection) for every generalized Picard sequence (xn)n∈N0 of Sλ (starting with x0)

such that ϕ(xn) > ϕ(xn+1) for all n ∈ N0, and
∞∑

n=0
ρ(xn, xn+1) < ∞, there exists y ∈ X such that

Sλ(y) ⊂ Sλ(xn) for all n ∈ N0, where N0 = N ∪ {0}.
Then, there is a generalized Picard sequence (xn)n∈N0 (i.e., xn+1 ∈ Sλ(xn) for all n ∈ N0) satisfying
∞∑

n=0
ρ(xn, xn+1) < ∞, ρ̄-convergent to some x̄ ∈ X such that for every ȳ ∈ Sλ(x̄) the following conditions

hold :

(i) λρ(x0, ȳ) ≤ ϕ(x0) − ϕ(ȳ);
(ii) ϕ(ȳ) < ϕ(x) + λρ(ȳ, x) for every x ∈ X \ Sλ(ȳ);
(iii) ρ(x̄, ȳ) = 0, ϕ(ȳ) = ϕ(x̄) and Sλ(ȳ) ⊂ {ȳ}ρ̄

.

Remark 2.36. It is clear that Theorem 2.35 implies

(ii′) ϕ(ȳ) < ϕ(x) + λρ(ȳ, x) for all x ∈ X \ {ȳ}ρ̄
;

(iii′) ϕ(ȳ) ≤ ϕ(x) for all x ∈ {ȳ}ρ̄
.

To obtain a characterization of completeness, one needs a weaker notion of lower semicontinuity.

Definition 2.37. A function ϕ : X → R ∪ {∞}, where (X, ρ) is a quasi-semimetric space, is called
strictly-decreasing-ρ-lsc if for every ρ-convergent sequence (xn) in X such that the sequence

(
ϕ(xn)

)
is

strictly decreasing, one has

ϕ(y) ≤ lim
n

ϕ(xn)

for every ρ-limit y of the sequence (xn). A sequence (xn) such that the sequence
(
ϕ(xn)

)
is strictly

decreasing is called strictly ϕ-decreasing.

Remark 2.38. In [25], it is shown, by an example, that this notion is strictly weaker than that of ρ-lsc, i.e.
there exists a function that is strictly decreasing ρ-lsc but not ρ-lsc. In fact, the everywhere discontinuous
function f(x) = 0 for x ∈ Q and f(x) = 1 for x ∈ R \ Q, defined on (R, | · |), is strictly decreasing lsc
(because there does not exist a sequence (xn) in R such that the sequence

(
ϕ(xn)

)
is strictly decreasing).

The function f is not lsc because f(x) = 1 > 0 = lim inf
x′→x

ϕ(x) for every x ∈ R \ Q. Also, it is not usc at
every x ∈ Q.

Remark 2.39. The notion of a function ϕ : X → R∪{∞} such that ϕ(x) ≤ lim
n

ϕ(xn) for every sequence

(xn) in X converging to x such that ϕ(xn+1) ≤ ϕ(xn) for all n ∈ N, appears also in [100] called lower
semicontinuity from above, in connection with Ekeland’s variational principle and Caristi’s fixed point
theorem.

Remark 2.40. In [25], the following sufficient condition for the fulfillment of condition (C2) from Theo-
rem 2.35 was given.

(1) Let (X, ρ) be a quasi-semimetric space and ϕ : X → R ∪ {+∞} be a proper function. If every

sequence (xn) in the space (X, ρ) such that ϕ(xn+1) < ϕ(xn+1), n ∈ N, and
∞∑

n+1
ρ(xn, xn+1) < ∞

is ρ̄-convergent to some x ∈ X, and the function ϕ is strictly-decreasing-ρ̄-lsc on dom ϕ, then
condition (C2) is satisfied.

We mention also the following results relating series completeness and completeness in quasi-metric
spaces.
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Proposition 2.41 ([25, Proposition 3.10]). Let (X, ρ) be a quasi-semimetric space.
(1) If a sequence (xn) in X satisfies

∞∑

n=1

ρ(xn, xn+1) < ∞,

then it is left ρ-K-Cauchy (or, equivalently, right ρ̄-K-Cauchy).
(2) The space X is left ρ-K-complete if and only if every sequence (xn) in X satisfying

∞∑

n=1

ρ(xn, xn+1) < ∞

is ρ-convergent to some x ∈ X.
(3) The space X is right ρ̄-K-complete if and only if every sequence (xn) in X satisfying

∞∑

n=1

ρ(xn, xn+1) < ∞

is ρ̄-convergent to some x ∈ X.

Proof (sketch). The assertion (1) follows from the triangle inequality and the Cauchy criterion of conver-

gence applied to the series
∞∑

n=1
ρ(xn, xn+1):

ρ(xn, xn+k) ≤
k−1∑

i=0

ρ(xn+i, xn+i+1) < ε.

Let us prove (2) and (3). If (xn) is left ρ-K-Cauchy, then there exist numbers n1 < n2 < . . . such

that ρ(xnk
, xnk+1

) < 1/2k, k ∈ N. Then
∞∑

k=1

ρ(xnk
, xnk+1

) < ∞ so that, by the hypothesis, there exists

x ∈ X with lim
k

ρ(x, xnk
) = 0 (lim

k
ρ̄(x, xnk

) = 0). By Remarks 2.19(2), lim
n

ρ(x, xn) = 0 (respectively,

lim
n

ρ̄(x, xn) = 0).

We will present now a characterization of completeness of a class of quasi-semimetric spaces (X, q)
such that every left ρ-K-Cauchy sequence {xn} in X satisfying the condition that for some n0 ∈ N,
q(xn0 , xn) = 0 for all n ≥ n0, is ρ̄-convergent. We denote this class by QMS0. A sequence {xn} that
satisfies the condition that for some n0 ∈ N, q(xn, xn+1) = 0 for all n ≥ n0 is left ρ-K-Cauchy and, by
the triangle inequality, q(xn0 , xn) = 0 for all n ≥ n0. Any quasimetric space (X, q) such that q(x, y) > 0
for all x, y ∈ X, x �= y, (i.e., a T1 quasimetric space) belongs to the class QMS0. Indeed, in this case
q(xn0 , xn) = 0 implies xn = xn0 for all n ≥ n0, so that {xn} is ρ̄-convergent to xn0 . We show by an
example that the completeness does not hold in arbitrary quasi-semimetric spaces.

Remark 2.42. Using this notion, the condition imposed to the quasi-semimetric space (X, ρ) in Theo-
rem 2.30 means that the conjugate space (X, ρ̄) belongs to the class QMS0.

We will present now a characterization of completeness of quasi-semimetric spaces in terms of Eke-
land’s variational principle (Theorem 2.35).

Theorem 2.43 (a characterization of completeness). For any quasi-semimetric space (X, ρ) the following
conditions are equivalent.

(1) The space X is right ρ̄-K-complete.
(2) For every proper, bounded from below, and strictly decreasing-ρ̄-lsc function ϕ : X → R ∪ {+∞}

and for any x0 ∈ dom(ϕ) there is x̄ ∈ X such that for every ȳ ∈ S1(x̄) one has
(i) ρ(x0, ȳ) ≤ ϕ(x0) − ϕ(ȳ);
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(ii) ϕ(ȳ) < ϕ(x) + ρ(ȳ, x) for all x ∈ X \ {ȳ}ρ̄
;

(iii) ϕ(ȳ) ≤ ϕ(x) for all x ∈ {ȳ}ρ̄
.

Proof. (1) =⇒ (2) This implication follows by Theorem 2.35, and Remarks 2.36 and 2.40.
The proof of the implication (2) =⇒ (1) is similar to that of the implication (3) =⇒ (1) in Theo-

rem 2.30, working with the conjugate metric ρ̄ instead of ρ.

The following example shows that the completeness could not hold if we suppose that only the
conditions (i) and (ii) from Theorem 2.43 hold.

Example 2.44. Let xn = −n, n ∈ N0, and X = {xn : n ∈ N0} with the metric q(xn, xm) = (xm −xn)+ =
(−m + n)+ = n − m if n > m and = 0 if n ≤ m (see Example 2.17). Then q(xn, xn+1) = 0 for all n ∈ N0

and the space X is not right q̄-K-complete (see Example 2.21). Let ϕ : X → [0,∞) be an arbitrary
function. For x̄ = x0,

ϕ(x̄) = ϕ(x0) ≤ ϕ(x0) = ϕ(x0) + q(x̄, x0).
Since q(x0, xn) = 0 for all n ∈ N0, the condition

ϕ(x0) < ϕ(xn) + q(x0, xn) for all n ∈ N0 with q(x0, xn) > 0

is trivially satisfied.

Remark 2.45. Bao and Soubeyran use the notions of forward and backward in a quasi-semimetric space
(X, ρ), where forward means with respect to ρ̄, while backward means with respect to ρ.

For instance, a sequence (xn) in X is
• forward convergent to x if ρ̄(x, xn) = ρ(xn, x) → 0, i.e., it is ρ̄-convergent to x;
• forward Cauchy if for every ε > 0 there exists nε ∈ N such that ρ(xn, xn+k) < ε, for all n ≥ nε

and all k ∈ N, i.e., if it is left ρ-K-Cauchy, or equivalently, right ρ̄-K-Cauchy;
• backward convergent to x if ρ(x, xn) → 0, i.e., it is ρ-convergent to x;
• backward Cauchy if for every ε > 0 there exists nε ∈ N such that ρ(xn+k, xn) < ε, for all n ≥ nε

and all k ∈ N, i.e., if it is right ρ-K-Cauchy, or equivalently, left ρ̄-K-Cauchy.
The space X is called forward-forward complete if every forward Cauchy sequence is forward conver-

gent, i.e., if it is right ρ̄-K-complete.
The backward notion of completeness is defined on an analogous way: the quasi-metric space (X, ρ)

is backward-backward complete if every backward Cauchy sequence is backward convergent, i.e., if it is
right ρ-K-complete. One can define also combined notions of completeness: backward-forward (meaning
left ρ̄-K-completeness) and forward-backward (meaning left ρ-K-completeness).

Bao, Soubeyran, and Mordukhovich applied systematically variational principles in quasi-metric
spaces to various domains of human knowledge, such as psychology in [26], capability of well being,
and rationality in [27], and group dynamics in [28].

3. Topology and Order

In this section, we shall discuss some results relating topology and order.

3.1. Partially Ordered Sets. Let X be a nonempty set. A preorder on X is a reflexive and transitive
relation ≤⊂ X2. The pair (X,≤) is called a partially preordered set. An antisymmetric preorder is called
an order on X. The pair (X,≤) is called a partially ordered set, or a poset in short.

Let (X,≤) be a partially preordered set. For a nonempty subset A of a partially preordered set (X,≤)
one puts

↑A := {y ∈ X : ∃x ∈ A x ≤ y}, ↓A := {y ∈ X : ∃x ∈ A y ≤ x}. (3.1)
In particular, for x ∈ X,

↑x:= ↑{x} ↓x =↓{x}.
The set A is called upward closed if A =↑A and downward closed if A =↓A.
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A nonempty subset A of X is called totally ordered (or a chain) if any two elements of A are compa-
rable.

A nonempty subset D of X is called directed if for any two elements of x, y ∈ A there exists z ∈ A
such that x ≤ z and y ≤ z.

Let A ⊂ X. Then
• an upper bound for A is an element z ∈ X such that x ≤ z for all x ∈ A;
• if z is an upper bound for A and z ∈ A, then z is the greatest element of A;
• the set A is called upper-bounded if it has at least one upper bound;
• the least upper bound of A is called the supremum of A, denoted by supA (or by

∨
A);

• in the case of two elements x, y ∈ X, one uses the notation x ∨ y :=
∨{x, y};

• the greatest element of X is called unity and is denoted by � (or by 1); the least element of X
is called zero and is denoted by ⊥ (or by 0).

One defines dually lower bounds, infima, etc. (we have used yet the notion of least element). The
infimum is denoted by inf A (or by

∧
A). Also x ∧ y :=

∧{x, y}.
Definition 3.1. A poset (X,≤) is called

• an upper semi-lattice if every two elements x, y ∈ X have a sup, x ∨ y;
• a lower semi-lattice if every two elements x, y ∈ X have an inf, x ∧ y.
• a lattice if (X,≤) is an upper semi-lattice and a lower semi-lattice, i.e., for every x, y ∈ X there

exist x ∧ y and x ∨ y.
A lattice (X,≤) is called complete if for every subset A of X there exist sup A and inf A.
A poset (X,≤) is called directed (chain, boundedly) complete if every directed (totally ordered, upper

bounded) subset of X has supremum. A directed complete partially ordered set is denoted in short by
dcpo.

Remarks 3.2. Let (X,≤) be a poset.
(1) If X has a greatest element �, then � = sup X. If X has a least element ⊥, then ⊥ = inf ∅.
(2) In the definition of a complete lattice (X,≤), it suffices to demand that every subset of X has

a supremum, because X has a least element ⊥ = sup ∅ and the infimum of a subset A of X is
the supremum of the set LA of all lower bounds of A (this set is nonempty because ⊥ ∈ A).

Mappings between partially preordered sets. Let (X,≤) and (Y,�) be two partially preordered sets. A map-
ping f : X → Y is called

• increasing if ∀x, y ∈ X x ≤ y ⇐⇒ f(x) � f(y);
• decreasing if ∀x, y ∈ X x ≤ y ⇐⇒ f(y) � f(x);
• monotonic if it is increasing or decreasing.

One says that f preserves
• suprema if and only if for every A ⊂ X, the existence of sup A implies the existence of sup f(A)

and the equality sup f(A) = f(sup A);
• finite (directed, chain) suprema if and only if the above condition holds for every finite (respec-

tively, directed, totally ordered) subset A of X.
Similar definitions can be given for infima.

Remark 3.3. A mapping preserving finite suprema is increasing.

Indeed, if x ≤ y in X, then y = sup{x, y}, and so f(y) = sup{f(x), f(y)}, implying f(x) � f(y).

3.2. Order Relations in Topological Spaces. The specialization order of a topological space (X, τ)
is the partial order defined by

x ≤τ y ⇐⇒ x ∈ {y}, (3.2)
i.e., y belongs to every open set containing x.
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Proposition 3.4. Let (X, τ) be a topological space. The relation defined by (3.2) is a preorder. It is an
order if and only if X is T0. If X is T1, then ≤τ is the equality relation in X.

Proof. Since x ∈ {x}, it follows that x ≤τ x.
The transitivity follows from the following implication:

x ∈ {y} and {y} ⊂ {z} =⇒ x ∈ {y} ⊂ {z} = {z},
i.e.,

x ≤τ y and y ≤τ z =⇒ x ≤τ z.

Suppose that X is T0 and x, y are two distinct points in X. Then there exists an open set V that
contains exactly one of this points. If x ∈ V and y /∈ V , then x /∈ {y}, i.e., the relation x ≤τ y does not
hold. If y ∈ V and x /∈ V , then y /∈ {x}, i.e., the relation y ≤τ x does not hold. This means that we
cannot have simultaneously x ≤τ y and y ≤τ x for a pair of distinct elements in X.

Similar reasonings show that X is T0 if ≤τ is a partial order (i.e., it is antisymmetric).
The topological space X is T1 if and only if {x} = {x} for every x ∈ X. Consequently,

x ≤τ y ⇐⇒ x ∈ {y} = {y} ⇐⇒ x = y.

One shows also that if the order relation ≤τ is equality, then X is T1.

In the following results, the order notions are considered with respect to the order ≤τ .

Proposition 3.5. Let (X, τ) be a topological space and A ⊂ X.

(1) If the set A is open, then it is upward closed, i.e., ↑A = A.
(2) If the set A is closed, then it is downward closed, i.e., ↓A = A.

Proof. (1) It is a direct consequence of definitions. Let x ∈ A and y ∈ X, x ≤τ y. Since A is open, this
inequality implies y ∈ A.

(2) Let x ∈ A and y ∈ X, y ≤τ x. Then for any neighborhood V of y, we have x ∈ V , i.e., V ∩A �= ∅,
showing that y ∈ Ā = A.

Let us define the saturation of a subset A of X as the intersection of all open subsets of X containing
A. The set A is called saturated if it equals its saturation.

Proposition 3.6. Let (X, τ) be a topological space.

(1) For every x ∈ X, ↓x = {x}.
(2) For any subset A of X the saturation of A coincides with ↑A.

Proof. (1) This follows from the equivalence

y ≤τ x ⇐⇒ y ∈ {x}.
(2) Since every open set is upward closed, U ∈ τ and U ⊃ A implies U ⊃↑A, i.e.,

↑A ⊂
⋂

{U ∈ τ : A ⊂ U}.
If y /∈↑A, then for every x ∈ A there exists Ux ∈ τ such that x ∈ Ux and y /∈ Ux. It follows that

y /∈ V :=
⋃{Ux : x ∈ A} ∈ τ and A ⊂ V , hence y /∈ ⋂{U ∈ τ : A ⊂ U}.

Compactness. We present following [61, p. 69] a result on compactness.

Proposition 3.7. Let (X, τ) be a topological space. If a subset K of X is compact, then its saturation
↑K is also compact. If ↑K is compact, then K is compact too.
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Proof. The equivalence follows from the following remark: since every open subset of X is upward closed
with respect to the specialization order, the following equivalence is true:

K ⊂
⋃

{Ui : i ∈ I} ⇐⇒ ↑K ⊂
⋃

{Ui : i ∈ I},
for every family {Ui : i ∈ I} ⊂ τ .

An order � on a topological space (X, τ) is said to be closed if and only if its graph

Graph(�) := {(x, y) ∈ X × X : x � y}
is closed in X ×X with respect to the product topology. The existence of a closed order on a topological
space forces the topology to be Hausdorff.

Proposition 3.8 ([61, Proposition 3.9.12]). If on a topological space (X, τ) there exists a closed order �,
then the topology τ is Hausdorff.

Proof. Let x and y be distinct points in X. Then the relations x � y and y � x cannot both hold.
Suppose, without the loss of generality, that x � y does not hold, i.e., (x, y) /∈ Graph(�). Then there
exist open neighborhoods U and V of x and y, respectively, such that (U × V ) ∩ Graph(�) = ∅. The
proof will be done if we show that U ∩ V = ∅. Indeed, supposing that there exists z ∈ W := U ∩ V , one
obtains the contradiction

(z, z) ∈ (W × W ) ∩ Graph(�) ⊂ (U × V ) ∩ Graph(�) = ∅.

For other properties of topological spaces endowed with a closed order (e.g., compactness), see
[61, Sec. 9.1.1].

3.3. Topologies on Ordered Sets: Alexandrov’s, the Upper Topology, Scott’s, the Interval
Topology. Consider a partially preordered set (X,≤). We are interested in defining a topology τ on X
such that the specialization preordering ≤τ coincides with ≤. The answer is, in general no. For instance,
on R, with the usual ordering, we can consider several topologies (the usual, the discrete, etc.), all having
as specialization preordering the equality.

Let (X,≤) be a partially preordered set. We shall consider three topologies on X such that the corre-
sponding specialization preorderings coincide with ≤, as well as the interval topology and the Moore–Smith
order topology.

The Alexandrov topology, the finest. This is the finest of these topologies.

Proposition 3.9 (Alexandov topology). Let (X,≤) be a partially preordered set. Then there exists a finest
topology τa on X, called the Alexandrov topology, such that the specialization preordering ≤τa coincides
with ≤. This topology is characterized by the condition

(i) the open sets are exactly the upward closed sets,
or, equivalently,

(ii) the closed sets are exactly the downward closed sets.

Proof. It is clear that the upward closed subsets of X forms a topology τa. Denote the specialization
order determined by this topology by ≤a. If x ≤ y and Z ∈ τa contains x, then y ∈ Z because Z is
upward closed, showing that x ≤a y. Let x ≤a y. Then ↑x ∈ τa and x ∈ ↑x imply y ∈ ↑x, so that x ≤ y.
Consequently, x ≤a y agrees with x ≤ y.

If τ is a topology on X such that the specialization order ≤τ agrees with ≤ then, by Proposition 3.5,
the sets in τ are upward closed, showing that τ ⊂ τa.

We use the notation Xa for (X, τa).

Remark 3.10. Since for every upward closed subset Z of X, Z =
⋃{↑z : z ∈ Z}, it follows that the

Alexandrov topology τa is generated by the family of sets {↑x : x ∈ X}.
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The upper topology, the coarsest.

Proposition 3.11. Let (X,≤) be a partially preordered set. Then there exists a coarsest topology τu
on X such that the specialization preordering ≤τu coincides with ≤. A subbase of τu is formed by the
complements of the sets ↓x, x ∈ X. A basis of τu is formed by the complements of the sets ↓E for E ⊂ X,
E finite.

Proof. It is easy to check that the sets ↓E for E ⊂ X, E finite, form a basis of a topology τu on X. Denote
by ≤u the specialization order determined by this topology.

Let x ≤u y. By definition this is equivalent to x ∈ {y}. But

x ∈ {y} ⇐⇒ ∀ z [x ∈ X\ ↓z =⇒ y ∈ X\ ↓z]

⇐⇒ ∀ z [y ∈ ↓z =⇒ x ∈ ↓z]
=⇒
(z=y)

x ∈ ↓y ⇐⇒ x ≤ y.

Conversely, suppose x ≤ y. If for some z ∈ X, y ∈↓z, then x ≤ y and y ≤ z would imply x ≤ z, i.e.,
x ∈↓z. Consequently,

x ∈ X\ ↓z =⇒ y ∈ X\ ↓z,

for all z ∈ X, which is equivalent to x ≤u y.

The Scott topology. This is a topology between τu and τa. It is defined in the following way.
Let (X,≤) be a partially ordered set. A subset U of X is Scott open if and only if the following two

conditions hold:
(i) U is upward closed,
(ii) for every nonempty directed subset D of X such that supD exists (in X) and belongs to U , there

exists d ∈ D such that d ∈ U .

Proposition 3.12. Let (X,≤) be a partially ordered set.
(1) The family of Scott open subsets of X forms a topology denoted by τσ.
(2) A subset F of X is Scott closed if and only if the following two conditions hold :

(i) F is downward closed,
(ii) for every nonempty directed subset D of F if supD exists (in X), then sup D ∈ F .

(3) The specialization order corresponding to τσ agrees with ≤ and

τu ≤ τσ ≤ τ.

(4) Let (X, τ) be a topological space, ≤τ the specialization order corresponding to τ , and σ = σ(≤τ )
the Scott topology corresponding to ≤τ . Then the set {x}τ

is Scott closed (i.e., σ-closed) for every
x ∈ X.

Proof. (1) Let Ui, i = 1, . . . , n, be Scott open sets. Then U :=
⋂{Ui : 1 ≤ i ≤ n} is upward closed.

Suppose that D is a directed set in X such that supD exists and belongs to U . Then sup D ∈ Ui implies
the existence of xi ∈ D∩Ui, i = 1, . . . , n. Since D is directed, there exists x ∈ D with xi ≤ x, i = 1, . . . , n.
Since each Ui is upward closed, x ∈ Ui, i = 1, . . . , n, i.e., x ∈ U , showing that U is Scott open too. It easy
to show that the union of an arbitrary family of Scott open sets is again Scott open.

The proof of (2) follows from the equality F = X \ U relating open sets U and closed sets F .
(3) Denote by ≤σ the specialization order corresponding to τσ and let x ≤ y. If U is Scott open and

x ∈ U , then y ∈ U , as U is upward closed. Consequently, x ≤σ y.
Now suppose x ≤σ y. The set ↓y is Scott closed. If x belongs to X\↓y, then y ∈ X\ ↓y, a contradiction,

so x must belong to ↓y, i.e., x ≤ y.
(4) The proof is based on (2). The proof is based on (2). We shall use the notation Z̄ instead of Z̄τ .

The symbol ≤ stands for ≤τ=≤σ.
Show first that the set {x} is downward closed.
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Indeed, let y ∈ {x} and y′ ≤ y. Then y ≤ x and y′ ≤ y imply y′ ≤ x, i.e., y′ ∈ {x}.
Let us verify condition (ii) from (2).
If {xi : i ∈ I} is a directed set contained in {x}, then xi ≤ x for all i ∈ I, and so sup

i
xi ≤ x, or

equivalently, sup
i

xi ∈ {x}.

In the following proposition, we characterize the continuity with respect to the Scott topology. We
use the notation Xσ for (X, τσ).

Proposition 3.13. Let X and Y be a partially ordered sets and f : X → Y . The following are equivalent.
(1) The function f is continuous with respect to the Scott topologies on X and Y .
(2) The function f satisfies the following conditions:

(i) f is increasing,
(ii) f preserves the suprema of directed sets.

Proof. All closures that appear in this proof are considered with respect to the Scott topology.
(2) =⇒ (1). The continuity of f is equivalent to each of the following conditions:
(1) f−1(Z) is closed for every closed subset Z of Y ,
(2) f(Ā) ⊂ f(A) for every subset A of X.
Let Z ⊂ Y be Scott closed. We shall use Proposition 3.12(2) to show that f−1(Z) is Scott closed.
If x ∈ f−1(Z) and x′ ≤ x, then f(x) ∈ Z and f(x′) ≤ f(x). Since Z is downward closed, it follows

that f(x′) ∈ Z, which is equivalent to x′ ∈ f−1(Z). Consequently, f−1(Z) is downward closed.
Now let (xi)i∈I be a directed set contained in f−1(Z) such that x = sup

i
xi exists. Then

(
f(xi)

)
i∈I

is a directed set in Y contained in Z. By the hypothesis, f(x) = sup
i

f(xi) and, since Z is Scott closed,
f(x) ∈ Z, which is equivalent to x ∈ f−1(Z).

(1) =⇒ (2). Suppose that f is continuous with respect to the Scott topologies on X and Y .
Let x′ ≤ x in X. Taking into account the continuity of f we have

x′ ≤ x ⇐⇒ x′ ∈ {x} =⇒ f(x′) ∈ f
({x}) ⊂ f(x),

which shows that f(x′) ≤ f(x) in Y .
Now let (xi)i∈I be a directed set in X such that x = sup

i
xi exists. Since f is increasing, it follows

that f(xi) ≤ f(x) for all i ∈ I. Let y ∈ Y be such that f(xi) ≤ y for all i ∈ I. Then

∀ i f(xi) ≤ y ⇐⇒ ∀ i f(xi) ∈ {y} ⇐⇒ ∀ i xi ∈ f−1
({y}).

Since f−1
({y}) is Scott closed, it follows x = sup

i
xi ∈ f−1

({y}), which implies f(x) ∈ {y}, i.e.,

f(x) ≤ y. Consequently, f(x) is the least upper bound of
(
f(xi)

)
i∈I

.

Remark 3.14. A mapping satisfying condition (i) and (ii) from Proposition 3.13 is called Scott continuous.
In fact, by Remark 3.3, it suffices to suppose that f satisfies only the condition (ii).

Example 3.15 ([61]). A subset of R is compact and saturated with respect to the Scott topology if and
only if it is the empty set or of the form [α,∞) for some α ∈ R.

The interval topology and the Moore–Smith order topology. These topologies were defined by Frink [55].
By a closed interval in a poset (X,≤) one understands a set of the form

↑a = {x ∈ X : a ≤ x}, ↓b = {y ∈ X : y ≤ b}, or [a, b] = {x ∈ X : a ≤ x ≤ b} = ↑a ∩ ↓b, (3.3)

for a, b ∈ X. By definition, a subset Y of X is closed with respect to the interval topology if it can be
written as the intersection of finite unions of sets of the form (3.3). It is shown in [55] that the family F≤
of closed sets defined above satisfies the axioms of closed sets:

(i) ∅, X ∈ F≤,
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(ii) Fi ∈ F≤, i ∈ I, implies
⋂

i∈I

Fi ∈ F≤,

(iii) F1, F2 ∈ F≤ implies F1 ∪ F2 ∈ F≤.
If the set X is totally ordered (i.e., it is a chain), then the interval topology defined above coincides

with the intrinsic topology, which is the topology having as basis of open sets the intervals

(a, b) := {x ∈ X : a < x < b},
for a, b ∈ X (see [55, Theorem 3]). (Recall that we write x < y for x ≤ y and x �= y.)

Remark 3.16. By analogy with the upper topology one can define the lower topology τl as that generated
by the basis formed of the complements of the sets ↑E for E ⊂ X, E finite. The interval topology τ≤ is
the supremum of these two topologies: τ≤ = τu ∨ τl.

We mention also the following result.

Theorem 3.17 ([55, Theorem 9]). Every complete lattice is compact in its interval topology.

Proof. We include the simple proof of this result. Let (X,≤) be a complete lattice with 0 the least and 1
the greatest element. Then ↑a = [a, 1] and ↓b = [0, b], so that the intervals [a, b], a, b ∈ X, form a subbasis
of the interval topology. By the Alexander subbasis theorem [94, p. 139], it is sufficient to show that every
family [ai, bi], i ∈ I, of intervals in X having the finite intersection property has nonempty intersection.
Since [ai, bi] ∩ [aj , bj ] �= ∅ if and only if ai ∨ aj ≤ bi ∧ bj , it follows that ai ≤ bj for all i, j ∈ I. Hence

a := sup
i∈I

ai ≤ inf
j∈I

bj =: b,

and ∅ �= [a, b] ⊂ ⋂

i∈I

[ai, bi].

Frink [55] considered also the Moore–Smith order topology defined in the following way. A net
(xi : i ∈ I) in a poset (X,≤) is said to converge to x ∈ X if there exist an increasing net (ui : i ∈ I) and
a decreasing one (vi : i ∈ I) such that ui ≤ xi ≤ vi for all i ∈ I and sup

i
ui = x = inf

i
vi. By definition,

an element x ∈ X belongs to the closure Ȳ of a subset Y of X if and only if there exists a net in Y that
converges to x. This closure operation satisfies the conditions

(a) ∅̄ = ∅,
(b) Y ⊂ Ȳ ,
(c) Y1 ∪ Y2 = Ȳ1 ∪ Ȳ2,

for all Y, Y1, Y2 ⊂ X, but not the condition ¯̄Y = Ȳ , so it does not generate a topology (see [94, p. 43]). In
spite of this fact, we call it the Moore–Smith order topology. If (X,≤) is totally ordered, then it agrees
with the interval topology [55, Theorem 3]. If (X,≤) is a distributive lattice, then the lattice operations
∨ and ∧ are continuous with respect to the Moore–Smith order topology [55, Theorem 2].

Remark 3.18. Motivated by applications to computer science, mainly to denotational semantics of func-
tional programming languages, topological and categorical methods applied to partially ordered sets were
developed. A branch of this is known under the name of continuous lattices, whose study was initiated
by Dana Scott [162] in 1971. Roughly speaking, these are complete lattices (X,≤) with Scott continuous
meet and join operations, which means that

x ∧ supD = sup{x ∧ d : d ∈ D} and x ∨ inf D = inf{x ∨ d : d ∈ D},
for every nonempty directed subset D of X.

Another one is the so called domain theory. Essentially it is concerned with the study of lattices
or of directed complete partially ordered sets (known as dcpo, see Definition 3.1) equipped with a T0

topology compatible with the order. A good introduction to this area is given in [61] (which we have
partially followed in our presentation) and in [2]. For a comprehensive presentation we recommend [59],
see also [168]. Notice also that a functional analysis within the context of T0 topology was recently
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developed; see for instance [92, 93]. It turned out that a lot of results from Hausdorff functional analysis
(Hausdorff topological vector, Hausdorff locally convex spaces, and Banach spaces) have their analogues
in some algebraic structures (vector spaces, cones, universal algebras, etc.) equipped with a compatible
T0 topology.

4. Fixed Points in Partially Ordered Sets

In this section, we shall present some fixed point results in partially ordered sets and their impact on
the completeness of the underlying ordered set.

4.1. Fixed Point Theorems. These fixed point theorems bear different names in different publications.
The explanation is that many mathematicians contribute to their final shape, and the authors choose one
or several of them.

Recall that “poset” is a short-hand for “partially ordered set.”

Theorem 4.1 (Zermelo). Let (X,≤) be a chain-complete poset and f : X → X a mapping such that
x ≤ f(x) for all x ∈ X. Then f has a fixed point. More precisely, for every x ∈ X, f has a fixed point y
above x (i.e., f(y) = y and x ≤ y). If, further, f is increasing, then, for every x ∈ X, f has a least fixed
point above x.

A mapping f : X → X satisfying x ≤ f(x) for all x ∈ X is called progressive in [79], inflationary
in [61], extensive in [105].

This theorem is attributed to Bourbaki–Witt in [61] (with reference to Bourbaki [35] and Witt [197]),
to Bourbaki–Kneser in [201]. As follows from the discussion about this matter in the survey paper by
Jachymski [79], who proposed the name Zermelo FPT, this fixed point theorem appears only implicitly
in Zermelo’s papers on well-ordering (from 1904 and 1908), and it was put in evidence later. Accepting
this principle (equivalent to the axiom of choice (AC)), the proof is immediate, but there are proofs
independent of AC (see [79]). A brief historical survey is given also in Blanqui [33]. We shall not
enter into this delicate question of whether a specific result depends or not on the AC. An exhaustive
treatment is given in [69, 154]. Concerning its relevance for fixed points, we recommend the papers by
Tasković [188–190] and Mańka [119–121]. Among other things, Mańka has found a proof of Caristi’s fixed
point theorem independent of the AC.

Remark 4.2. In [35], Zermelo FPT is formulated for a poset in which every well-ordered subset has
a supremum, an apparently stronger form. But as was shown by Markowski [123], these conditions are
equivalent: a poset X is chain complete if and only if every well-ordered subset of X has a supremum. In
fact, according to the comments before Lemma 1.4 in [166], this result can be considered as a part of the
folklore; the essential part of the proof (that every chain contains a well-ordered cofinal subset) appears
as exercises in Halmos’ naive set theory, and in Birkhoff’s lattice theory.

Another important result is the following one.

Theorem 4.3 (Knaster–Tarski). Let (X,≤) be a poset and f : X → X an increasing function. If
(i) there exists z ∈ X such that z ≤ f(z),
(ii) every chain in ↑z has a supremum,

then f has a fixed point above z. Furthermore, there exists a maximal fixed point of f .

In complete lattices, the above theorem takes the following form.

Theorem 4.4 (Birkhoff–Tarski). Let (X,≤) be a complete lattice and f : X → X an increasing mapping.
Then there exist a smallest fixed point x and a greatest fixed point x̄ for f , given by x = inf{fn(�) : n ∈ N}
and by x̄ = sup{fn(⊥) : n ∈ N}, where ⊥ denotes the least element of X and � the greatest one. Further-
more, the set of fixed points of the mapping f is a complete lattice.
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Proof. Since x ≤ � it follows that f(x) ≤ f(�). Also x ≤ fn(�) implies f(x) ≤ fn+1(�) for all n ∈ N.
Consequently, f(x) ≤ x. By the definition of x, x ≤ f(�), so that f(x) = x.

The case of x̄ can be treated similarly.

In the following theorem, one asks a kind of Scott continuity for the mapping f .

Theorem 4.5 (Tarski–Kantorovich). Let (X,≤) be a poset such that every countable chain in X has
a supremum, and f : X → X be a mapping that preserves the suprema of countable chains. If there exists
z ∈ X such that z ≤ f(z), then f has a fixed point. Moreover, z0 := sup{fn(z) : n ∈ N} is the least fixed
point of f in ↑z.
Proof. We include the simple proof of this result following [63]. Since f preserves suprema of countable
chains, it follows that it is increasing. From z ≤ f(z) follows f(z) ≤ f2(z) and, by induction, fn−1(z) ≤
fn(z) for all n ∈ N, showing that {fn(z) : n ∈ N} is a chain in ↑z. If x0 := sup{fn(z) : n ∈ N}, then, by
the hypothesis, f(x0) = sup{fn+1(z) : n ∈ N} = x0.

Let x1 ≥ z be a fixed point of f . Then f(z) ≤ f(x1) = x1 and, by induction fn(z) ≤ x1 for all n ∈ N,
that is, x1 is an upper bound for {fn(z) : n ∈ N} and so x0 ≤ x1.

Remark 4.6. In Theorem 4.5, it is sufficient to suppose that every countable chain in ↑z has a supremum
and that f preserves these suprema.

4.2. Converse Results. Apparently, the first converse result in this area was obtained by Davis [44].

Theorem 4.7. A lattice (X,≤) is complete if and only if every increasing mapping f : X → X has a fixed
point.

By a result of Frink [55] (see Theorem 3.17), a lattice (X,≤) is complete if and only if it is compact
with respect to the interval topology. Consequently, Theorem 4.7 admits the following reformulation.

Theorem 4.8. A lattice (X,≤) is compact in its interval topology if and only if every increasing mapping
f : X → X has a fixed point.

Extensions to lower semi-lattices of this result as well as of the Birkhoff–Tarski fixed point theorem,
Theorem 4.4, were given by Ward [195]. Recall that a lower semi-lattice (semi-lattice in short) is a poset
(X,≤) such that x ∧ y exists for every x, y ∈ X. It is called complete if every nonempty subset of X has
an infimum.

Theorem 4.9 ([195]).
(1) A semi-lattice (X,≤) is complete if and only if for every x ∈ X, ↓x is compact with respect to the

interval topology.
(2) A semi-lattice (X,≤) is compact with respect to the interval topology if and only if every increasing

mapping f : X → X has a fixed point.

Smithson [167] extended Davis’ results to the case of set-valued mappings. Wolk [198] obtained also
characterizations of directed completeness of posets (called by him Dedekind completeness) in terms of
fixed points of monotonic maps acting on them.

We mention also the following result of Jachymski [80], connecting several properties equivalent to
FPP. A periodic point for a mapping f : X → X is an element x0 ∈ X such that fk(x0) = x0, for some
k ∈ N. The set of periodic points is denoted by Per(f) while the set of fixed points is denoted by Fix(f).
It is obvious that a fixed point is a periodic point with k = 1.

Theorem 4.10. Let X be a nonempty abstract set and f be a self-map of X. The following statements
are equivalent.

(1) Per(f) = Fix(f) �= ∅.
(2) There exists a partial ordering � such that every chain in (X,�) has a supremum and f is

progressive with respect to � (i.e., x � f(x), x ∈ X) (Zermelo).
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(3) There exists a complete metric d and a lower semicontinuous function ϕ : X → R such that f
satisfies condition (2.5) (Caristi).

(4) There exists a complete metric d and a d-Lipschitzian function ϕ : X → R such that f satisfies
condition (2.5) and f is nonexpansive with respect to d; i.e.,

d
(
f(x), f(y)

) ≤ d(x, y) for all x, y ∈ X.

(5) For each α ∈ (0, 1), there exists a complete metric d such that f is nonexpansive with respect to
d and

d
(
f(x), f2(x)

) ≤ α d
(
x, f(x)

)
for all x ∈ X

(Hicks and Rhoades).
(6) There exists a complete metric d such that f is continuous with respect to d and for each x ∈ X

the sequence
(
fn(x)

)∞
n=1

is convergent (the limit may depend on x).

For two nonempty sets A and B denote by BA the family of all mappings from A to B,

BA := {f : f : A → B}.
Let (X, (ρi)i∈I) be a uniform space, where {ρi : i ∈ I} is a family of semi-metrics generating the

uniformity of X. Define a partial order � on X × R
I
+ by

(x, ϕ) ≤ (y, ψ) ⇐⇒ ∀ i ∈ I ρi(x, y) ≤ ϕ(i) − ψ(i), (4.1)

for x, y ∈ X and ϕ, ψ ∈ R
I
+.

If (X, ρ) is a metric space (i.e., I is a singleton and ρ1 = ρ is a metric), then the relation order (4.1)
becomes

(x, α) ≤ (y, β) ⇐⇒ ρ(x, y) ≤ α − β, (4.2)
for x, y ∈ X and α, β ∈ R+, an order considered by Ekeland in connection with his variational principle.

Jachymski [77] proved the following results concerning these orders.

Theorem 4.11. Let (X, (ρi)i∈I) be a uniform space and � the order on X × R
I
+ defined by (4.1). Then

the following are equivalent.
(1) Every sequence (xn) in X such that

∞∑

n=1
ρi(xn, xn+1) < ∞, for all i ∈ I, is convergent.

(2) Every countable chain in (X × R
I
+,�) has a supremum.

(3) Every increasing sequence in (X × R
I
+,�) has a supremum.

In particular, if the space X is sequentially complete, then each of the above conditions holds.

In the case of a metric space (X, ρ), one obtains a characterization of completeness.

Theorem 4.12. Let (X, ρ) be a metric space and � the order on X × R+ defined by (4.2). Then the
following are equivalent.

(1) The metric space X is complete.
(2) Every chain in (X × R+,�) has a supremum.
(3) Every countable chain in (X × R+,�) has a supremum.
(4) Every increasing sequence in (X × R+,�) has a supremum.

Jachymski applied these results to obtain proofs of fixed point results for mappings on partially ordered
sets. In turn, these order fixed point results were applied to obtain simpler proofs and extensions to various
fixed point results in metric and in uniform spaces (see, for instance, the papers by Jachymski [75–77,79],
and the references cited therein).

Klimeš [105] has found a common extension to Theorems 4.1 and 4.3. Let (X,≤) be partially ordered.
A mapping f : X → X is called partially isotone if for all x, y ∈ X

(x ≤ y ∧ x ≤ f(y) ∧ f(x) ≤ y) =⇒ f(x) ≤ f(y). (4.3)
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It is obvious that increasing mappings, “progressive” mappings (satisfying x ≤ f(x)), and “regressive”
mappings (satisfying f(x) ≤ x) are partially isotone.

The mapping f is called comparable if x is comparable with f(x) for every x ∈ X. The partially
ordered set X is called inductive if every chain in X has an upper bound, and semiuniform if for every
chain C in X the set of upper bounds of C is downward directed.

Klimeš [105] proved that:

• every relatively isotone self-mapping on a complete lattice has a fixed point (Theorem 1.2);
• if the partially ordered set X is chain complete (i.e., every chain in X, including the empty chain,

has a supremum) then every relatively isotone self-mapping on X has a fixed point;
• a lattice X is complete if and only if every comparable self-mapping on X has a fixed point;
• a semiuniformly partially ordered set X is chain complete if and only if every relatively isotone

self-mapping on X has a fixed point.

In [106], he considered ascending maps f : X → X, meaning that f(x) ≤ y implies f(x) ≤ f(y)
for all x, y ∈ X, and proved that the partially ordered set X is inductive if and only if every ascending
self-mapping on X has a fixed point. For other related results, see [103, 104]. For instance, in [104]
one considers mappings f : X → X, X a partially ordered set, such that x ≤ y and x ≤ f(x) implies
f(x) ≤ f(y), called by the author extensively isotone.

4.3. Fixed Points in Ordered Metric Spaces. The title of this subsection could be a little confusing:
in contrast to ordered Banach spaces, or Banach lattices, it concerns a metric space (X, ρ) equipped with
an order relation ≤ that does not have any connection with the metric structure. Fixed points are proved
for mappings f : X → X that are monotonic (increasing or decreasing) with respect to the order and
contractive with respect to the metric, but in a restricted manner in the following sense: there exists
0 ≤ α < 1 such that

ρ
(
f(x), f(y)

) ≤ αρ(x, y) if x, y ∈ X are comparable (i.e., x ≤ y or y ≤ x). (4.4)

Theorem 4.13. Let (X, ρ) be a complete metric space equipped with a partial order ≤ and f : X → X be
a mapping satisfying (4.4). Then the following results hold.

(1) If the mapping f is increasing and continuous and there exists x0 ∈ X such that x0 ≤ f(x0), then
f has a fixed point [134].

(2) Suppose that for every increasing sequence (xn) in X converging to some x ∈ X, xn ≤ x holds
for all n ∈ N. If f is increasing and there exists x0 ∈ X such that x0 ≤ f(x0), then f has a fixed
point [134].

(3) Suppose that every pair x, y of elements in X has an upper bound or a lower bound. If f is
continuous and monotone (i.e., either increasing or decreasing) and there exists x0 ∈ X such
that x0 ≤ f(x0) or f(x0) ≤ x0, then f has a unique fixed point x̄ and for every x ∈ X the
sequence

(
fn(x)

)
n∈N converges to x̄ [150].

(4) Assume that the ordered set (X,≤) admits a smallest element x0. Then the conclusions from (3)
hold for every continuous increasing function f : X → X satisfying (4.4) [96].

Proof. (1) The proof is simple. Since f is increasing,

x0 ≤ f(x0) =⇒ f(x0) ≤ f2(x0) =⇒ f2(x0) ≤ f3(x0) =⇒ . . . ,

showing that the sequence
(
fn(x0)

)
is increasing. By (4.4)

ρ
(
fn(x0), fn+1(x0)

) ≤ αρ
(
fn−1(x0), fn(x0)

) ≤ · · · ≤ αnρ
(
x0, f(x0)

)

for all n ∈ N. But then, by the triangle inequality,

ρ
(
fn(x0), fn+k(x0)

) ≤ (αn + αn+1 + · · · + αn+k−1)d
(
x0, f(x0)

) → 0
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as n → ∞, uniformly with respect to k ∈ N, which shows that
(
fn(x0)

)
is a Cauchy sequence and so, by

the completeness of the metric space X, it converges to some x̄ ∈ X. By the continuity of f ,

f(x̄) = f
(
lim
n

fn(x0)
)

= lim
n

fn+1(x0) = x̄.

(2) As in the proof of (1), the sequence
(
fn(x0)

)
is increasing and convergent to some x̄ ∈ X. By the

hypothesis, it follows that fn(x0) ≤ x̄ for all n ∈ N, so that

ρ
(
fn+1(x0), f(x̄)

) ≤ αρ(fn(x0), x̄) → 0 as n → ∞.

It follows that ρ
(
x̄, f(x̄)

)
= 0, i.e., f(x̄) = x̄.

(3) Suppose that f is increasing and that there exists x0 ∈ X such that x0 ≤ f(x0). Then
(
fn(x0)

)

is an increasing sequence, convergent to some x̄ ∈ X which is a fixed point for f . The proof will be done
if we show that, for every x ∈ X, the sequence

(
fn(x)

)
is convergent to x̄.

Let x ∈ X. If x ≤ x0, then fn(x) ≤ fn(x0) so that, by (4.4),

ρ
(
fn(x), fn(x0)

) ≤ αρ
(
fn−1(x), fn−1(x0)

) ≤ · · · ≤ αnρ(x, x0) → 0.

It follows that
lim
n

fn(x) = lim
n

fn(x0) = x̄.

The situation is the same if x ≥ x0.
If x ∈ X is not comparable to x0, then, by the hypothesis, x and x0 have a lower bound or an upper

bound in (X,≤).
If they have a lower bound x1, then x1 ≤ x0 and x1 ≤ x, so that by the first part of the proof

x̄ = lim
n

fn(x0) = lim
n

fn(x1) = lim
n

fn(x).

The situation is the same if x and x0 have an upper bound x2 in X.
(4) In this case, x0 ≤ f(x0) and, for every x ∈ X, x0 ≤ x, so we can proceed as in the proof of (3).

Remark 4.14. Usually results as those from Theorem 4.13 are called fixed point of Ran–Reurings type
[150].

Refinements of the above results were given in [81,133,135,148].

5. Partial Metric Spaces

These spaces were introduced by Matthews [124–127] in connection with his research on computer
science. They are only T0 topological spaces, a feature that fits the needs of denotational semantics of
dataflow networks. In this section, we shall first present the basic notions and results following [37, 124,
126, 127] (see also [98, 160]). Although all the included results on partial metric spaces can be found
in the papers of Matthews or in other ones dealing with fixed point results in such spaces, we include
full proofs of the results for the reader’s convenience. At the same time, different approaches concerning
convergence of sequences and completeness notions in partial metric spaces, used by various authors, are
put in a proper light.

5.1. Definition and Topological Properties. Let X be a nonempty set.

Definition 5.1. A mapping p : X × X → R+ satisfying the following conditions

(PM1) x = y ⇐⇒ p(x, x) = p(y, y) = p(x, y),

(PM2) 0 ≤ p(x, x) ≤ p(x, y),

(PM3) p(x, y) = p(y, x),

(PM4) p(x, z) ≤ p(x, y) + p(y, z) − p(y, y)

for all x, y, z ∈ Z, is called a partial metric on X. The pair (X, p) is called a partial metric space.
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This means that, in contrast to the metric case, one admits the possibility that d(x, x) > 0 for some
points x ∈ X.

A point x ∈ X is called complete if p(x, x) = 0 and partial if p(x, x) > 0, giving an explanation for
the term “partial” coined by Matthews.

The following property follows from (PM2) and (PM1):

p(x, y) = 0 =⇒ x = y. (5.1)

The following characterization of partial metric spaces is given by M. & V. Anisiu [19].

Theorem 5.2. A function p : X ×X → [0,∞) is a partial metric on X if and only if there exist a metric
d and a nonexpansive with respect to d function ϕ : X → [0,∞), such that

p(x, y) = d(x, y) + ϕ(x) + ϕ(y) for all x, y ∈ X.

Furthermore, d and ϕ are uniquely determined by p.

The following two examples of partial metric spaces are related to some questions in theoretical
computer science.

Example 5.3. Let X = 2N. The function p : X × X → [0,∞) defined by

p(x, y) = 1 −
∑

n∈x∩y

2−n,

with the convention that the sum over the empty set is 0, is a partial metric on X.

Example 5.4. For a nonempty set S let X = S∗ ∪SN be the set of all finite (belonging to S∗) or infinite
sequences (belonging to SN). The length �(x) of a finite sequence x = (x1, x2, . . . , xn) is n and the length
of an infinite sequence x : N → S is ∞. If

i(x, y) = sup{n ∈ N : n ≤ �(x) ∧ �(y), xj = yj for all j ≤ n},
then

p(x, y) = 2−i(x,y), x, y ∈ X,

with the convention 2−∞ = 0, is a partial metric on X.
The function p is a metric on SN called the Baire metric and a partial metric on S∗ ∪ SN, because

p(x, x) = 2−n > 0 for x = (x1, . . . , xn) ∈ S∗.

We define the open balls as in the metric case:

Bp(x, ε) := {y ∈ X : p(x, y) < ε}, (5.2)

for x ∈ X and ε > 0.
In this case, the possibility that Bp(x, ε) = ∅ is not excluded.

Remark 5.5. If p(x, x) > 0, then Bp(x, ε) = ∅ for every 0 < ε ≤ p(x, x).
If Bp(x, ε) �= ∅, then x ∈ Bp(x, ε).

Indeed, by (PM2), p(x, y) ≥ p(x, x) ≥ ε for every y ∈ X implies Bp(x, ε) = ∅. Also, if y ∈ Bp(x, ε),
then, again by (PM2), p(x, x) ≤ p(x, y) < ε, i.e., x ∈ Bp(x, ε).

Consider also the balls

B′
p(x, ε) := {y ∈ X : p(x, y) < ε + p(x, x)}, (5.3)

for x ∈ X and ε > 0.
The following proposition contains some properties of these two kinds of balls.

Proposition 5.6. Let (X, p) be a partial metric space.
(1) If y ∈ Bp(x, ε), then

y ∈ Bp(y, δ) ⊂ Bp(x, ε),
where δ := ε − p(x, y) + p(y, y) > 0.
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(2) The balls Bp and B′
p are related by the following equalities:

B′
p(x, ε) = Bp

(
x, ε + p(x, x)

)
, (5.4)

and

Bp(x, ε) =

{
B′

p

(
x, ε − p(x, x)

)
if ε > p(x, x),

∅ if 0 < ε ≤ p(x, x).

Proof. (1) Let δ := ε − p(x, y) + p(y, y). Then δ > 0 (because p(x, y) < ε) and p(y, y) < δ, so that
y ∈ Bp(y, δ).

If z ∈ Bp(y, δ), then the inequalities

p(y, z) < ε − p(x, y) + p(y, y) and p(x, z) ≤ p(x, y) + p(y, z) − p(y, y)

yield by addition p(x, z) < ε, i.e., z ∈ Bp(x, ε) and so Bp(y, δ) ⊂ Bp(x, ε).
The equalities from (2) are obvious by the definitions of the corresponding balls (see also Remark 5.5).

Now we introduce the topology of a partial metric space and present some of its properties.

Theorem 5.7. Let (X, p) be a partial metric space.
(1) The family of open balls

B := {Bp(x, ε), x ∈ X, ε > 0} (5.5)
is a basis of a topology on X, denoted by τp (sometimes by τ(p)).

(2) The family B′ of sets

B′
p(x, ε) := {y ∈ X : p(x, y) < ε + p(x, x)}, x ∈ X, ε > 0, (5.6)

is also a basis for the topology τp.
(3) Any ball Bp(x, ε) is open and for every x ∈ X the family Vp(x) of neighborhoods of x is given by

Vp(x) = {V ⊂ X : ∃ δ > 0, x ∈ Bp(x, δ) ⊂ V }. (5.7)

(4) The topology τp is T0.

Proof. Since x ∈ Bp

(
x, 1 + p(x, x)

)
, it follows that

X =
⋃

{Bp

(
x, 1 + p(x, x)

)
: x ∈ X}.

Also, by Proposition 5.6, Bp(z, ηz) ⊂ Bp(x, ε) ∩ Bp(y, δ), for any z ∈ Bp(x, ε) ∩ Bp(y, δ), where

ηz := p(z, z) + min{ε − p(x, z), ε − p(y, z)},
and so

Bp(x, ε) ∩ Bp(y, δ) =
⋃

{Bp(z, ηz) : z ∈ Bp(x, ε) ∩ Bp(y, δ)}.
These two properties show that the family (5.5) forms a basis of a topology τp on X, i.e., every set

in τp can be written as a union of open balls of the form Bp(x, ε).
(2) The fact that B′ is also a basis for τp follows from the equalities from Proposition 5.6(2).
(3) By Proposition 5.6, every ball in (X, p) can be written as

Bp(x, ε) =
⋃

{Bp(y, δy) : y ∈ Bp(x, ε)} ∈ τp,

where δy = ε − p(x, y) + p(y, y), y ∈ Bp(x, ε).
Since the open balls form a basis of the topology τp, V ∈ Vp(x) if and only if there exists y ∈ X and

ε > 0 such that x ∈ Bp(y, ε) ⊂ V . Appealing again to Proposition 5.6, it follows that x ∈ Bp(x, δ) ⊂
Bp(y, ε) ⊂ V , where δ = ε − p(x, y) + p(x, x).

(4) We have to show that for any pair x, y of distinct points in X there exists a τp-open set containing
exactly one of them.

Let x �= y be two points in X. Then by (PM1) and (PM2) either p(x, x) < p(x, y) or p(y, y) < p(x, y).
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Suppose p(x, x) < p(x, y) and let ε :=
(
p(x, x) + p(x, y)

)
/2. Then

2p(x, x) < p(x, x) + p(x, y) = 2ε =⇒ p(x, x) < ε ⇐⇒ x ∈ Bp(x, ε).

On the other hand,

p(x, y) > p(x, x) = 2ε − p(x, y) =⇒ p(x, y) > ε =⇒ y /∈ Bp(x, ε).

The case p(y, y) < p(x, y) can be treated similarly.

Remark 5.8. We adopt the convention that
⋃

{Ai : i ∈ ∅} = ∅

(implying, by de Morgan rules,
⋂{Ai : i ∈ ∅} = X), and so ∅ belongs to the family of arbitrary unions

of sets in B. If one considers only unions over nonempty index sets, then we must say that the family B
plus the empty set generates the topology τp.

5.2. Convergent Sequences, Completeness and the Contraction Principle. The convergence of
sequences with respect to τp can be characterized in the following way.

Proposition 5.9. Let (X, p) be a partial metric space. A sequence (xn) in X is τp-convergent to x ∈ X
if and only if

lim
n→∞ p(x, xn) = p(x, x). (5.8)

Proof. Suppose that xn
τp−→ x. Given ε > 0, let n0 ∈ N be such that, for all n ≥ n0,

xn ∈ Bp

(
x, ε + p(x, x)

) ⇐⇒ p(x, xn) < ε + p(x, x).

Taking into account (PM2), it follows that

0 ≤ p(x, xn) − p(x, x) < ε,

for all n ≥ n0, showing that (5.8) holds.
Conversely, suppose that (5.8) holds and let V ∈ Vp(x). Since, by Theorem 5.7(2), B′ is also a basis for

the topology τp, there exists ε > 0 such that B′
p(x, ε) ⊂ V . Let n0 ∈ N be such that 0≤p(x, xn)−p(x, x)<ε

for all n ≥ n0. Then

0 ≤ p(x, xn) − p(x, x) < ε ⇐⇒ p(x, xn) < ε + p(x, x) ⇐⇒ xn ∈ B′
p(x, ε) ⊂ V,

for all n ≥ n0, proving that xn
τp−→ x.

Remark 5.10. Since the topology τp of a partial metric space is only T0, a convergent sequence can have
many limits. In fact, if xn

τp−→ x, then xn
τp−→ y for any y ∈ X such that p(x, y) = p(y, y).

Indeed,

0 ≤ p(y, xn) − p(y, y) ≤ p(y, x) + p(x, xn) − p(x, x) − p(y, y) = p(x, xn) − p(x, x) → 0.

To obtain uniqueness and to define a reasonable notion of completeness, a stronger notion of conver-
gence is needed.

Definition 5.11. One says that a sequence (xn) in a partial metric space converges properly to x ∈ X if
and only if

lim
n→∞ p(x, xn) = p(x, x) = lim

n→∞ p(xn, xn). (5.9)

In other words, (xn) converges properly to x if and only if (xn) converges to x with respect to τp and
further

lim
n→∞ p(xn, xn) = p(x, x). (5.10)

Proposition 5.12. Let (X, p) be a partial metric space and (xn) be a sequence in X that converges
properly to x ∈ X. Then

511



(i) the limit is unique,
(ii) lim

m,n→∞ p(xm, xn) = p(x, x).

Proof. Suppose that x, y ∈ X are such that (xn) converges properly to both x and y. Then

p(x, y) ≤ p(x, xn) + p(xn, y) − p(xn, xn) → p(y, y) as n → ∞,

implying p(x, y) ≤ p(y, y). But, by (PM2), p(y, y) ≤ p(x, y), so that

p(x, y) = p(y, y) = p(x, x), (5.11)

which by (PM1) yields x = y.
To prove (ii) observe that

p(xm, xn) ≤ p(xm, x) + p(x, xn) − p(x, x),

so that
p(xm, xn) − p(x, x) ≤ p(xm, x) − p(x, xn) − 2p(x, x) → 0 as m, n → ∞.

Also

p(x, x) ≤ p(x, xm) + p(xm, x) − p(xm, xm) ≤ p(x, xm) + p(xm, xn) + p(xn, x) − p(xn, xn) − p(xm, xm)

implies

p(x, x) − p(xm, xn) ≤ p(x, xm) + p(xn, x) − p(xn, xn) − p(xm, xm) → 0 as m, n → ∞.

Consequently, lim
m,n→∞ p(xm, xn) = p(x, x).

Remark 5.13. Some authors take the condition (ii) from Proposition 5.12 in the definition of a properly
convergent sequence. As was shown, this is equivalent to the condition from Definition 5.11

The definition of Cauchy sequences in partial metric spaces takes the following form.

Definition 5.14. A sequence (xn) in a partial metric space (X, p) is called a Cauchy sequence if there
exists a ≥ 0 in R such that for every ε > 0 there exists nε ∈ N with

|p(xn, xm) − a| < ε,

for all m, n ≥ nε, written also as lim
m,n→∞ p(xn, xm) = a.

The partial metric space (X, p) is called complete if every Cauchy sequence is properly convergent to
some x ∈ X.

A mapping f on a partial metric space (X, p) is called a contraction if there exists 0 ≤ α < 1 such
that

p
(
f(x), f(y)

) ≤ α p(x, y), (5.12)
for all x, y ∈ X.

The analogue of the Banach contraction principle holds in partial metric spaces too.

Theorem 5.15 ([124, 127]). Let (X, p) be a complete partial metric spaces. Then every contraction
f : X → X has a fixed point x0 such that p(x0, x0) = 0.

Proof (sketch). Let f be an α-contraction on X with 0 ≤ α < 1.
First, one shows that for every z ∈ X the sequence of iterates

(
fn(z)

)
satisfies the condition

lim
m,n→∞ p

(
fn(z), fm(z)

)
= 0,

i.e., it is Cauchy. By the completeness of (X, p) there exists x0 ∈ X such that

0 = lim
n→∞ p

(
fn(z), fn(z)

)
= p(x0, x0) = lim

n→∞ p
(
x0, f

n(z)
)
.
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But

0 ≤ p
(
x0, f(x0)

) ≤ p
(
x0, f

n(x0)
)

+ p
(
fn(x0), f(x0)

) − p
(
fn(x0), fn(x0)

) ≤
≤ p

(
x0, f

n(x0)
)

+ αp(fn−1(x0), x0) − p
(
fn(x0), fn(x0)

) → 0 as n → ∞.

It follows that p
(
x0, f(x0)

)
= 0 = p(x0, x0). The relations 0 ≤ p

(
f(x0), f(x0)

) ≤ αp(x0, x0) = 0 imply
p
(
f(x0), f(x0)

)
= 0, so that, by (PM1), f(x0) = x0.

Remark 5.16. O’Neill [136] considered partial metrics that take values in R (not in R+ as in the case of
Matthews’ partial metric) and related them to domain theory. These kind of spaces are called by some
authors dualistic partial metric space. The extension of the Banach fixed point theorem to this setting
was given by Oltra and Valero [137] (see also [192]). In this case, the contraction condition is given by

∃ 0 ≤ α < 1 such that
∣
∣p

(
f(x), f(y)

)∣∣ ≤ α|p(x, y)| for all x, y ∈ X.

Extensions of various fixed point results from metric spaces to partial metric spaces were given by O. Valero
in cooperation with other mathematicians, see [6, 7, 163,164,193] (see also [159]).

5.3. Topology and Order on Partial Metric Spaces. In this section, we shall examine the behavior
of the specialization order (3.2) with respect to the topology τ(p) generated by a partial metric p.

Proposition 5.17. Let (X, p) be a partial metric space and ≤p the specialization order on X.
(1) The specialization order can be characterized by the following condition:

x ≤p y ⇐⇒ p(x, x) = p(x, y). (5.13)

(2) Every open ball Bp(x, ε) is upward closed. Consequently, every τp-open sets is upward closed.
(3) The Alexandrov topology τa(≤p) generated by ≤p (see Proposition 3.9) is finer than τ(p). The

equality τ(p) = τa(≤p) holds if and only if

∀x ∈ X ∃ εx > 0 Bp(x, εx) =↑x. (5.14)

Proof. (1) Suppose x ≤p y. By definition

x ≤p y ⇐⇒ x ∈ {y},
so that

∀ ε > 0 {y} ∩ B′
p(x, ε) �= ∅ ⇐⇒ ∀ ε > 0 p(x, y) < ε + p(x, x) =⇒ p(x, y) ≤ p(x, x).

But, by (PM2), p(x, x) ≤ p(x, y), and so p(x, x) = p(x, y).
Conversely, if p(x, x) = p(x, y), then p(x, y) < ε + p(x, x) for all ε > 0, showing that x ∈ {y}, i.e.,

x ≤p y.
(2) Let y ∈ Bp(x, ε) and

y ≤p z ⇐⇒ p(y, z) = p(y, y).
Then

p(x, z) ≤ p(x, y) + p(y, z) − p(y, y) = p(x, y) < ε,

i.e., z ∈ Bp(x, ε).
Let U ⊂ X be τp-open. Then for every x ∈ U there exists εx > 0 such that Bp(x, εx) ⊂ U . If x ∈ U

and x ≤p y, then, since Bp(x, εx) is upward closed, y ∈ Bp(x, εx) ⊂ U . Consequently, U is upward closed.
(3) Since the Alexandrov topology is the finest such that the induced order specialization agrees

with ≤p (Proposition 3.9), it follows that τ(p) ⊂ τ(≤p).
Now suppose that the condition (5.14) holds and let Z ∈ τ(≤p). Since open sets are upward closed,

it follows that
Z =

⋃
{↑x : x ∈ Z} =

⋃
{Bp(x, εx) : x ∈ Z} ∈ τ(p).

Consequently, τ(≤p) ⊂ τ(p), so that, taking into account the first statement in (2), τ(≤p) = τ(p).
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Conversely, suppose that τ(≤p) = τ(p). Then for every x ∈ X, ↑x ∈ τ(p), implying the existence of
εx > 0 such that x ∈ Bp(x, εx) ⊂ ↑x.

If y ∈ ↑x, then p(x, y) = p(x, x) < εx, i.e., y ∈ Bp(x, εx), showing that Bp(x, εx) = ↑x.

Remark 5.18. In terms of the specialization order ≤p of a partial metric space (X, p), Remark 5.10 says
in fact that if a sequence (xn) in X converges to x ∈ X, then it converges to every y with y ≤p x. Also
the equalities (5.11) say that if (xn) converges properly to x and y, then x ≤p y and y ≤p x, and so x = y.

5.4. The Specialization Order in Quasi-Metric Spaces. In this section, we shall describe the spe-
cialization order in a quasi-metric space.

Proposition 5.19. Let (X, q) be a quasi-metric space.
(1) The specialization order ≤q corresponding to q is given by

x ≤q y ⇐⇒ q(x, y) = 0. (5.15)

(2) Every open set is upward closed.

Proof. (1) For x, y ∈ X,

x ≤q y ⇐⇒ x ∈ {y} ⇐⇒ ∀ ε > 0 y ∈ Bq(x, ε) ⇐⇒ ∀ ε > 0 q(x, y) < ε ⇐⇒ q(x, y) = 0.

(2) Let us show first that an open ball Bq(x, ε) is upward closed. Indeed, y ∈ Bq(x, ε) and y ≤q z
imply

q(x, z) ≤ q(x, y) + q(y, z) = q(x, y) < ε.

Now if U ⊂ X is τq-open, then for every x ∈ U there exists εx > 0 such that Bq(x, εx) ⊂ U . If x ≤q y,
then y ∈ Bq(x, εx) ⊂ U .

Remark 5.20. If q is only a quasi-semimetric (see Definition 2.16), then (5.15) defines only a preorder ≤q,
which is an order if and only if q is a quasi-metric.

Indeed,
(x ≤q y ∧ y ≤q x) ⇐⇒ (q(x, y) = 0 ∧ q(y, x) = 0) ⇐⇒ x = y.

A contraction principle holds in this case too. A mapping f on a quasi-metric space (X, q) is called
a contraction if there exists α ∈ [0, 1) such that

q
(
f(x), f(y)

) ≤ α q(x, y), (5.16)

for all x, y ∈ X.

Theorem 5.21 (contraction principle in quasi-metric spaces [126]). Let (X, q) be a quasi-metric space
such that the associated metric space (X, qs) is complete. Then every contraction on (X, q) has a fixed
point.

5.5. Partial Metrics and Quasi-Metrics. In this section, we put in evidence some relations between
partial metrics and quasi-metrics.

Proposition 5.22. Let (X, p) be a partial metric space. Then the mapping q : X2 → R+ given by

q(x, y) = p(x, y) − p(x, x), x, y ∈ X, (5.17)

is a quasi-metric on X. The topology τ(p) generated by p agrees with the topology τ(q) generated by q and
the corresponding specialization orders ≤p and ≤q coincide as well.

Proof. It is a routine verification to show that the mapping q defined by (5.17) is a quasi-metric on X.
For 0 < ε ≤ p(x, x), Bp(x, ε) = ∅ ∈ τ(q). If ε > p(x, x), then Bp(x, ε) = Bq

(
x, ε − p(x, x)

) ∈ τ(q),
relations that imply τ(p) ⊂ τ(q).

Since, for every ε > 0, Bq(x, ε) = Bp

(
x, ε + p(x, x)

) ∈ τ(p), it follows that τ(q) ⊂ τ(p).
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Taking into account (5.13), we have

x ≤p y ⇐⇒ p(x, y) = p(x, x) ⇐⇒ q(x, y) = 0 ⇐⇒ ∀ ε > 0 y ∈ Bq(x, ε)

⇐⇒ x ∈ {y}q ⇐⇒ x ≤q y.

Remark 5.23. It follows that

qs(x, y) = q(x, y) + q(y, x) = 2q(x, y) − p(x, x) − p(y, y), x, y ∈ X, (5.18)

is a metric on X, called the associate metric to the partial metric p.

The next result shows that the completeness of the partial metric space (X, p) is equivalent to the
completeness of the associate metric space (X, qs).

Proposition 5.24. Let (X, p) be a partial metric space, and qs the associated metric to p given by (5.18).
(1) The convergence and completeness properties of the spaces (X, p) and (X, qs) are related in the

following way :
(i) a sequence (xn) in X is properly convergent to x ∈ X if and only if xn

qs−→ x;
(ii) a sequence (xn) in X is p-Cauchy if and only if it is qs-Cauchy ;
(iii) the partial metric space (X, p) is complete if and only if the associated metric space (X, qs)

is complete.
(2) For any fixed x ∈ X the mapping p(x, ·) is qs-lsc on X. The mapping β : X → [0,∞), given by

β(x) = p(x, x), x ∈ X, is qs-continuous [151].

Proof. (1)(i) By definition

xn
qs−→ x ⇐⇒ p(xn, x) − p(x, x) + p(xn, x) − p(xn, xn) → 0.

Since p(xn, x) − p(x, x) ≥ 0 and p(xn, x) − p(xn, xn) ≥ 0, the last condition from above is equivalent to
{

p(xn, x) → p(x, x),
p(xn, x) − p(xn, xn) → 0

⇐⇒
{

p(xn, x) → p(x, x),
p(xn, xn) → p(x, x),

i.e., to the fact that (xn) converges properly to x.
(1)(ii) I. Any p-Cauchy sequence is qs-Cauchy.
Let (xn) be a p-Cauchy sequence in X, i.e.,

lim
m,n→∞ p(xm, xn) = a,

for some a ∈ R+. Then lim
k→∞

p(xk, xk) = a, so that

qs(xm, xn) = 2 p(xm, xn) − p(xn, xn) − p(xm, xm) → 0 as m, n → ∞,

which shows that the sequence (xn) is qs-Cauchy.
II. Any qs-Cauchy sequence is p-Cauchy.
Let (xn) be a qs-Cauchy sequence in X, i.e.,

qs(xm, xm) = p(xm, xn) − p(xn, xn) + p(xm, xn) − p(xm, xm) → 0 as m, n → ∞,

which is equivalent to

0 ≤ p(xm, xn) − p(xn, xn) → 0 and 0 ≤ p(xm, xn) − p(xm, xm) → 0 (5.19)

as m, n → ∞. By subtraction one obtains

p(xm, xm) − p(xn, xn) → 0 as m, n → ∞. (5.20)

Now we show that the net
(
p(xm, xn)

)
(m,n)∈N2 is Cauchy in R+.
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Let ε > 0. By (5.19) and (5.20) there exists k0 ∈ N such that

0 ≤ p(xm, xn) − p(xn, xn) < ε,

0 ≤ p(xm′ , xn′) − p(xn′ , xn′) < ε,

|p(xn, xn) − p(xn′ , xn′)| < ε,

for all m, n, m′, n′ ≥ k0. Then

|p(xm, xn) − p(xm′ , xn′)|
≤ |p(xm, xn) − p(xn, xn)| + |p(xn, xn) − p(xn′ , xn′)| + |p(xn′ , xn′) − p(xm′ , xn′)| < 3ε,

for all m, n, m′, n′ ≥ k0. It follows that the net
(
p(xm, xn)

)
(m,n)∈N2 is Cauchy in R+, so it converges to

some a ∈ R+, which means that the sequence (xn) is p-Cauchy.
(1)(iii) This follows from the definition of the completeness of the partial metric space (X, p) and

from (i) and (ii).
(2) Let x, y ∈ X be fixed. If (yn) is a sequence in X that is qs-convergent to y, then by (1)(i),

lim
n

p(yn, y) = p(y, y) = lim
n

p(yn, yn), so that lim
n

[p(yn, y) − p(yn, yn)] = 0.
Passing to lim inf in the inequality

p(x, y) ≤ p(x, yn) + p(yn, y) − p(yn, yn),

one obtains p(x, y) ≤ lim infn p(x, yn), which shows that p(x, ·) is qs-lsc at y.
Now let x ∈ X be fixed and (xn) be a sequence in X that is qs-convergent to x. By the first assertion of

the proposition, this is equivalent to the fact that (xn) converges properly to x, which, by Definition 5.11,
implies β(xn) = p(xn, xn) → p(x, x) = β(x).

Remark 5.25. Definition 5.14 of a Cauchy sequence in a partial metric space is taken from [127] (see
also [37]). In [124], the following equivalent definition is proposed: a sequence (xn) in a partial metric
space (X, p) is called a Cauchy sequence if for every ε > 0 there exists nε ∈ N such that

0 ≤ p(xn, xm) − p(xm, xm) < ε,

for all m, n ≥ nε.

Indeed, the relations (5.19) show that this is equivalent to the fact that (xn) is qs-Cauchy, which in
turn is equivalent to the fact that (xn) is p-Cauchy.

Remark 5.26. Another metric on a partial metric space (X, p) is given by d(x, y) = 0 if x = y and
d(x, y) = p(x, y) for x �= y. In this case, τqs ⊂ τd, and the metric space (X, d) is complete if and only if the
partial metric space (X, p) is complete. This result can be used to show that some fixed points results in
partial metric spaces can be obtained directly from their analogues (in the metric) case, see [64]. A similar
situation occurs in the case of the so called cone-metric spaces (see, for instance, the survey paper [83]).

5.6. The Existence of Suprema in Partial Metric Spaces. In this section, we shall prove that
every increasing sequence in a partial metric space has a supremum and it is properly convergent to its
supremum. We agree to call a mapping f : (X1, p1) → (X2, p2) properly continuous if

(
f(xn)

)
properly

converges to f(x) for every sequence (xn) in X1 properly convergent to x.

Proposition 5.27. Let (X, p) be a partial metric space and ≤p the specialization order corresponding
to p.

(1) If (X, p) is complete, then every increasing sequence x1 ≤p x2 ≤p . . . in X has a supremum x
and the sequence (xn) converges properly to x.

(2) Let (X1, p1) and (X2, p2) be complete partial metric spaces with the specialization orders ≤1

and ≤2, respectively, and f : (X1, p1) → (X2, p2) be a mapping. If f is properly continuous and
monotonic, then f preserves suprema of increasing sequences, i.e., sup

n
f(xn) = f(x) for every

increasing sequence x1 ≤1 x2 ≤1 . . . in X1 with sup
n

xn = x
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Proof. (1) We show first that the sequence (xn) is Cauchy. Indeed,

xn ≤p xn+k ⇐⇒ p(xn, xn+k) − p(xn, xn) = 0,

so that, taking into account Remark 5.25, it follows that (xn) is Cauchy. The completeness hypothesis
implies the existence of x ∈ X such that the sequence (xn) is properly convergent to x, i.e.,

lim
n

p(x, xn) = p(x, x) = lim
n

p(xn, xn). (5.21)

We show that x = sup
n

xn, i.e.,

xn ≤ x for all n ∈ N;
if xn ≤ y for all n ∈ N, then x ≤ y.

(5.22)

We have for all n, k ∈ N

p(xn, x) ≤ p(xn, xn+k) + p(xn+k, x) − p(xn+k, xn+k) = p(xn, xn) + p(xn+k, x) − p(xn+k, xn+k).

Letting k → ∞ and taking into account (5.21), one obtains p(xn, x) ≤ p(xn, xn), so that, by (PM2) from
Definition 5.1, p(xn, x) = p(xn, xn), i.e., xn ≤p x.

Now suppose that xn ≤p y for all n ∈ N. Then

p(x, y) ≤ p(x, xn) + p(xn, y) − p(xn, xn) = p(xn, y) = p(xn, xn),

for all n ∈ N. Letting n → ∞ one obtains (by (5.21), p(x, y) ≤ p(x, x). It follows that p(x, y) = p(x, x),
i.e., x ≤p y. Consequently, both conditions (i) and (ii) from (5.22) hold.

(2) Let x1 ≤1 x2 ≤1 . . . be an increasing sequence in X with sup
n

xn = x. Then (xn) is p1-properly

convergent to x. Then the sequence
(
f(xn)

)
is ≤2-increasing and properly convergent to f(x). By (1),

this implies that sup
n

f(xn) = f(x).

Remark 5.28. It is possible that the property from the first statement of Proposition 5.27 character-
izes the completeness of the partial metric space (X, p) (like in Theorem 4.12). Concerning the second
statement, I do not know whether the Scott continuity is equivalent to the continuity of the mapping f .

5.7. Caristi’s Fixed Point Theorem and Completeness in Partial Metric Spaces. In this section,
we shall present, following [151], the equivalence of Caristi’s fixed point theorem to the completeness of
the underlying partial metric space.

Let (X, p) be a partial metric space. Recall the Caristi condition for a mapping f : X → X:

p
(
x, f(x)

) ≤ ϕ(x) − ϕ
(
f(x)

)
, (Carϕ)

for all x ∈ X. Here ϕ is a function ϕ : X → R. According to the continuity properties of the function ϕ
we distinguish two kinds of Caristi conditions. One says that the mapping f is

• p-Caristi if (Carϕ) holds for some p-lsc bounded from below function ϕ : X → R,
• qs-Caristi if (Carϕ) holds for some qs-lsc bounded from below function ϕ : X → R,

where qs is the metric associated to p by (5.18).
As was shown in [151], the completeness of a partial metric space (X, p) cannot be characterized by

the existence of fixed points of p-Caristi mappings.

Example 5.29. Consider the set N with the partial metric p(m, n) = max{m−1, n−1}. The associated
metric qs is given by qs(m, n) = |m−1−n−1|, m, n ∈ N. If 0 < ε < [n(n+1)]−1, then Bqs(n, ε) = {n}, i.e.,
the topology τ(qs) is the discrete metric on N, and so the only convergent sequences are the ultimately
constant ones. The space (N, qs) is not complete because the sequence xn = n, n ∈ N, is qs-Cauchy and
not qs-convergent. On the other hand, there are no p-Caristi maps on N.

To obtain a characterization of this kind, another notion is needed.
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Definition 5.30. Let (X, p) be a partial metric space. A sequence (xn) in X is called 0-Cauchy if and
only if lim

m,n→∞ p(xm, xn) = 0. The partial metric space (X, p) is called 0-complete if every 0-Cauchy

sequence (xn) is convergent with respect to τp to some x ∈ X such that p(x, x) = 0.

Remark 5.31. The above definition is given in [151]. Taking into account Proposition 5.24, the following
assertions hold:

⎧
⎪⎪⎨

⎪⎪⎩

lim
m,n→∞ p(xn, xm) = 0,

lim
n→∞ p(x, xn) = p(x, x),

p(x, x) = 0

⇐⇒

⎧
⎪⎪⎨

⎪⎪⎩

lim
m,n→∞ p(xn, xm) = 0,

lim
n→∞ p(x, xn) = p(x, x),

p(x, x) = 0 = lim
n→∞ p(xn, xn)

=⇒
{

(xn) is qs-Cauchy,

xn
qs−→ x.

Consequently, a partial metric space (X, p) is 0-complete if and only if every 0-Cauchy sequence is
properly convergent and if and only if every 0-Cauchy sequence is qs-convergent.

Remark 5.32. It is obvious that a complete partial metric space is 0-complete, but the converse is not
true (see [151]).

Notice also the following property.

Remark 5.33 ([1]). Let (X, p) be a partial metric space, (xn) be a sequence in X and x ∈ X. If
lim

n→∞ p(xn, x) = 0, then lim
n→∞ p(xn, y) = p(x, y) for every y ∈ Y .

Indeed,
p(xn, y) ≤ p(xn, x) + p(x, y) − p(x, x) ≤ p(xn, x) + p(x, y)

implies p(xn, y) − p(x, y) ≤ p(xn, x), while

p(x, y) ≤ p(x, xn) + p(xn, y) − p(xn, xn) ≤ p(x, xn) + p(xn, y)

implies p(x, y) − p(xn, y) ≤ p(x, xn).
Consequently,

|p(x, y) − p(xn, y)| ≤ p(x, xn) → 0.

The characterization result is the following one.

Theorem 5.34 ([98, 151]). Let (X, p) be a partial metric space. Then (X, p) is 0-complete if and only if
every qs-Caristi mapping on X has a fixed point.

Proof. Suppose that (X, p) is 0-complete and let f : X → X be a qs-Caristi mapping for some qs-lsc
bounded from below function ϕ : X → R. For x ∈ X, let

Ax := {y ∈ X : p(x, y) + ϕ(y) ≤ ϕ(x)}.
Then, by (Carϕ), f(x) ∈ Ax and Ax is qs-closed because, by Proposition 5.24, the mapping p(x, ·) + ϕ(·)
is qs-lsc.

Starting with an arbitrary x0 ∈ X, we shall construct inductively a sequence of qs-closed sets Axn

such that, for all k ∈ N,
xk ∈ Axk−1

and Axk
⊂ Axk−1

,

p(xk, x) <
1
2k

for all x ∈ Axk
.

(5.23)

Suppose that xk and Axk
, k = 0, 1, . . . , n, satisfy the conditions (5.23). Choose xn+1 ∈ Axn such that

ϕ(xn+1) < inf ϕ
(
Axn

)
+

1
2n+1

.

If y ∈ Axn+1 , then

p(xn, y) ≤ p(xn, xn+1) + p(xn+1, y) − p(xn+1, xn+1)

≤ ϕ(xn) − ϕ(xn+1) + ϕ(xn+1) − ϕ(y) − p(xn+1, xn+1) ≤ ϕ(xn) − ϕ(y),

which shows that y ∈ Axn , and so Axn+1 ⊂ Axn .
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For x ∈ Axn+1 ⊂ Axn ,

p(xn+1, x) ≤ ϕ(xn+1) − ϕ(x) ≤ inf ϕ
(
Axn

)
+

1
2n+1

− ϕ(x) ≤ ϕ(x) +
1

2n+1
− ϕ(x) =

1
2n+1

.

For m > n, xm ∈ Axm−1 ⊂ Axn , so that p(xn, xm) < 1/2n, showing that the sequence (xn) is 0-Cauchy.
It follows that there exists z ∈ X with p(z, z) = 0 such that

lim
n

p(xn, z) = 0.

By Remark 5.31, xn
qs−→ z. Since each set Axn is qs-closed and xn+k ∈ Axn+k−1

⊂ Axn for all k ∈ N,
it follows that z ∈ Axn , for all n ∈ N.

Also, the inequalities

p
(
xn, f(z)

) ≤ p(xn, z) + p
(
z, f(z)

) ≤ ϕ(xn) − ϕ(z) + ϕ(z) − ϕ
(
f(z)

) ≤ ϕ(xn) − ϕ
(
f(z)

)

show that

f(z) ∈
∞⋂

n=1

Axn .

Consequently, p
(
xn, f(z)

)
< 1/2n and, by the qs-lsc of p

(·, f(z)
)
,

0 ≤ p
(
z, f(z)

) ≤ lim inf
n

p
(
xn, f(z)

) ≤ lim
n

1
2n

= 0,

so that p
(
z, f(z)

)
= 0. From

p
(
f(z), f(z)

) ≤ p(f(z), z) + p
(
z, f(z)

) − p(z, z) = 0

follows
p
(
z, f(z)

)
= p(z, z) = p

(
f(z), f(z)

)
= 0,

which implies f(z) = z.
To prove the converse, suppose that the partial metric space (X, p) is not 0-complete. Then there

exists a 0-Cauchy sequence (xn)∞n=0 that is not properly convergent in (X, p). Passing, if necessary, to
a subsequence, we can suppose further that the points xn are pairwise distinct and

p(xn, xn+1) <
1

2n+1
for all n ∈ N0 := N ∪ {0}. (5.24)

Let
A := {xn : n ∈ N0}.

By Proposition 5.24 the sequence (xn) is qs-Cauchy and not qs-convergent, so it has no limit points,
implying that the set A is qs-closed.

Consider the functions f : X → X and ϕ : X → [0,∞) given by

f(x) =

{
x0 for x ∈ X \ A,

xn+1 for x = xn, n ∈ N0,
and ϕ(x) =

{
p(x0, x) + 1 for x ∈ X \ A,

1/2n for x = xn, n ∈ N0.
(5.25)

It is obvious that f has no fixed points.
I. The function ϕ is qs-lsc.
Let (yn) be a sequence in X qs-convergent to some y ∈ X.
If y ∈ X \ A, then there exists n0 ∈ N such that yn ∈ X \ A for all n ≥ n0. Since p(x0, ·) is qs-lsc

(Proposition 5.24), it follows that ϕ(y) ≤ lim inf
n

ϕ(yn).

Now suppose that y = xk for some k ∈ N0 and denote by (ymj ), m1 < m2 < . . . , the terms of the
sequence (yn) that belong to A and by (yni), n1 < n2 < . . . , those in X \ A. If the set {mj : j ∈ N} is
infinite, then we must have ymj = xk, j ≥ j0, for some j0 ∈ N, so that ϕ(xk) = 2−k = lim

j
ϕ(ymj ).
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If the set {ni : i ∈ N} is infinite, then

ϕ(xk) =
1
2k

≤ 1 ≤ lim inf
i

[p(x0, yni) + 1] = lim inf
i

ϕ(yni). (5.26)

Consequently, ϕ(y) ≤ lim inf
n

ϕ(yn) in all cases.
II. f is a Caristi mapping with respect to ϕ.
Indeed, if x ∈ X \ A, then f(x) = x0 and

p
(
x, f(x)

)
= p(x, x0) = ϕ(x) − 1 = ϕ(x) − ϕ

(
f(x)

)
.

If x = xk for some k ∈ N0, then f(xk) = xk+1 and, by (5.24),

p
(
xk, f(xk)

)
= p(xk, xk+1) <

1
2k+1

=
1
2k

− 1
2k+1

= ϕ(xk) − ϕ
(
f(xk)

)
.

Consequently, f is a qs-Caristi mapping without fixed points.

Remark 5.35. Caristi-type fixed point theorems in complete partial metric spaces were also proved by
Karapinar et al. in [21, 88]. Since a complete partial metric space is 0-complete, but the converse is not
true (see [151]), these results follow from those proved by Romaguera [151]

Another definition of Caristi condition in partial metric spaces was given by Acar, Altun, and Roma-
guera [3]. A mapping f : X → X is called AR-Caristi if

p
(
x, f(x)

) ≤ p(x, x) + ϕ(x) − ϕ
(
f(x)

)
, (AR-Carϕ)

for some qs-lsc bounded from below function ϕ : X → R.

Theorem 5.36 (Acar, Altun, and Romaguera [3]). A partial metric space (X, p) is complete if and only
if every AR-Caristi mapping on X has a fixed point.

Proof. Suppose that (X, p) is complete. Let f : X → X be a mapping satisfying the condition (AR-Carϕ)
for some qs-lsc bounded from below function ϕ : X → R. By Proposition 5.24 the function β : X → [0,∞)
given by β(x) = p(x, x), x ∈ X, is qs-continuous, so that the function ψ := β + 2ϕ is qs-lsc and bounded
from below (by 2 inf ϕ(X)).

Putting ϕ = 2−1(ψ − β) in (AR-Carϕ) and taking into account the definition (5.18) of the metric qs

associated to the partial metric p, one obtains

qs
(
x, f(x)

) ≤ ψ(x) − ψ
(
f(x)

)
. (5.27)

Since, by Proposition 5.24 the metric space (X, qs) is complete, we can apply Caristi’s fixed point
theorem (Theorem 2.6) to the mapping f and the qs-lsc function ψ to conclude that f has a fixed point.

The proof of the converse follows the same line as that of the corresponding implication in Theo-
rem 5.34.

Suppose that (xn)n∈N0 (N0 = {0, 1, 2, . . . }) is a Cauchy sequence in (X, p) that is not convergent.
Passing to a subsequence, if necessary, we can suppose further that

p(xn, xn+1) − p(xn, xn) <
1

2n+1
, (5.28)

for all n ∈ N0 (see Remark 5.25). It follows that the set

A := {xn : n ∈ N0}
is qs-closed in (X, qs).

Define the mappings f : X → X and ϕ : X → [0,∞) by the formulas (5.25). Then ϕ is qs-lsc. It
is obvious that the mapping f has no fixed points, so it remains to show that it satisfies the condition
(AR-Carϕ).

For x ∈ X \ A,

p
(
x, f(x)

)
= p(x, x0) = ϕ(x) − ϕ

(
f(x)

) ≤ p(x, x) + ϕ(x) − ϕ
(
f(x)

)
,
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while for x = xn ∈ A,

p
(
xn, f(xn)

)
= p(xn, xn+1) < p(xn, xn+1) +

1
2n+1

= p(xn, xn) + ϕ(xn) − ϕ
(
f(xn)

)
.

Remark 5.37. One can think to use the relations

ψ = β + 2ϕ ⇐⇒ ϕ =
1
2
(ψ − β),

in the proof of the converse. Indeed, if (X, p) is not complete, then (X, qs) is not complete (see Propo-
sition 5.24), so, by Corollary 2.8, there exists a mapping f : X → X without fixed points that satisfies
(5.27) for some qs-lsc bounded from below function ψ : X → R. The function ϕ = (1/2)(ψ − β) is qs-lsc
(because β is qs-continuous) and replacing ψ by β + 2ϕ in (5.27), one obtains (AR-Carϕ).

Unfortunately, we are not sure that the function ϕ = (1/2)(ψ − β) is bounded form below in order to
obtain a contradiction.

Remark 5.38. Caristi’s fixed point theorem for set-valued mappings on partial metric spaces is discussed
in a recent paper by Alsiary and Latif [9].

5.8. Ekeland’s Variational Principle in Partial Metric Spaces. In this section, we shall show that
in partial metric spaces Caristi’s FPT is also equivalent to the weak Ekeland principle.

Theorem 5.39 (Ekeland’s variational principle — weak form). Let (X, p) be a 0-complete partial metric
space and ϕ : X → R∪{+∞} be a qs-lsc bounded below proper function. Then for every ε > 0 there exists
xε ∈ X such that

∀x ∈ X \ {xε} ϕ(xε) < ϕ(x) + εp(x, xε). (5.29)

Proof. Suppose on the contrary that there exists ε > 0 such that

∀x ∈ X ∃ yx ∈ X \ {x} with ϕ(x) ≥ ϕ(yx) + εp(x, yx). (5.30)

Consider a point x0 ∈ X such that ϕ(x0) ≤ inf ϕ(X) + ε, and let

Y := {x ∈ X : ϕ(x) + εp(x0, x) ≤ ϕ(x0) + ε p(x0, x0)}. (5.31)

Since the function ϕ(·) + ε p(x0, ·) is qs-lsc (see Proposition 5.24), the set Y is ps-closed, and so
0-complete. Indeed, if (xn) is a 0-Cauchy sequence in Y , then it has a τp-limit x ∈ X such that p(x, x) = 0.

But this implies xn
qs−→ x (see Remark 5.31) and so x ∈ Y . Also Y �= ∅ because x0 ∈ Y and ϕ is finite

on Y (i.e., ϕ(x) ∈ R for all x ∈ Y ).
Observe that the element yx given by (5.30) belongs to Y for every x ∈ Y . Indeed, if x ∈ Y , then

ϕ(yx) + εp(x0, yx) ≤ ϕ(x) − εp(x, yx) + εp(x0, yx)

≤ ϕ(x0) + ε p(x0, x0) + ε[p(x0, yx) − p(x0, x) − p(x, yx)] ≤ ϕ(x0) + ε p(x0, x0),

because p(x0, yx) − p(x0, x) − p(x, yx) ≤ 0. This last inequality follows from

p(x0, yx) ≤ p(x0, x) + p(x, yx) − p(x, x) ≤ p(x0, x) + p(x, yx).

Now put ϕ̃ := ε−1ϕ|Y : Y → R, and let f : Y → Y be defined by f(x) = yx, where, for x ∈ Y , yx �= x
is the element of Y satisfying (5.30).

Then the inequality (5.30) is equivalent to

p
(
x, f(x)

) ≤ ϕ̃(x) − ϕ̃
(
f(x)

)
, x ∈ Y,

which shows that f is a Caristi mapping with respect to ϕ̃. Since f has no fixed points, this is in
contradiction to Caristi’s fixed point theorem (Theorem 5.34).

We show now that the converse implication also holds.

Proposition 5.40. Ekeland’s variational principle in its weak form (Theorem 5.39) implies Caristi’s
fixed point theorem (Theorem 5.34).
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Proof. Let (X, p) be a 0-complete partial metric space, ϕ : X → R be a qs-lsc bounded from below function
and f : X → X be a Caristi mapping with respect to ϕ. By Theorem 5.39 applied to ϕ for ε = 1 there
exists a point x1 ∈ X such that

ϕ(x1) < ϕ(x) + p(x1, x),

for all x ∈ X \ {x1}. Supposing f(x1) �= x1, we can take x = f(x1) in the above inequality to obtain

p
(
x1, f(x1)

)
> ϕ(x1) − ϕ

(
f(x1)

)
,

in contradiction to the inequality (Carϕ) satisfied by f .
Consequently, f(x1) = x1, i.e., x1 is a fixed point of f .

Remark 5.41. It follows that the validity of Ekeland’s variational principle in its weak form, as given in
Theorem 5.39, is also equivalent to the 0-completeness of the partial metric space (X, p).

We shall present now the version of Ekeland’s variational principle that can be obtained from Theo-
rem 5.36.

Theorem 5.42 (Ekeland’s variational principle 2 — weak form). Let (X, p) be a complete partial metric
space and ϕ : X → R ∪ {+∞} be a proper qs-lsc bounded below proper function. Then for every ε > 0,
there exists xε ∈ X such that

∀x ∈ X \ {xε} ϕ(xε) + εp(xε, xε) < ϕ(x) + εp(x, xε). (5.32)

Proof. Suppose, by contradiction, that there exists an ε > 0 such that

∀x ∈ X ∃ yx ∈ X \ {x} with ϕ(x) + εp(x, x) ≥ ϕ(yx) + εp(x, yx), (5.33)

and let x0 ∈ X be such that ϕ(x0) ≤ ε + inf ϕ(X).
To get rid of the points where ϕ takes the value +∞, consider again the set Y given by (5.31). Then

Y is nonempty (x0 ∈ Y ) and qs-closed and so complete with respect to the partial metric p. Indeed, if
(xn) is a Cauchy sequence in (X, p) then, by the definition of the completeness, it converges properly to
some x ∈ X. By Proposition 5.24, (xn) is qs-convergent to x and so x ∈ Y .

Observe that x ∈ Y implies that the element yx given by (5.33) also belongs to Y . Indeed, if x ∈ Y ,
then

ϕ(yx) + εp(x0, yx) ≤ ϕ(x) + ε[p(x0, yx) − p(x, yx) + p(x, x)]

≤ ϕ(x0) + ε[p(x0, x0) − p(x0, x) + p(x0, yx) − p(x, yx) + p(x, x)] ≤ ϕ(x0) + ε p(x0, x0),

because

p(x0, yx) − p(x0, x) − p(x, yx) + p(x, x) ≤ 0 ⇐⇒ p(x0, yx) + p(x, x) ≤ p(x0, x) + p(x, yx),

and the last inequality is true, by the triangle inequality (PM4) from Definition 5.1.
Taking again ϕ̃ = ε−1ϕ|Y and f : Y → Y defined by f(x) = yx, where for x ∈ Y the element yx ∈ Y

is given by (5.33), the function ϕ̃ is qs-lsc and f is a mapping on Y without fixed points, satisfying
(AR-Carϕ) for ϕ = ϕ̃.

The converse implication holds in this case too. The proof is similar to that of Proposition 5.40.

Proposition 5.43. Ekeland’s variational principle in its weak form, as given in Theorem 5.42, implies
Caristi’s fixed point theorem, as given in Theorem 5.36.

Proof. Let (X, p) be a complete partial metric space, ϕ : X → R be a qs-lsc bounded from below function
and f : X → X be a mapping satisfying (AR-Carϕ). Applying Theorem 5.39 to ϕ for ε = 1 there follows
the existence of a point x1 ∈ X such that

ϕ(x1) + p(x1, x1) < ϕ(x) + p(x1, x),
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for all x ∈ X \ {x1}. Supposing f(x1) �= x1, we can take x = f(x1) in the above inequality to obtain

p
(
x1, f(x1)

)
> p(x1, x1) + ϕ(x1) − ϕ

(
f(x1)

)
,

in contradiction to the inequality (AR-Carϕ) satisfied by f .
Consequently, f(x1) = x1, i.e., x1 is a fixed point of f .

Remark 5.44. It follows that the validity of Ekeland’s variational principle in its weak form, as given in
Theorem 5.42, is equivalent to the completeness of the partial metric space (X, p).

Remark 5.45. A version of Ekeland’s variational principle in partial metric spaces was proved by Aydi,
Karapinar, and Vetro [22].

5.9. Dislocated Metric Spaces. This class of spaces was considered by Hitzler and Seda [65] in connec-
tion with some problems in logic programming. A dislocated metric on a set X is a function ρ : X×X → R+

satisfying the conditions

(DM1) ρ(x, y) = 0 =⇒ x = y,

(DM2) ρ(x, y) = ρ(y, x),

(DM3) ρ(x, y) ≤ ρ(x, z) + ρ(z, y),

for all x, y, z ∈ X. If ρ satisfies only (DM1) and (DM3), then it is called a dislocated quasi-metric. The
pair (X, ρ) is called a dislocated metric (respectively, a dislocated quasi-metric) space.

These spaces are close to partial metric spaces (in this case it is also possible that ρ(x, x) > 0 for
some x ∈ X), with the exception that a dislocated metric satisfies the usual triangle inequality (DM3)
instead of the inequality (PM4) from Definition 5.1. In fact, any partial metric is a dislocated metric.

For x ∈ X and r > 0 the open ball B(x, r) is defined by B(x, r) = {y ∈ X : ρ(x, y) < r}.
Hitzler and Seda [65] defined a kind of topology on a dislocated metric space (X, ρ) in the following

way. They defined first a relation ≺ in X × 2X as a substitute for the membership relation ∈. For
(x, A) ∈ X × 2X put

x ≺ A ⇐⇒ ∃ ε > 0 such that B(x, ε) ⊂ A.

One defines the d-neighborhood system V(x) of a point x ∈ X by the condition

V ∈ V(x) ⇐⇒ V ⊂ X and x ≺ V.

(Here “d” denotes “dislocated.”)
The neighborhood axioms are satisfied with the relation ≺ instead of ∈:

(V1) V ∈ V(x) =⇒ x ≺ V,

(V2) V ∈ V(x) and V ⊂ U =⇒ U ∈ V(x),

(V3) U, V ∈ V(x) =⇒ U ∩ V ∈ V(x),

(V4) V ∈ V(x) =⇒ ∃W ∈ V(x), W ⊂ V such that V ∈ V(y) for all y ≺ W.

It is easy to check the validity of these properties. As a sample, let us check (V4). For V ∈ V(x) let
ε > 0 be such that B(x, ε) ⊂ V . If y ≺ B(x, ε), then there exists ε′ > 0 such that B(y, ε′) ⊂ B(x, ε) ⊂ V ,
so that V ∈ V(y). It follows that we can take W = B(x, ε).

The so defined “neighborhood system” is not a proper neighborhood system (i.e., with respect to the
relation ∈), because the relation x ∈ V is not always satisfied: we are not sure that x ∈ B(x, ε) and
further, the ball B(x, ε) could be empty for some ε.

Example 5.46. Let X be a set of cardinality at least 2. Define ρ(x, x) = 1 and ρ(x, y) = 2 if x �= y, for
all x, y ∈ X. Then B(x, ε) = ∅ for 0 < ε ≤ 1, implying that every subset of X (including the empty set)
is a d-neighborhood of x.

In fact, the following properties hold.
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Proposition 5.47 ([65, Proposition 3.2]). Let (X, ρ) be a dislocated metric space.
(1) The following conditions are equivalent :

(i) ρ is a metric,
(ii) ρ(x, x) = 0 for all x ∈ X.
(iii) B(x, ε) �= ∅ for all x ∈ X and ε > 0.

(2) The subset ker ρ := {x ∈ X : ρ(x, x)} is a metric space with respect to ρ.

A sequence (xn) in X is called d-convergent to x ∈ X if

∀V ∈ V(x) ∃n0 ∈ N such that xn ∈ V for all n ≥ n0.

The sequence (xn) in X is called ρ-convergent to x if lim
n→∞ ρ(x, xn) = 0.

Remark 5.48. Note again that this type of convergence is not a proper convergence. For instance, if
ρ(x, x) > 0, then the constant sequence xn = x, n ∈ N, is not ρ-convergent to x.

The following property holds.

Proposition 5.49 ([65, Proposition 3.9]). Let (X, ρ) be a dislocated metric space. A sequence (xn) in X
is ρ-convergent to x ∈ X if and only if it is d-convergent to x.

Proof. Suppose that (xn) is d-convergent to x. For ε > 0, B(x, ε) is a d-neighborhood of x, so there exists
n0 ∈ N such that xn ∈ B(x, ε) if and only if ρ(x, xn) < ε, for all n ≥ n0, showing that ρ(x, xn) → 0.

Now suppose that ρ(x, xn) → 0. For V ∈ V(x), let ε > 0 be such that B(x, ε) ⊂ V . By the
hypothesis, there exists n0 ∈ N such that ρ(x, xn) < ε for all n ≥ n0. It follows that xn ∈ B(x, ε) ⊂ V for
all n ≥ n0.

A sequence (xn) in X is called ρ-Cauchy if for every ε > 0 there exists exists n0 ∈ N such that
ρ(xn, xm) < ε for all m, n ≥ n0. The dislocated metric space (X, ρ) is called complete if every Cauchy
sequence is ρ-convergent. Hitzler and Seda [65, Theorem 2.7] proved that Banach’s contraction principle
holds in complete dislocated metric spaces.

Pasicki [143] defined a topology τρ on a dislocated metric space (X, ρ) in the following way. The
family of subsets {B(x, r) : x ∈ X, r > 0} satisfies

X =
⋃

{B(x, r) : x ∈ X, r > 0},
so it is a subbase for a topology τρ on X (see [94, Theorem 12, p. 47]).

It follows that a subset U of X is a neighborhood of x ∈ X if and only if

∃n ∈ N ∃ y1, . . . , yn ∈ X ∃ r1, . . . , rn > 0 such that x ∈ B(y1, r1) ∩ · · · ∩ B(yn, rn) ⊂ U. (5.34)

Denote by Uρ(x) the neighborhood system of a point x ∈ X with respect to τρ.

Remark 5.50. Let (xn) be a sequence in a dislocated metric space (X, ρ) and x ∈ X. If lim
n

ρ(x, xn) = 0,

then the sequence (xn) is τρ-convergent to x ∈ X.

Indeed, for any τρ-neighborhood U of x there exists y ∈ X and ε > 0 such that x ∈ B(y, ε) ⊂ U .
Then ε − ρ(x, y) > 0 so that, by the hypothesis, there exists n0 ∈ N such that ρ(x, xn) < ε − ρ(x, y) for
all n ≥ n0. It follows that

ρ(y, xn) ≤ ρ(y, x) + ρ(x, xn) < ρ(x, y) + ε − ρ(x, y) = ε,

i.e., xn ∈ B(y, ε) ⊂ U for all n ≥ n0, showing that (xn) is τρ-convergent to x.

Remark 5.51. I do not know of a characterization of the τρ-convergence in terms of the sequence(
ρ(x, xn)

)
n∈N.
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Apparently unaware of Hitzler and Seda paper [65], Amini-Harandi [14] defined dislocated metric
spaces calling them metric-like spaces. He defined the balls by analogy with partial metric spaces:

B̃(x, ε) = {y ∈ X : |ρ(x, y) − ρ(x, x)| < ε}.
The family of balls B̃(x, r), x ∈ X, ε > 0, forms the base of a topology τ̃ρ on the dislocated metric space
(X, ρ).

A sequence (xn) in X is τ̃ρ-convergent to x ∈ X if and only if lim
n→∞ ρ(x, xn) = ρ(x, x).

A sequence (xn) in X is called Cauchy if there exists the limit lim
m,n→∞ ρ(xn, xm) ∈ R. The space (X, ρ)

is called complete if for every Cauchy sequence (xn) in X there exists x ∈ X such that

lim
n→∞ ρ(x, xn) = ρ(x, x) = lim

m,n→∞ ρ(xm, xn)

(compare with Sec. 5.2, Definition 5.11).
The paper [65] contains some fixed point theorems in complete dislocated metric spaces. The same

approach is adopted in the paper [90] (and possibly in other papers).

Remark 5.52. In fact, in a preliminary version of the paper [143], Pasicki called these spaces near metric
spaces. After the reviewer drew his attention to Hitzler and Seda paper, he changed them to dislocated
metric spaces. There are a lot of papers dealing with fixed point results in dislocated metric spaces (or in
metric like spaces), as can be seen by a simple search on MathSciNet, ZbMATH, or Google Scholar. I do
not know if there are any converse results, i.e., completeness implied by the validity of some fixed point
results.

5.10. Other Generalized Metric Spaces. In this section, we shall present some completeness results
in other classes of generalized metric spaces: dislocated metric spaces, w-spaces and τ -spaces. Good
surveys of various generalizations of metric spaces are given in the papers by Ansari [20], Berinde and
Choban [31], and in the books [46], [98], and [160].

w-distances. This notion was introduced by Kada et al. [87]. Let (X, ρ) be a metric space. A mapping
p : X × X → R+ is called a w-distance if, for all x, y, z ∈ X,

(w1) p(x, y) ≤ p(x, z) + p(z, y),
(w2) p(x, · is ρ-lsc,
(w3) ∀ ε > 0 ∃ δ > 0 such that p(x, y) < δ and p(x, z) < δ implies p(y, z) < ε.

τ -distances. A more involved notion was introduced by Suzuki [172]. Let (X, ρ) be a metric space and
η : X × R+ → R+. A mapping p : X × X → R+ is called a τ -distance if

(τ1) p(x, y) ≤ p(x, z) + p(z, y) for all x, y, z ∈ X,
(τ2) for every x ∈ X the function η(x, ·) is concave and continuous, η(x, 0) = 0 and η(x, t) ≥ t for

all (x, t) ∈ X × R+,
(τ3) lim

n
xn = x and lim

n

(
sup
m≥n

η
(
zn, p(zn, xm)

))
= 0 imply p(w, x) ≤ lim inf

n
p(w, xn) for all w ∈ X,

(τ4) lim
n

(
sup
m≥n

p(xn, ym)
)

= 0 and lim
n

η(xn, tn) = 0 imply lim
n

η(yn, tn) = 0,

(τ5) lim
n

η
(
zn, p(zn, xn)

)
= 0 and lim

n
η
(
zn, p(zn, yn)

)
= 0 imply lim

n
ρ(xn, yn) = 0.

Remark 5.53. It was shown in [172] that (τ2) can be replaced by
(τ2′) for every x ∈ X the function η(x, ·) is increasing and inft>0 η(x, t) = 0.

Lin and Du [113,115] propose a slightly simplified version of a τ -function.
Let (X, ρ) be a metric space. A mapping p : X × X → R+ is called a (LDτ)-distance if
(LD-τ1) p(x, y) ≤ p(x, z) + p(z, y) for all x, y, z ∈ X,
(LD-τ2) for every x ∈ X and every sequence (yn) in X converging to some y ∈ X if for some M > 0,

p(x, yn) ≤ M , for all n, then p(x, y) ≤ M ,
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(LD-τ3) if (xn) and (yn) are sequences in X such that lim
n

(
sup
m≥n

p(xn, xm)
)

= 0 and lim
n

p(xn, yn) = 0,

then lim
n

ρ(xn, yn) = 0,

(LD-τ4) for all x, y, z ∈ X, p(x, y) = p(x, z) = 0 implies y = z.

Remark 5.54.

(1) If, for every x ∈ X, p(x, ·) is lsc, then condition (LD-τ2) is satisfied.
(2) If p satisfies (LD-τ3), then every sequence (xn) in X satisfying

lim
n

(
sup
m≥n

p(xn, xm)
)

= 0

is a Cauchy sequence.

Lin and Du proved in [113, 115] variational principles of Ekeland type for this kind of function, and
for the w-distance in [114].

Tataru distance. This was defined by Tataru [191] in the following way. Let X be a subset of a Banach
space E. A family {T (t) : t ∈ R+} of mappings on X is called a strongly continuous semigroup of
nonexpansive mappings on X if

(Sg1) for every t ∈ R+, T (t) is a nonexpansive mapping on X,
(Sg2) T (0)x = x for all x ∈ X,
(Sg3) T (s + t) = T (s)T (t) for all s, t ∈ R+,
(Sg4) for each x ∈ X the mapping T (·)x : R+ → X is continuous.

The Tataru distance corresponding to a strongly continuous semigroup {T (t) : t ∈ R+} of nonexpan-
sive mappings on X is defined for x, y ∈ X by

p(x, y) = inf{t + ‖T (t)x − y‖ : t ∈ R+}. (5.35)

It was shown by Suzuki [172,178] that any w-distance is a τ -distance, but the converse does not hold;
for instance, the Tataru distance is a w-distance but not a τ -distance. The paper [178] contains many
examples of w-distances and τ -distances, other τ -distances that are not w-distances, and conditions under
which the Tataru distance is a τ -distance.

Various fixed point results, Ekeland-type principles, and completeness for τ -distances were proved by
Suzuki in [97,172–176,179,180,182].

Fixed points for contractions and completeness results in quasi-metric spaces endowed with a w-
distance were proved by Alegre et al. [5], for single-valued maps, and by Maŕın et al. [122], for set-valued
ones. Similar results in the case of partial metric spaces were obtained by Altun and Romaguera [10].

A mapping f on a metric space (X, ρ) for which there exist a w-distance p on X and a number
α ∈ [0, 1) such that

p
(
f(x), f(x′)

) ≤ αp(x, y) for all x, x′ ∈ X, (5.36)

is called w-contractive. In the case of a set-valued mapping F : X ⇒ X, the condition (5.36) is replaced
by

∀x, x′ ∈ X ∃ y ∈ F (x) y′ ∈ F (x′) such that p(y, y′) ≤ αp(x, y). (5.37)

Direct and converse fixed point results involving completeness for w-contractive mappings and for
other types of mappings (e.g., Kannan maps) on metric spaces endowed with a w-distance were proved
in [38, 72, 87, 165, 183, 185, 187] (see also [98, 186]). For instance, in [183] it is proved that a metric space
X is complete if and only if every weakly contractive mapping on X has a fixed point. Also, the result
of Borwein [34] (see Corollary 1.20), on the completeness of convex subsets of normed spaces on which
every contraction has a fixed point, is rediscovered.
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Branciari’s distance — generalized metric spaces. Branciari [36] (see [161] for some corrections) introduced
a new class of spaces, called generalized metric spaces, in the following way. A function d : X ×X → R+,
where X is a nonempty set, is called a generalized metric if the following conditions hold:

(GM1) d(x, y) = 0 ⇐⇒ x = y,
(GM2) d(x, y) = d(y, x),
(GM3) d(x, y) ≤ d(x, u) + d(u, v) + d(v, y),

for all x, y, u, v ∈ X. The generalized triangle inequality (GM3) causes several troubles concerning
the topology of these spaces (it is not always Hausdorff and the distance function d(·, ·) is continuous
only under a supplementary condition, see [98, Chap. 13]) and the completeness. Branciari loc. cit.
proved a Banach contraction principle within this context (some flaws in the original proof are corrected
in [98, Chap. 13]).

Ghosh and Deb Ray [58] considered Suzuki’s generalized contractions for these spaces and proved
direct fixed point results as well as converse completeness results.

Probabilistic metric spaces. Completeness as well as relations between completeness and fixed point results
in probabilistic metric spaces are explored in [4,8,62,68]. We do not enter into the details of this matter.

Appendix. A Pessimistic Conclusion

In conclusion, we quote from the review of the paper [142].

MR835839 (87m:54125) Park, Sehie; Rhoades, B. E. Comments on characterizations for metric
completeness. Math. Japon. 31 (1986), No. 1, 95–97.

There are many papers in which the completeness of a metric space is characterized by
using a fixed point theorem. In the present paper, the authors prove two very simple and
general theorems that “encompass some previous as well as future theorems of
this type.”

(Reviewed by J. Matkowski)

Under these circumstances, it seems that the best we can hope to do in this domain is to prove some
particular cases of these very general results.

Acknowledgments. This is an expanded version of a talk delivered at the International Conference on
Nonlinear Operators, Differential Equations and Applications (ICNODEA 2015), Cluj-Napoca, Romania,
July 14–17, 2015.
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84. L. Janoš, “A converse of Banach’s contraction theorem,” Proc. Am. Math. Soc., 18, 287–289 (1967).

530
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Math. and Comput. Sci., Cluj-Napoca (2008).
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