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In a Hilbert space H with an unconditional basis of reproducing kernels, we study the

existence of a weighted integral norm with respect to an absolutely continuous measure,

which is equivalent to the original H-norm. If the space H is defined via weighted

integrals, the problem can be interpreted as restoring the original structure. Bibliography:

16 titles.

1 Introduction

Let H be a Hilbert space of entire functions satisfying the following conditions:

(1) H is functional, i.e., the evaluation functionals δz : f → f(z) are continuous for every

z ∈ C,

(2) H possesses the division property, i.e., F ∈ H and F (z0) = 0 imply F (z)(z− z0)
−1 ∈ H.

In particular, condition (2) means that the evaluation functionals in H are different from

zero and condition (1) means that each functional δz is generated by an element kz(λ) ∈ H in

the sense that δz(f) = (f(λ), kz(λ)). The function k(λ, z) = kz(λ) is called a reproducing kernel

of the space H. We denote K(z) = k(z, z). Then the Bergman function for H is defined by
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‖δz‖H = (K(z))
1
2 [1]. A basis {ek}∞k=1 for a Hilbert space is called unconditional [2] if there are

c, C > 0 such that for any x =
∞∑

k=1

xkek ∈ H

c

∞∑

j=1

|ck|2‖ek‖2 �
∥
∥
∥

∞∑

j=1

ckek

∥
∥
∥
2
� C

∞∑

j=1

|ck|2‖ek‖2. (1.1)

The study of unconditional bases of reproducing kernels for Hilbert spaces of entire functions

is an actual problem of complex analysis. (Here and below, for the sake of brevity we write

“basis of reproducing kernels” instead of “basis consisting of the values of reproducing kernels”)

Apparently, the problem in such a formulation was first considered in [3, 4], where the classical

interpolation problem was studied for entire functions. Let {k(λ, λi)}∞i=1 be an unconditional

basis for a Hilbert space H satisfying conditions (1) and (2). Then the biorthogonal system

consists of functions

Lk(λ) =
L(λ)

L′(λk)(λ− λk)
, k = 1, 2, . . . ,

where L(λ) is an entire function, called the generating function, with simple zeros λk, k =

1, 2, . . . . This system forms an unconditional basis. By properties of biorthogonal systems,

‖Lk‖2 � 1

K(λk)
, k ∈ N.

The expansion of a function F into the series with respect to this basis has the form

F (λ) =
∞∑

k=1

F (λk)Lk(λ), λ ∈ C,

i.e., the Lagrange interpolation series with respect to the function L. The research was essentially

developed in the paper [5], where radial Hilbert spaces with unconditional bases of reproducing

kernels were introduced; namely, the weighted spaces with the weights (ln+ |z|)α, α ∈ (1; 2]. As

proved [6, 7], unconditional bases also exist in the case of for more general weights.

Another approach to unconditional bases is to represent functions in the form of series of

exponentials. If X is a Hilbert space, where the system eλz, λ ∈ C, is complete, then, using

the Fourier–Laplace transform f −→ f̂(λ) := 〈eλz, f〉z, λ ∈ C, we can represent X as a Hilbert

space X̂ of entire functions. Moreover, the (unconditional) bases of exponentials for the space

X correspond to the (unconditional) bases of reproducing kernels for the space X̂. Thus, the

exponential bases in the classical space L2(−a, ; a) are transformed to the bases of reproducing

kernels in the Paley–Wiener space of entire functions of exponential type a that are square

integrable over the imaginary axis. Let D be a convex polygon in the plane, and let E2(D) be

the Smirnov space of functions that are analytic inD and square integrable on the boundary. It is

proved that this space has an unconditional basis of exponentials [8]. Using the Fourier–Laplace

transform, one obtains unconditional bases of reproducing kernels for the space

Ê2(D) =

{

f̂(λ) =

∫

∂D

f(z)ezλds(z), f ∈ E2(D)

}

.
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Let D be a convex polygon in the plane, and let B2(D) be the Bergman spaces of square

integrable analytic functions in D. Then the space

B̂2(D) =

{

f̂(λ) =

∫

D

f(z)ezλdm(z), f ∈ B2(D)

}

has an unconditional basis [9]. If k(λ, λn) is an unconditional basis for a Hilbert space, then the

condition (1.1) for the biorthogonal system Ln takes the form

c
∞∑

j=1

|F (λk)|2 1

K(λk)
� ‖F‖2 � C

∞∑

j=1

|F (λk)|2 1

K(λk)
.

Consider the measure μ =
∞∑

k=1

δλk
. Then the H-norm is equivalent to the integral norm

‖F‖21 =
∫

C

|F (λ)|2
K(λ)

dμ(λ).

When constructing unconditional bases for the above Paley–Wiener spaces Ê2(D) and B̂2(D),

auxiliary “intermediate” weighted integral norms equivalent to the original norms arise. These

intermediate norms contain a valuable information about λk.

In this paper, we study the existence of an equivalent weighted integral norm with respect

to an absolutely continuous measure in a Hilbert space H under the assumption that H has an

unconditional bases of reproducing kernel. If the space H is defined via weighted integrals, then

the problem can be interpreted as restoring the original structure. Theorem 1.1 below presents a

necessary condition on the location of exponents λk for the intermediate norms to be equivalent

to the original norm in the space. It turns out that this condition is also sufficient for the main

spaces having unconditional bases of reproducing kernels (Theorem 1.2).

Assume that ϕα(λ) = lnα(1 + |λ|) and introduce the spaces

Fα =

{

F ∈ H(C) :

∫

C

|F (λ)|2e−2ϕα(λ)dm(λ) < ∞
}

.

As shown in [5], the spaces Fα, α ∈ (1; 2], have unconditional bases of reproducing kernels. We

note that some modifications of these spaces were considered in [6, 7].

If H is a HIlbert space with an unconditional basis k(λ, λk), then the most suitable norm

“restoring” the original norm is the integral norm with respect to the measure

μ(λ) =
1

K(λ)

∞∑

k=1

χ(λ, λk, rk)dm(λ)

r2k
,

where χ(λ, λk, rk) is the characteristic function of a disc B(λk, rk) and positive numbers rk
satisfy the condition

rk � 1

2
dist (λk,N \ {λk}), N = {λi}∞i=1.
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Thus, for the sequence rk we set

‖F‖20 =
∫

C

|F (λ)|2dμ(λ), F ∈ H. (1.2)

For positive functions f and g we write f(x) ≺ g(x), x ∈ X, if there exists a constant C > 0

such that g(x) � Cf(x) for all x ∈ X. The symbols 
 and � are understood in a similar way.

Theorem 1.1. Let H be a functional Hilbert space with the unconditional basis {k(λ, λk)}∞k=1

of reproducing kernels and generating function L(λ). If for some sequence of positive number

rk, k ∈ N, such that rk � 1
2 dist (λk,N \ {λk}) the weighted integral norm (1.2) is equivalent to

the H-norm, then
∑

n�=k

|L′(λn)|2
K(λn)

r2n
|λn − λk|2 ≺ |L′(λk)|2

K(λk)
, k ∈ N. (1.3)

Conversely, (1.3) implies ‖F‖ ≺ ‖F‖0 for F ∈ H and ‖Lk‖0 � ‖Lk‖ for k ∈ N.

Theorem 1.2. (1) In the Paley–Wiener space P , the norms of the form (1.2) are equivalent

to the original P -norm if the condition (1.3) holds.

(2) Let D be a bounded convex polygon in the plane, and let θj be directions perpendicular to

the polygon sides. If the exponents λk of the unconditional basis {k(λ, λk)}∞k=1 for the Smirnov

space E2(D) or the Bergman space B2(D) lie in some half-strips

{riϕ : | Im re(ϕ−θj)i| � Tj ,Re re(ϕ−θj)i > 0}
and the condition (1.3) holds, then the norms of the form (1.2) are equivalent to the original

norm of the space.

(3) Assume that α ∈ (1; 2], 1/α+1/β = 1, Rm = eα
1−β(m+1)β−1

and set Q(R, q) = {z : 1
qR �

|z| � qR}, R > 0, q > 1. If the exponents λn of the unconditional basis for the space Fα with

some q lie in the union of annuli
∞⋃

m=1
Q(Rm, q) and the condition (1.3) holds, then the norms of

the form (1.2) are equivalent to the original norm of the space.

Remark 1.1. The condition on the location of exponents in assertion (2) of Theorem 1.2

is necessarily satisfied by the bases for the Paley–Wiener space, which is established in [10].

Apparently, this condition seems is also necessary in the case of the Smirnov and Bergman

spaces. The condition on the location of exponents in assertion (3) if Theorem 1.2 for bases in

the spaces Fα is necessarily satisfied in the case α = 2.

2 Proof of Theorems

The main properties of the generating function are described in [11, 12].

For a continuous function u in the plane and p > 0 we denote by τ(u, z, p) the largest radius

of discs with center z, where the function u deviates from harmonic functions by at most p:

τ(u, z, p) = sup{r : inf
H
{ sup
w∈B(z,r)

|u(w)−H(w)|, H is harmonic in B(z, r)} � p}.

The function lnK(z) = 2 sup||F ||�1 ln |F (z)| is subharmonic and continuous on the whole plane

(in view of the stability of K(z) > 0).
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Theorem 2.1 (cf. [11, 12]). Let L(z) be the generating function of an unconditional basis.

Then for some P > 1

1

P
K(z) �

∞∑

i=1

|L(z)|2K(zi)

|L′(zi)|2|z − zi|2 � PK(z). (2.1)

Denote by τ(z) the function τ(lnK(w), z, ln(5P )), where P is a constant in (2.1). Thus,

inf
{

sup
z∈B(λ,τ(λ))

| lnK(z)− h(z)|, h is harmonic in B(z, τ(z))
}
= ln(5P ).

Then the following assertions hold.

(1) Any disc B(z, 2τ(z)) contains at least one zero zi of the function L.

(2) For any i, j, i �= j,

|zi − zj | � max(τ(zi), τ(zj))

10P
3
2

.

(3) For any i
1

56P 8
K(z) � K(zi)|L(z)|2

|L′(zi)|2|z − zi|2 � PK(z) in B
(
zi,

τ(zi)

20P
3
2

)
.

We denote by dk the distance from λk to the set of other zeros of L: dk = inf
n�=k

|λk − λn|.

Proposition 2.1.
dk

10P
3
2

� τ(λk) � 10P
3
2dk.

Proof. The right inequality follows from Theorem 2.1 (2), and the left inequality is obtained

from Theorem 2.1 (3) in view of K(λ) > 0.

Proof of Theorem 1.1. We show that the condition (1.3) is necessary. If for a sequence

{rk}∞k=1 the norm ‖F‖0 is equivalent to the original norm ‖F‖, i.e., there are m,M > 0 such

that m‖F‖2 � ‖F‖20 � M‖F‖2 for all F ∈ H, then

‖Lk‖20 �
1

K(λk)
, k ∈ N.

Since rn � 1
2dn, for λ ∈ B(λn, rn), n �= k, we have

|λ− λk| � |λ− λn|+ |λn − λk| < 2|λn − λk|,

|λn − λk| � |λn − λ|+ |λ− λk| � 1

2
dn + |λ− λk| � 2|λ− λk|.

Consequently,

1

2
|λn − λk| � |λ− λk| � 2|λn − λk|,

4r2n
|λn − λk| �

1

πr2n

∫

B(λn,rn)

|λ− λn|2
|λ− λk|2 dm(λ)

� 1

πr2n

∫

B(λn,rn)\B(λn,
rn
2
)

|λ− λn|2
|λ− λk|2 dm(λ) � 3

64

r2n
|λn − λk| .
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We assume that

rk � τ(λk)

20P
3
2

:= r̃k.

By Theorem 2.1 (3),

1

πr2n

∫

B(λn,rn)

|Lk(λ)|2 1

K(λ)
dm(λ) � 1

|L′(λk)|2
|L′(λn)|2
K(λn)

1

πr2n

∫

B(λn,rn)

|λ− λn|2
|λ− λk|2 dm(λ),

where n, k ∈ N, n �= k. Thereby

1

πr2n

∫

B(λn,rn)

|Lk(λ)|2 1

K(λ)
dm(λ) � 1

|L′(λk)|2
|L′(λn)|2
K(λn)

r2n
|λn − λk| ,

where n, k ∈ N, n �= k. If rk > r̃k, then from Proposition 2.1 it follows that

1

πr2n

∫

B(λn,rn)

|Lk(λ)|2 1

K(λ)
dm(λ) 
 1

πr̃2n

∫

B(λn,r̃n)

|Lk(λ)|2 1

K(λ)
dm(λ)


 1

|L′(λk)|2
|L′(λn)|2
K(λn)

r2n
|λn − λk| ,

where n, k ∈ N, n �= k. Summarizing the obtained inequalities with respect to n �= k, we get

∑

n�=k

|L′(λn)|2
K(λn)

r2n
|λn − λk|2 ≺ ‖Lk‖20|L′(λk)|2 ≺ ‖Lk‖2|L′(λk)|2 ≺ |L′(λk)|2

K(λk)
, k ∈ N.

Thus, the necessity of the condition (1.3) is proved.

We prove the equivalence of the norms of Lk. The function Lk(λ) differs from zero in

B(λk, rk) and Lk(λk) = 1. Hence for any F ∈ H

|F (λk)|2 � 1

πr2k

∫

B(λk,rk)

|F (λ)|2
|Lk(λ)|2dm(λ).

By Theorem 2.1 (3), for rk � r̃k

|F (λk)|2 ≺ K(λk)

πr2k

∫

B(λk,rk)

|F (λ)|2
K(λ)

dm(λ), k ∈ N.

If rk > r̃k, then

|F (λk)|2 ≺ K(λk)

πr̃2k

∫

B(λk,r̃k)

|F (λ)|2
K(λ)

dm(λ) ≺ K(λk)

πr2k

∫

B(λk,rk)

|F (λ)|2
K(λ)

dm(λ), k ∈ N,

in view of Proposition 2.1. Since {Lk}∞k=1 is an unconditional basis, we have

‖F‖2 ≺
∞∑

k=1

|F (λk)|2
K(λk)

≺
∞∑

k=1

1

πr2k

∫

B(λk,rk)

|F (λ)|2
K(λ)

dm(λ) = ‖F‖20, F ∈ H.

315



For Lk, k ∈ N, the converse assertion is also valid: If rk � r̃k, then

‖Lk‖20 �
1

πr2k

∫

B(λk,rk)

|Lk(λ)|2
K(λ)

dm(λ) 
 1

K(λk)
� ‖Lk‖2, k ∈ N.

If rk > r̃k, then we use Proposition 2.1. Theorem 1.1 is proved.

Proof of Theorem 1.2 (1). The Paley–Wiener spaces. By the Pavlov theorem [10], the

exponents of an unconditional basis lie in some strip |Re z| � d. As shown in [12], the function

τ(z) = τ(lnK, z, p) is continuous and, in the case under consideration, depends only on Re z.

Since it is positive, it is not less than some positive constant in [−d; d]. By Theorem 2.1 (2),

the sequence λk is separable, i.e., inf
k �=n

|λk − λn| := σ > 0. By Theorem 2.1 (1), sup
k∈N

dk < ∞ and

the sequence {rk}∞k=1 is bounded in the norm (1.2). The Bergman function of the space P = L̂2

can be calculated by the formula

K(λ) =

1∫

−1

e2tRe λdt.

Therefore, K(λ) � 1 on any [−q; q]. Thus, we can write (1.3) as

∑

n�=k

r2k|L′(λn)|2
|λk − λn|2 ≺ |L′(λk)|2, k ∈ N. (2.2)

If (2.2) is valid, then from Theorem 1.1 it follows that ‖F‖ ≺ ‖F‖0, F ∈ P . As known (cf., for

example, [13]), the norm in the space P for any d > 0 is equivalent to the norm

‖F‖2d =

∞∫

−∞

d∫

−d

|F (x+ iy)|2dxdy.

If sup
k∈N

rk := r, then

‖F‖20 =
∞∑

k=1

1

πr2k

∫

B(λk,rk)

|F (λ)|2
K(λ)

dm(λ) ≺
∞∑

k=1

4

πd2k

∫

B(λk,dk/2)

|F (λ)|2
K(λ)

dm(λ)

≺
∞∑

k=1

∫

B

(
λk,

dk
2

)
|F (λ)|2dm(λ) ≺ ‖F‖2q+r ≺ ‖F‖2, F ∈ P.

The generating functions of the first unconditional basis for the Paley–Wiener space are sine

type functions [8]. Since |L′(λk)| � 1, k ∈ N, for such functions, they satisfy (2.2).

2. The Smirnov and Bergman spaces. The structure of the spaces Ê2(D) and B̂2(D), regarded

as normed spaces, is described in [14, 15]. These spaces are isomorphic to the spaces equipped

with the norms

‖F‖2 :=
∞∫

0

2π∫

0

|F (reiϕ)|2
K(reiϕ)

dΔ(ϕ)dr,
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where K(λ) is the squared norm of eλz in the space E2(D) and, respectively, in B2(D). In other

words, K(λ) is the Bergman function of the spaces Ê2(D) and B̂2(D); moreover,

Δ(ϕ) = h′(ϕ) +

ϕ∫

0

h(θ)dθ,

where h(ϕ) = max
z∈D

Re ze−iϕ is the support function of D. If D is a convex n-gon, then

dΔ(ϕ) =

n∑

j=1

1

bj
δ(θj),

where δ(θj) is the evaluation functional for the point θj and bj is the side length. We consider

the half-strips

Πj(d) = {Re zei(ϕ−θj) > 0, | Im zei(ϕ−θj)| < d}.
By [8, 9], τ(lnK(λ), z, p) � 1 in these strips. Therefore, in the norms of the form (1.2), it is

assumed that rk � 1, k ∈ N, and the set {λj}j∈N is separable in view of Theorem 2.1 (2).

Furthermore, by [9, Lemma 3],
∫

Πj(d)

|F (λ)|2
K(λ)

dm(λ) ≺ ‖F‖2, F ∈ B̂2(D).

The corresponding assertion for Ê2(D) follows from [8]. Since the discs B(λk, rk) are pairwise

disjoint and rk � dk/2, because of the separability and increase of averages we have

‖F‖20 =
∞∑

k=1

1

πr2k

∫

B(λk,rk)

|F (λ)|2
K(λ)

dm(λ) �
∞∑

k=1

4

πr2k

∫

B(λk,
dk
2
)

|F (λ)|2
K(λ)

dm(λ) ≺ ‖F‖2.

3. The space F2. We prove that the relation ‖F‖20 ≺ ‖F‖2 always holds in F2. As shown in

[5, Lemma 2.7], the Bergman function of the space F2 satisfies the condition

K(λ) � e2 ln
2(1+|λ|)

1 + |λ|2 , λ ∈ C, (2.3)

and τ(λ) � |λ|, λ ∈ C. By Theorem 2.1 (2), dk 
 |λk| for k ∈ N. Since the averages of

subharmonic functions are increasing, from Theorem 2.1 (3) for rk � r̃k we have

1

πr2k

∫

B(λk,rk)

|F (λ)|2
K(λ)

dm(λ) � 1

πr2k

∫

B(λk,rk)

|F (λ)|2
|Lk(λ)|2dm(λ)

� 1

πr̃2k

∫

B(λk,r̃k)

|F (λ)|2
|Lk(λ)|2dm(λ) � 1

πr̃2k

∫

B(λk,r̃k)

|F (λ)|2
K(λ)

dm(λ), k ∈ N.

By Proposition 2.1, r̃k � dk � |λk|, k ∈ N. Therefore,

1

πr2k

∫

B(λk,rk)

|F (λ)|2
K(λ)

dm(λ) ≺ 1

π|λk|2
∫

B
(

λk,
dk
2

)

|F (λ)|2
K(λ)

dm(λ), k ∈ N.
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From (2.3) we have

1

πr2k

∫

B(λk,rk)

|F (λ)|2
K(λ)

dm(λ) ≺
∫

B(λk,
dk
2
)

|F (λ)|2
K(λ)(1 + |λ|2)dm(λ) �

∫

B(λk,
dk
2
)

|F (λ)|2e−2 ln2(1+|λ|)dm(λ),

where k ∈ N. If rk > r̃k, then

1

πr2k

∫

B(λk,rk)

|F (λ)|2
K(λ)

dm(λ) ≺ 1

πr̃2k

∫

B(λk,
dk
2
)

|F (λ)|2
K(λ)

dm(λ)

� 4

πd2k

∫

B(λk,
dk
2
)

|F (λ)|2e−2 ln2(1+|λ|)dm(λ), k ∈ N,

in view of Proposition 2.1 and

1

πr2k

∫

B(λk,rk)

|F (λ)|2
K(λ)

dm(λ) ≺ 4

πd2k

∫

B(λk,
dk
2
)

|F (λ)|2e−2 ln2(1+|λ|)dm(λ)

�
∫

B(λk,
dk
2
)

|F (λ)|2e−2 ln2(1+|λ|)dm(λ), k ∈ N.

Thus,

‖F‖20 =
∞∑

k=1

1

πr2k

∫

B(λk,rk)

|F (λ)|2
K(λ)

dm(λ) ≺
∞∑

k=1

∫

B
(

λk,
dk
2

)

|F (λ)|2e−2 ln2(1+|λ|)dm(λ) < ‖F‖2.

4. The space Fα, α ∈ (1; 2). We find the asymptotics of the Bergman function Fα for

α ∈ (1; 2). Since these spaces are radial, the monomials λn, n ∈ N ∪ {0}, form an orthogonal

basis. Consequently,

K(λ) =

∞∑

n=0

cn|λ|2n, (2.4)

where

1

cn
= ‖λn‖2 =

∞∫

0

t2n+1e−2 lnα(1+t)dt, n ∈ N.

Taking into account that

∞∫

0

t2n+1e−2 lnα(1+t)dt �
∞∫

0

e2(n+1)y−2yαdy, n ∈ N,

we calculate the asymptotics of the integral

∞∫

0

e2xy−2yαdy, x ∈ R.
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By [16, Theorem 2.4],
∞∫

0

e2xy−2yαdy � e2A(α)xβ
x

β
2
−1, x ∈ R,

where β = α/(α− 1) and A(α) = α−β(α − 1). Furthermore if y(x) is the maximum point of

xy − yα and Ix = {y : |y − y(x)| � y(x)1−α/2}, then y(x) = α1−βxβ−1 and

∞∫

0

exy−yαdy �
∫

I(x)

exy−yαdy, x ∈ R.

Thus,

1

cn
�

∞∫

0

t2n+1e−2 lnα(1+t)dt �
∞∫

0

e2(n+1)y−2yαdy � e2A(α)(n+1)β (n+ 1)
β−2
2 , n ∈ N.

By (2.4), we have

K(r) �
∞∑

n=0

r2ne−2A(α)(n+1)β (n+ 1)1−
β
2 , r > 0,

and

K(r) 
 r2me−2A(α)(m+1)β (m+ 1)1−
β
2 , r > 0, m ∈ N. (2.5)

Since τk � dk � |λk|, k ∈ N, the number of points in Qm := Q(Rm, q) is bounded. Hence for

any function F ∈ H

∑

λk∈Qm

1

πr2k

∫

B(λk,rk)

|F (λ)|2
K(λ)

dm(λ) ≺ 1

R2
m

∫

Q(Rm,q)

|F (λ)|2
K(λ)

dm(λ), m ∈ N. (2.6)

We apply the inequality (2.6) to the function zn. By (2.5), we have

Im(n) :=
∑

λk∈Qm

1

πr2k

∫

B(λk,rk)

|λ|2n
K(λ)

dm(λ) ≺ 1

R2
m

∫

Q(Rm,q)

|λ|2(n−m)e2A(α)(m+1)β (m+ 1)
β
2
−1dm(λ)

≺ R2(n−m)
m e2A(α)(m+1)β (m+ 1)

β
2
−1, n,m ∈ N.

An elementary calculation shows that

cnIm(n) ≺ e−2A(α)[(n+1)β−(m+1)β−β(m+1)β−1(n−m)]
( n+ 1

m+ 1

) 2−β
2
, n,m ∈ N.

By the Taylor formula for x � y > 0 and some x0 ∈ (y;x)

yβ = xβ + βxβ−1(y − x) +
1

2
β(β − 1)xβ−2

0 (y − x)2

� xβ + βxβ−1(y − x) +
1

2
β(β − 1)yβ−2(y − x)2.
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Consequently, for m � n

(n+ 1)β − (m+ 1)β − β(m+ 1)β−1(n−m) � 1

2
β(β − 1)(n+ 1)β−2(m− n)2,

cnIm(n) ≺ e−α−β+1(β−1)(n+1)β−2(m−n)2
(
1 +

m− n

n+ 1

)β−2
2
, n ∈ N, m � n.

Thus,

cn

∞∑

m=n

Im(n) ≺
∞∑

k=0

e−α−β+1(β−1)k2k
β−2
2 := C1, n ∈ N.

Similarly, for m < n

(n+ 1)β − (m+ 1)β − β(m+ 1)β−1(n−m) � 1

2
β(β − 1)(m+ 1)β−2(m− n)2,

cn

n−1∑

m=1

Im(n) ≺
n−1∑

k=1

e−α−β+1(β−1)k2 := C2, n ∈ N.

Finally, we obtain the estimate

‖zn‖22 =
∞∑

m=1

Im(n) ≺ C1 + C2

cn
= (C1 + C2)‖zn‖2, n ∈ N,

where

‖F‖22 :=
1

R2
m

∫

Q(Rm,q)

|F (λ)|2
K(λ)

dm(λ), F ∈ H.

Since the system {zn, n = 0, 1, . . .} is an orthogonal basis, we have

‖F‖22 =
∞∑

n=0

|fn|2‖zn‖22 ≺
∞∑

n=0

|fn|2‖zn‖2 = ‖F‖2, F ∈ H,

where fn are the Taylor coefficients of the function F . In view of (2.6), ‖F‖20 ≺ ‖F‖2 for F ∈ H.

Theorem 1.2 is proved.
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