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We study the solvability of certain linear nonhomogeneous elliptic equations and estab-

lish that, under some technical assumptions, the L2-convergence of the right-hand sides

yields the existence and convergence of solutions in an appropriate Sobolev space. The

problems involve differential operators with or without Fredholm property, in particular,

the one-dimensional negative Laplacian in a fractional power, on the whole real line or

on a finite interval with periodic boundary conditions. We prove that the presence of the

transport term in these equations provides regularization of the solutions. Bibliography:

23 titles.

1 Introduction

We consider the equation

−Δu+ V (x)u− au = f, (1.1)

where u ∈ E = H2(Rd), f ∈ F = L2(Rd), d ∈ N, a is a constant, and V (x) converges to

0 at infinity. For a � 0 the essential spectrum of the operator A : E → F corresponding to

the left-hand side of (1.1) contains the origin. Consequently, the operator does not possess

the Fredholm property. For such operators the image is not closed and for d > 1 the kernel

dimension and the image codimension are not finite. In the present paper, we study some

properties of such operators. We note that elliptic equations with non-Fredholm operators were

treated extensively in recent years (cf. [1]–[6]) along with their potential applications to the

theory of reaction-diffusion problems (cf. [7, 8]). In the particular case a = 0, the operator A

satisfies the Fredholm property in some properly chosen weighted spaces (cf. [6] and [9]–[12]).

However, the case a �= 0 is significantly different and the approach developed in the cited works

cannot be applied.

One of the important issues about equations with non-Fredholm operators concerns their

solvability. We address it in the following setting. Let fn be a sequence of functions in the

image of the operator A such that fn → f in L2(Rd) as n → ∞. Denote by un a sequence of
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functions from H2(Rd) such that Aun = fn, n ∈ N. Since the operator A fails to satisfy the

Fredholm property, the sequence un may not be convergent. Let us call a sequence un such that

Aun → f a solution in the sense of sequences of the problem Au = f (cf. [13]). If this sequence

converges to a function u0 in the E-norm, then u0 is a solution to this problem. A solution in

the sense of sequences is equivalent in this sense to the usual solution. However, in the case of

non-Fredholm operators, the convergence may not hold or it can occur in some weaker sense.

Then the solution in the sense of sequences may not imply the existence of the usual solution.

In the this paper, we obtain sufficient conditions for the equivalence of solutions in the sense

of sequences and the usual solutions. In other words, we obtain conditions on the sequences fn
guaranteeing the strong convergence of the corresponding sequence un.

In the first part of the paper, we study the problem with the transport term

(
− d2

dx2

)s
u− b

du

dx
− au = f(x), x ∈ R, 0 < s < 1, (1.2)

where a � 0 and b ∈ R, b �= 0, are constants and the right-hand side belongs to L2(R).

The operator
(
− d2

dx2

)s
can be defined by means of the spectral calculus and is extensively

used, for example, in the study of anomalous diffusion and related problems (cf. [14] and the

references therein). Anomalous diffusion can be described as a random process of particle motion

characterized by the probability density distribution of jump length. The moments of this density

distribution are finite in the case of normal diffusion, but this is not the case for the anomalous

diffusion. The asymptotic behavior at infinity of the probability density function determines the

value of the power of the Laplace operator (cf. [15]). The form boundedness criterion for the

relativistic Schrödinger operator was proved in [16]. The article [17] deals with establishing the

embedding theorems and the studies of the spectrum of a certain pseudodifferential operator.

The equation with drift in the context of the Darcy law describing the fluid motion in a porous

medium was treated in [4]. The transport term is significant when studying the emergence

and propagation of patterns arising in the theory of speciation (cf. [18]). Nonlinear propagation

phenomena for reaction-diffusion type equations including the drift term was studied in [19].

Weak solutions of the Dirichlet and Neumann problems with drift were considered in [20].

Apparently, the operator involved on the left-hand side of (1.2)

La, b, s :=
(
− d2

dx2

)s − b
d

dx
− a : H1(R) → L2(R), 0 < s � 1

2
, (1.3)

La, b, s :=
(
− d2

dx2

)s − b
d

dx
− a : H2s(R) → L2(R),

1

2
< s < 1, (1.4)

is nonselfadjoint. Using the standard Fourier transform

f̂(p) :=
1√
2π

∞∫

−∞
f(x)e−ipxdx, p ∈ R, (1.5)

it can be easily derived that the essential spectrum of the operator La, b, s is given by

λa, b, s(p) := |p|2s − a− ibp, p ∈ R.

It is evident that, in the case a > 0, the operator La, b, s is Fredholm since the origin does not

belong to its essential spectrum. But if a vanishes, the operator L0, b, s does not satisfy the

Fredholm property because its essential spectrum contains the origin.
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Note that, in the absense of the transport term, we deal with the selfadjoint operator

(
− d2

dx2

)s − a : H2s(R) → L2(R), a > 0,

which fails to satisfy the Fredholm property (cf. [21]). Let us write down the corresponding

sequence of approximate equations with m ∈ N as

(
− d2

dx2

)s
um − b

dum
dx

− aum = fm(x), x ∈ R, 0 < s < 1, (1.6)

where the right-hand sides tend to the right-hand side of (1.2) in L2(R) as m → ∞. The inner

product of two functions is defined by

(f(x), g(x))L2(R) :=

∞∫

−∞
f(x)g(x)dx, (1.7)

with a slight abuse of notation when these functions are not square integrable. Indeed, if

f(x) ∈ L1(R) and g(x) ∈ L∞(R), then the integral on the right-hand side of (1.7) makes sense

like, for example, in the case of functions involved in the orthogonality conditions (1.10) and

(1.11) of Theorems 1.1 and 1.2 below. For the problems on the finite interval I := [0, 2π] with

periodic boundary conditions, we use the inner product analogous to (1.7), replacing the real

line with I. In the first part of the present work, we consider the spaces H1(R) and H2s(R),

0 < s < 1, equipped with the norms

‖u‖2H1(R) := ‖u‖2L2(R) +
∥∥∥du
dx

∥∥∥
2

L2(R)
, (1.8)

‖u‖2H2s(R) := ‖u‖2L2(R) +
∥∥∥
(
− d2

dx2

)s
u
∥∥∥
2

L2(R)
(1.9)

respectively. Using the norms in H1(I) and H2s(I), 0 < s < 1, in the second part of the article,

we replace R with I in formulas (1.8) and (1.9) respectively. Our first main proposition is as

follows.

Theorem 1.1. Let f(x) : R → R, f(x) ∈ L2(R).

(a) If a > 0 and 0 < s � 1/2, then Equation (1.2) has a unique solution u(x) ∈ H1(R).

(b) If a > 0 and 1/2 < s < 1, then Equation (1.2) has a unique solution u(x) ∈ H2s(R).

(c) If a = 0, 0 < s < 1/4, and, in additon, f(x) ∈ L1(R), then Equation (1.2) has a unique

solution u(x) ∈ H1(R).

(d) If a = 0, 1/4 � s � 1/2, and, in addition, xf(x) ∈ L1(R), then Equation (1.2) has a unique

solution u(x) ∈ H1(R) if and only if

(f(x), 1)L2(R) = 0. (1.10)

(e) If a = 0, 1/2 < s < 1, and, in addition, xf(x) ∈ L1(R), then Equation (1.2) has a unique

solution u(x) ∈ H2s(R) if and only if the orthogonality relation (1.10) holds.
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It is evident that the expression on the left-hand side of (1.10) is well defined by simple

arguments analogous to the proof of Fact 1 in [2]. We formulate the result on the solvability in

the sense of sequences on the whole real line.

Theorem 1.2. Assume that m ∈ N, fm(x) : R → R, and fm(x) ∈ L2(R). Let fm(x) → f(x)

in L2(R) as m → ∞.

(a) If a > 0 and 0 < s � 1/2, then Equations (1.2) and (1.6) have unique solutions u(x) ∈
H1(R) and um(x) ∈ H1(R) such that um(x) → u(x) in H1(R) as m → ∞.

(b) If a > 0 and 1/2 < s < 1, then Equations (1.2) and (1.6) have unique solutions u(x) ∈
H2s(R) and um(x) ∈ H2s(R) such that um(x) → u(x) in H2s(R) as m → ∞.

(c) if a = 0, 0 < s < 1/4, and, in addition, fm(x) ∈ L1(R) and fm(x) → f(x) in L1(R)

as m → ∞, then Equations (1.2) and (1.6) have unique solutions u(x) ∈ H1(R) and

um(x) ∈ H1(R) such that um(x) → u(x) in H1(R) as m → ∞.

(d) Assume that a = 0, 1/4 � s � 1/2, xfm(x) ∈ L1(R), and xfm(x) → xf(x) in L1(R) as

m → ∞. Let

(fm(x), 1)L2(R) = 0, m ∈ N. (1.11)

Then Equations (1.2) and (1.6) have unique solutions u(x) ∈ H1(R) and um(x) ∈ H1(R)

such that um(x) → u(x) in H1(R) as m → ∞.

(e) Assume that a = 0, 1/2 < s < 1, and, in addition, xfm(x) ∈ L1(R) and xfm(x) → xf(x)

in L1(R) as m → ∞. Let the orthogonality relations (1.11) hold. Then Equations (1.2) and

(1.6) have unique solutions u(x) ∈ H2s(R) and um(x) ∈ H2s(R) such that um(x) → u(x)

in H2s(R) as m → ∞.

Note that the orthogonality conditions are not used in assertions (a) and (b) of Theorems 1.1

and 1.2, unlike assertion (e) of Theorems 1.1 and 1.2 in [21]. Another issue is that we establish

the solvability of our equations in H1(R) for 0 < s � 1/2 in Theorems 1.1 and 1.2, whereas in

cases (a) and (e) in Theorems 1.1 and 1.2 of [21], the solvability was established without a

transport term only in H2s(R). Finally, in Theorem 1.1 (e) and Theorem 1.2(e) above, only one

orthogonality condition is requred, unlike assertion (a) in Theorems 1.1 and 1.2 of [21], where

the second orthogonality relation is required for s ∈ [3/4, 1) along with the assumption that

x2f(x), x2fm(x) ∈ L1(R), m ∈ N. Hence the introduction of the transport term provides the

regularization for the solutions to the equations under consideration.

In the second part of the paper, we study the above equation on the finite interval I := [0, 2π]

with periodic boundary conditions

(
− d2

dx2

)s
u− b

du

dx
− au = f(x), x ∈ I, (1.12)

where a � 0 and b ∈ R, b �= 0, are constants and the right-hand side of (1.12) is bounded and

periodic. It is obvious that

‖f‖L1(I) � 2π‖f‖L∞(I) < ∞, ‖f‖L2(I) �
√
2π‖f‖L∞(I) < ∞. (1.13)

Thus, f(x) ∈ L1(I) ∩ L2(I). We use the Fourier transform

fn :=
1√
2π

2π∫

0

f(x)e−inxdx, n ∈ Z, (1.14)
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such that

f(x) =

∞∑
n=−∞

fn
einx√
2π

.

It is clear that the nonselfadjoint operator on the left-hand side of (1.12)

La, b, s :=
(
− d2

dx2

)s − b
d

dx
− a : H1(I) → L2(I), 0 < s � 1

2
, (1.15)

La, b, s :=
(
− d2

dx2

)s − b
d

dx
− a : H2s(I) → L2(I),

1

2
< s < 1, (1.16)

is Fredholm. By (1.14), it is easy to verify that the spectrum of La, b, s is given by λa, b, s(n) :=

|n|2s − a − ibn, n ∈ Z, and the corresponding eigenfunctions are the Fourier harmonics
einx√
2π

,

n ∈ Z. The eigenvalues of the operator La, b, s are simple, unlike the situation without the

transport term, where the eigenvalues corresponding to n �= 0 are double-degenerate. The

appropriate function spaces H1(I) and H2s(I) are

{u(x) : I → R | u(x), u′(x) ∈ L2(I), u(0) = u(2π), u′(0) = u′(2π)},
{
u(x) : I → R | u(x),

(
− d2

dx2

)s
u(x) ∈ L2(I), u(0) = u(2π), u′(0) = u′(2π)

}

respectively. For the technical purposes we introduce the auxiliary constrained subspaces

H1
0 (I) = {u(x) ∈ H1(I) | (u(x), 1)L2(I) = 0}, (1.17)

H2s
0 (I) = {u(x) ∈ H2s(I) | (u(x), 1)L2(I) = 0} (1.18)

which are Hilbert spaces (cf., for example, [22, Chapter 2.1]). It is clear that for a > 0 the kernel

of the operator La, b, s is trivial. In the case a = 0, we consider

L0, b, s : H1
0 (I) → L2(I), 0 < s � 1

2
,

L0, b, s : H2s
0 (I) → L2(I),

1

2
< s < 1.

It is evident that such an operator has the trivial kernel. We write the corresponding sequence

of the approximate equations with m ∈ N:

(
− d2

dx2

)s
um − b

dum
dx

− aum = fm(x), x ∈ I, (1.19)

where the right-hand sides are bounded, periodic and converge to the right-hand side of (1.12)

in L∞(I) as m → ∞. The purpose of Theorems 1.3 and 1.4 below is to demonstrate the formal

similarity of the results on the finite interval with periodic boundary conditions to the ones

derived for the whole real line situation in Theorems 1.1 and 1.2.

Theorem 1.3. Assume that f(x) : I → R, f(0) = f(2π), f(x) ∈ L∞(I).

(a) If a > 0 and 0 < s � 1/2, then Equation (1.12) has a unique solution u(x) ∈ H1(I).
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(b) If a > 0 and 1/2 < s < 1, then Equation (1.12) has a unique solution u(x) ∈ H2s(I).

(c) If a = 0 and 0 < s � 1/2, then Equation (1.12) has a unique solution u(x) ∈ H1
0 (I) if and

only if

(f(x), 1)L2(I) = 0. (1.20)

(d) If a = 0 and 1/2 < s < 1, then Equation (1.12) has a unique solution u(x) ∈ H2s
0 (I) if and

only if the orthogonality relation (1.20) holds.

Our final main statement deals with the solvability in the sense of sequences on the finite

interval I.

Theorem 1.4. Let m ∈ N and fm(x) : I → R be such that fm(0) = fm(2π). Furthermore,

fm(x) ∈ L∞(I) and fm(x) → f(x) in L∞(I) as m → ∞.

(a) If a > 0 and 0 < s � 1/2, then Equations (1.12) and (1.19) have unique solutions u(x) ∈
H1(I) and um(x) ∈ H1(I) such that um(x) → u(x) in H1(I) as m → ∞.

(b) If a > 0 and 1/2 < s < 1, then Equations (1.12) and (1.19) have unique solutions u(x) ∈
H2s(I) and um(x) ∈ H2s(I) such that um(x) → u(x) in H2s(I) as m → ∞.

(c) IF a = 0, 0 < s � 1/2, and

(fm(x), 1)L2(I) = 0, m ∈ N, (1.21)

then Equations (1.12) and (1.19) have unique solutions u(x) ∈ H1
0 (I) and um(x) ∈ H1

0 (I)

such that um(x) → u(x) in H1
0 (I) as m → ∞.

(d) If a = 0, 1/2 < s < 1, and the orthogonality relations (1.21) hold, then EQuations (1.12)

and (1.19) have unique solutions u(x) ∈ H2s
0 (I) and um(x) ∈ H2s

0 (I) such that um(x) →
u(x) in H2s

0 (I) as m → ∞.

Note that the orthogonality relations are not needed in assertions (a) and (b). If there is no

transport term in the problems under consideration, the situation is more singular (cf. formulas

(3.2) and (3.8) below with a = n2s
0 , n0 ∈ N).

2 The Whole Real Line Case

Proof of Theorem 1.1. We first show that it suffices to solve the equation in L2(R). In-

deed, if u(x) is a square integrable solution to Equation (1.2), we have

(
− d2

dx2

)s
u− b

du

dx
∈ L2(R).

Using the standard Fourier transform (1.5), we derive (|p|2s − ibp)û(p) ∈ L2(R), so that

∞∫

−∞
(|p|4s + b2p2)|û(p)|2dp < ∞. (2.1)
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Let 0 < s � 1/2. From (2.1) we easily deduce that

∞∫

−∞
p2|û(p)|2dp < ∞.

Hence
du

dx
∈ L2(R) and u(x) ∈ H1(R).

Let 1/2 < s < 1. Then (2.1) yields

∞∫

−∞
|p|4s|û(p)|2dp < ∞.

Therefore,
(
− d2

dx2

)s
u ∈ L2(R) so that u(x) ∈ H2s(R).

Let us prove the uniqueness of a solution to Equation (1.2) in the case 0 < s � 1/2. For

1/2 < s < 1 the proof is similar. Assume that u1(x), u2(x) ∈ H1(R) satisfy (1.2). Then their

difference w(x) := u1(x)− u2(x) ∈ H1(R) solves the homogeneous problem

(
− d2

dx2

)s
w − b

dw

dx
− aw = 0.

Since the operator La, b, s defined in (1.3) does not possess any nontrivial zero modes in H1(R),

we have w(x) = 0 identically on R.

Applying the standard Fourier transform (1.5) to both sides of (1.2), we get

û(p) =
f̂(p)

|p|2s − a− ibp
, p ∈ R, 0 < s < 1. (2.2)

Thus,

‖u‖2L2(R) =

∞∫

−∞

|f̂(p)|2
(|p|2s − a)2 + b2p2

dp. (2.3)

Let us first consider assertions (a) and (b). From (2.3) it follows that

‖u‖2L2(R) �
1

C
‖f‖2L2(R) < ∞

due to the above assumptions. Here and below, C denotes a finite positive constant. By the

above, if a > 0, then Equation (1.2) has a unique solution u(x) ∈ H1(R) if 0 < s � 1/2 and

u(x) ∈ H2s(R) if 1/2 < s < 1.

Let us consider the case a = 0. Formula (2.2) yields

û(p) =
f̂(p)

|p|2s − ibp
χ{|p|�1} +

f̂(p)

|p|2s − ibp
χ{|p|>1}. (2.4)

Throughout the paper, χA denotes the characteristic function of a set A ⊆ R. It is obvious that

the second term on the right-hand side of (2.4) can be estimated from above in the absolute

value by

|f̂(p)|√
1 + b2

∈ L2(R)
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since f(x) is square integrable as assumed. It is clear that

‖f̂(p)‖L∞(R) �
1√
2π

‖f(x)‖L1(R). (2.5)

If 0 < s < 1/4, then we use (2.5) to derive

∣∣∣ f̂(p)

|p|2s − ibp
χ{|p|�1}

∣∣∣ � |f̂(p)|
|p|2s χ{|p|�1} �

‖f(x)‖L1(R)√
2π|p|2s χ{|p|�1}.

This allows us to obtain the upper bound on the norm

∥∥∥ f̂(p)

|p|2s − ibp
χ{|p|�1}

∥∥∥
2

L2(R)
�

‖f(x)‖2L1(R)

π(1− 4s)
< ∞

since f(x) ∈ L1(R) as assumed. By the argument above, Equation (1.2) has a unique solution

u(x) ∈ H1(R) in assertion (c).

To prove assertions (d) and (e), we express

f̂(p) = f̂(0) +

p∫

0

df̂(s)

ds
ds.

Hence the first term on the right-hand side of (2.4) can be written as

f̂(0)

|p|2s − ibp
χ{|p|�1} +

p∫

0

df̂(s)

ds
ds

|p|2s − ibp
χ{|p|�1}. (2.6)

By the definition (1.5) of the standard Fourier transform, we easily get

∣∣∣df̂(p)
dp

∣∣∣ � 1√
2π

‖xf(x)‖L1(R).

This enables us to estimate the second term in (2.6) from above in the absolute value by

1√
2π

‖xf(x)‖L1(R)

|b| χ{|p|�1} ∈ L2(R)

due to the assumptions. Let us analyze the first term in (2.6), which is given by

f̂(0)

|p|2s − ibp
χ{|p|�1}. (2.7)

It is clear that for 1/4 � s � 1/2, the expression (2.7) can be bounded below in the absolute

value by

|f̂(0)|
|p|2s√1 + b2

χ{|p|�1},

which does not belong to L2(R) unless f̂(0) vanishes. This gives us orthogonality relation

(1.10). In case (d), the square integrability of the solution u(x) to Equation (1.2) is equivalent

to u(x) ∈ H1(R).
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It is evident that for 1/2 < s < 1 the expression (2.7) can be estimated below in the absolute

value by the quantity

|f̂(0)|
|p|√1 + b2

χ{|p|�1},

which is not square integrable unless the orthogonality condition (1.10) holds. In case (e), the

square integrability of the solution u(x) to the problem (1.2) is equivalent to u(x) ∈ H2s(R).

We proceed by establishing the solvability in the sense of sequences on the whole real line.

Proof of Theorem 1.2. We assume that Equations (1.2) and (1.6) have unique solutions

u(x) ∈ H1(R) and um(x) ∈ H1(R), m ∈ N if 0 < s � 1/2 and, similarly, u(x) ∈ H2s(R) and

um(x) ∈ H2s(R), m ∈ N, for 1/2 < s < 1 such that um(x) → u(x) in L2(R) as m → ∞. Then

um(x) also converges to u(x) in H1(R) as m → ∞ for 0 < s � 1/2 and, similarly, um(x) → u(x)

in H2s(R) as m → ∞ if 1/2 < s < 1. Indeed, from (1.2) and (1.6) it follows that

∥∥∥
(
− d2

dx2

)s
(um − u)− b

d(um − u)

dx

∥∥∥
L2(R)

� ‖fm − f‖L2(R) + a‖um − u‖L2(R). (2.8)

The right-hand side of the upper bound (2.8) tends to zero as m → ∞ by the above assumptions.

Using the standard Fourier transform (1.5), we easily get

∞∫

−∞
(|p|4s + b2p2)|ûm(p)− û(p)|2dp → 0, m → ∞. (2.9)

Let 0 < s � 1/2. By (2.9),

∞∫

−∞
p2|ûm(p)− û(p)|2dp → 0, m → ∞,

so that
dum
dx

→ du

dx
in L2(R), m → ∞.

Therefore, if 0 < s � 1/2, we have um(x) → u(x) in H1(R) as m → ∞.

Assume that 1/2 < s < 1. By (2.9),

∞∫

−∞
|p|4s|ûm(p)− û(p)|2dp → 0, m → ∞.

Then (
− d2

dx2

)s
um →

(
− d2

dx2

)s
u in L2(R), m → ∞.

Hence for 1/2 < s < 1, we have um(x) → u(x) in H2s(R) as m → ∞.

Applying the standard Fourier transform (1.5) to both sides of (1.6), we get

ûm(p) =
f̂m(p)

|p|2s − a− ibp
, m ∈ N, p ∈ R, 0 < s < 1. (2.10)

293



Let us discuss assertions (a) and (b). By Theorem 1.1, (a), (b), if a > 0, then Equations (1.2)

and (1.6) have unique solutions u(x) ∈ H1(R) and um(x) ∈ H1(R), m ∈ N provided that

0 < s � 1/2 and, similarly u(x) ∈ H2s(R) and um(x) ∈ H2s(R), m ∈ N, if 1/2 < s < 1. From

(2.10) and (2.2) we get

‖um − u‖2L2(R) =

∞∫

−∞

|f̂m(p)− f̂(p)|2
(|p|2s − a)2 + b2p2

dp.

Hence

‖um − u‖L2(R) �
1

C
‖fm − f‖L2(R) → 0, m → ∞,

by the above assumptions. Therefore, if a > 0, then um(x) → u(x) in H1(R) as m → ∞ for

0 < s � 1/2 and um(x) → u(x) in H2s(R) as m → ∞ for 1/2 < s < 1 by the above argument.

We complete the proof by considering the case a = 0. By [23, Lemma 3.3(a)], under our

assumptions,

(f(x), 1)L2(R) = 0 (2.11)

in asserations (d) and (e). By Theorem 1.1, (c), (d), (e), Equations (1.2) and (1.6) with a = 0

have unique solutions u(x) ∈ H1(R) and um(x) ∈ H1(R), m ∈ N, if 0 < s � 1/2 and, similarly,

u(x) ∈ H2s(R) and um(x) ∈ H2s(R), m ∈ N, for 1/2 < s < 1. From (2.10) and (2.2) it follows

that

ûm(p)− û(p) =
f̂m(p)− f̂(p)

|p|2s − ibp
χ{|p|�1} +

f̂m(p)− f̂(p)

|p|2s − ibp
χ{|p|>1}. (2.12)

Apparently, the second term on the right-hand side of (2.12) can be bounded from above in the

L2(R)-norm by
1√

1 + b2
‖fm − f‖L2(R) → 0, m → ∞

in view of the above assumptions. Let 0 < s < 1/4. Using an analog of the inequality (2.5), we

derive ∣∣∣∣∣
f̂m(p)− f̂(p)

|p|2s − ibp
χ{|p|�1}

∣∣∣∣∣ �
|f̂m(p)− f̂(p)|

|p|2s χ{|p|�1} �
‖fm − f‖L1(R)√

2π|p|2s χ{|p|�1}

so that ∥∥∥∥∥
f̂m(p)− f̂(p)

|p|2s − ibp
χ{|p|�1}

∥∥∥∥∥
L2(R)

�
‖fm − f‖L1(R)√

π(1− 4s)
→ 0, m → ∞,

by the above assumptions. Arguing as above, we see that um(x) → u(x) in H1(R) as m → ∞
in the case a = 0 and 0 < s < 1/4.

To prove assertions (d) and (e), we use the orthogonality conditions (2.11) and (1.11). By

the standard Fourier transform (1.5), we have f̂(0) = 0, f̂m(0) = 0, m ∈ N. Thus,

f̂(p) =

p∫

0

df̂(s)

ds
ds, f̂m(p) =

p∫

0

df̂m(s)

ds
ds, m ∈ N. (2.13)

Hence the first term on the right-hand side of (2.12) in assertions (d) and (e) can be written as

p∫

0

[df̂m(s)

ds
− df̂(s)

ds

]
ds

|p|2s − ibp
χ{|p|�1}.
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Using the standard Fourier transform (1.5), we easily derive

∣∣∣∣∣
df̂m(p)

dp
− df̂(p)

dp

∣∣∣∣∣ �
1√
2π

‖xfm(x)− xf(x)‖L1(R).

Hence

∣∣∣∣∣

p∫

0

[df̂m(s)

ds
− df̂(s)

ds

]
ds

|p|2s − ibp
χ{|p|�1}

∣∣∣∣∣ �
‖xfm(x)− xf(x)‖L1(R)√

2π|b| χ{|p|�1}

so that

∥∥∥∥∥

p∫

0

[df̂m(s)

ds
− df̂(s)

ds

]
ds

|p|2s − ibp
χ{|p|�1}

∥∥∥∥∥
L2(R)

�
‖xfm(x)− xf(x)‖L1(R)√

π|b| → 0

as m → ∞. Therefore, um(x) → u(x) in L2(R) as m → ∞. By the above argument in the case

a = 0, we have um(x) → u(x) in H1(R) as m → ∞ if 1/4 � s � 1/2 and um(x) → u(x) in

H2s(R) as m → ∞ for 1/2 < s < 1.

3 The Problem on Finite Interval

Proof of Theorem 1.3. We first show that it suffices to solve the problem in L2(I). Indeed,

if u(x) is a square integrable solution to Equation (1.12), periodic on I along with its first

derivative, then (
− d2

dx2

)s
u− b

du

dx
∈ L2(I).

From (1.14) we obtain (|n|2s − ibn)un ∈ l2 so that

∞∑
n=−∞

(|n|4s + b2n2)|un|2 < ∞. (3.1)

Let 0 < s � 1/2. By (3.1), we have
∞∑

n=−∞
n2|un|2 < ∞, which yields

du

dx
∈ L2(I). Hence

u(x) ∈ H1(I).

Let 1/2 < s < 1. By (3.1), we have
∞∑

n=−∞
|n|4s|un|2 < ∞, which yields

(
− d2

dx2

)s
u(x) ∈ L2(I).

Hence u(x) ∈ H2s(I).

To prove the uniqueness of a solution to Equation (1.12), we discuss the situation where

a > 0 and 0 < s � 1/2. If a > 0 and 1/2 < s < 1, similar ideas can be exploited for H2s(I). For

a = 0, 0 < s � 1/2 and a = 0, 1/2 < s < 1, our argument can be generalized by using the above

constrained subspaces H1
0 (I) and H2s

0 (I) respectively. Assume that u1(x), u2(x) ∈ H1(I) solve

(1.12). Then the difference w(x) := u1(x)− u2(x) ∈ H1(I) satifies the homogeneous equation

(
− d2

dx2

)s
w − b

dw

dx
− aw = 0.
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Since the operator La, b, s introduced in (1.15) does not have any nontrivial H1(I) zero modes,

w(x) ≡ 0 on I.

Applying the Fourier transform (1.14) to both sides of the problem (1.12), we get

un =
fn

|n|2s − a− ibn
, n ∈ Z. (3.2)

Hence

‖u‖2L2(I) =

∞∑
n=−∞

|fn|2
(|n|2s − a)2 + b2n2

. (3.3)

We begin with assertions (a) and (b). By (3.3), we have

‖u‖2L2(I) �
1

C
‖f‖2L2(I) < ∞

in view of the above assumptions and (1.13). Arguing as in the case a > 0, we see that Equation

(1.12) has a unique solution u(x) ∈ H1(I) if 0 < s � 1/2 and u(x) ∈ H2s(I) for 1/2 < s < 1.

To conclude the proof, we consider the case a = 0. In this case, (3.2) yields

un =
fn

|n|2s − ibn
, n ∈ Z. (3.4)

It is evident that the right-hand side of (3.4) belongs to l2 if and only if

f0 = 0 (3.5)

so that

‖u‖2L2(I) =
∑

n∈Z, n�=0

|fn|2
n4s + b2n2

� 1

1 + b2
‖f‖2L2(I) < ∞,

in view of the above assumtpions and (1.13). Arguing in the same way as in the proof of

assertions (c) and (d), we conclude that u(x) ∈ H1
0 (I) and u(x) ∈ H2s

0 (I) respectively. It is

obvious that (3.5) is equivalent to the orthogonality condition (1.20).

We proceed by establishing the solvability in the sense of sequences on the interval I with

periodic boundary conditions.

Proof of Theorem 1.4. Under the given assumptions, we get

|f(0)− f(2π)| � |f(0)− fm(0)|+ |fm(2π)− f(2π)| � 2‖fm − f‖L∞(I) → 0, m → ∞.

Hence f(0) = f(2π). By (1.13), for fm(x), f(x) bounded on the interval I we get fm(x), f(x) ∈
L1(I) ∩ L2(I), m ∈ N. An analog of (1.13) implies

‖fm(x)− f(x)‖L1(I) � 2π‖fm(x)− f(x)‖L∞(I) → 0, m → ∞. (3.6)

Hence fm(x) → f(x) in L1(I) as m → ∞. Similarly, (1.13) yields

‖fm(x)− f(x)‖L2(I) �
√
2π‖fm(x)− f(x)‖L∞(I) → 0, m → ∞. (3.7)
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Hence fm(x) → f(x) in L2(I) as m → ∞ as well. We apply the Fourier transform (1.14) to

both sides of (1.19) and derive

um,n =
fm,n

|n|2s − a− ibn
, m ∈ N, n ∈ Z. (3.8)

We first prove assertions (a) and (b). By Theorem 1.3, (a), (b), in the case a > 0, Equations

(1.12) and (1.19) have unique solutions u(x) ∈ H1(I) and um(x) ∈ H1(I),m ∈ N, for 0 < s � 1/2

and, similarly, u(x) ∈ H2s(I) and um(x) ∈ H2s(I), m ∈ N, for 1/2 < s < 1. From (3.8) along

with (3.2) and (3.7) we have

‖um − u‖2L2(I) =
∞∑

n=−∞

|fm,n − fn|2
(|n|2s − a)2 + b2n2

� 1

C
‖fm − f‖2L2(I) → 0, m → ∞.

Thus, um(x) → u(x) in L2(I) as m → ∞. By (1.12) and (1.19),

∥∥∥
(
− d2

dx2

)s
(um − u)− b

d(um − u)

dx

∥∥∥
L2(I)

� ‖fm − f‖L2(I) + a‖um − u‖L2(I).

The right-hand side of this inequality converges to zero as m → ∞ due to (3.7). The Fourier

transform (1.14) gives us

∞∑
n=−∞

(|n|4s + b2n2)|um,n − un|2 → 0, m → ∞. (3.9)

Let 0 < s � 1/2. Then (3.9) yields
∑∞

n=−∞ n2|um,n − un|2 → 0 as m → ∞. Therefore,

dum
dx

→ du

dx
in L2(I), m → ∞,

which implies um(x) → u(x) in H1(I) as m → ∞, as well as in case (a).

Let 1/2 < s < 1. By (3.9), we have
∑∞

n=−∞ |n|4s|um,n − un|2 → 0, m → ∞, so that

(
− d2

dx2

)s
um →

(
− d2

dx2

)s
u in L2(I), m → ∞.

Therefore, um(x) → u(x) in H2s(I) as m → ∞ as well as in case (b).

Finally, we consder the case where the constant a vanishes. Then (1.21) and (3.6) imply

|(f(x), 1)L2(I)| = |(f(x)− fm(x), 1)L2(I)| � ‖fm − f‖L1(I) → 0, m → ∞.

Hence the limiting orthogonality condition

(f(x), 1)L2(I) = 0 (3.10)

holds. By Theorem 1.3, (a), (d), in the case a = 0, Equations (1.12) and (1.19) have possess

unique solutions u(x) ∈ H1
0 (I) and um(x) ∈ H1

0 (I), m ∈ N respectively for 0 < s � 1/2 and,

similarly, u(x) ∈ H2s
0 (I) and um(x) ∈ H2s

0 (I), m ∈ N if 1/2 < s < 1. By (3.2) and (3.8),

um,n − un =
fm,n − fn
|n|2s − ibn

, m ∈ N, n ∈ Z. (3.11)
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The orthogonality relations (3.10) and (1.21) give us f0 = 0, fm,0 = 0, m ∈ N. We obtain the

upper bound on the norm

‖um − u‖L2(I) =

√√√√
∞∑

n=−∞, n�=0

|fm,n − fn|2
|n|4s + b2n2

�
‖fm − f‖L2(I)√

1 + b2
→ 0, m → ∞,

by using (3.7). Hence um(x) → u(x) in L2(I) as m → ∞. Therefore, if a vanishes and

0 < s � 1/2, we prove then um(x) → u(x) in H1
0 (I) as m → ∞ as in assertion (a). If a = 0 and

1/2 < s < 1, then um(x) → u(x) in H2s
0 (I) as m → ∞ as in assertion (b).
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