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We consider the Dirichlet problem for the p-Laplacian with weight and continuous bound-
ary function in a domain D divided into two parts by the hyperplane ¥. The weight is
equal to 1 in some part of the domain D and coincides with a small parameter € in
the other. We estimate the modulus of continuity for the solution at a boundary point
xo € 0D N'Y with a constant independent of €. Bibliography: 22 titles.

Dedicated to the 80th anniversary of Vasilii Vasil’evich Zhikov

1 Introduction

In a bounded domain D C R", n > 2, we consider the equation

Lu = div (we(2)|Vu[’"?Vu) =0, p=const > 1. (1.1)
We assume that the domain D is divided into the parts D) = D N {z, > 0} and D? =
D n{x, < 0} by the hyperplane ¥ = {z,, = 0} and
€, xp >0,

e € (0,1]. 1.2
L & <0, (0,1] (1.2)

we(z) = we(2n) = {

Below, W1P(D) denotes the Sobolev space of functions that, together with all generalized first
order derivatives, belong to LP(D) and WO1 P(D) is the closure of the set C§°(D) of compactly
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supported and infinitely differentiable functions in D in the W'P(D)-norm. We say that a
function u € WHP(D) is a solution to Equation (1.1) in D if the integral identity

/w6]Vu\p_2Vu -Vedr =0 (1.3)
D

holds for any test function ¢ € Wg P(D). A function u € WHP(D) is called a supersolution to
Equation (1.1) in D if for all nonnegative ¢ € Wy (D)

/wgyvuw? Vu-Vodr > 0. (1.4)
D

We consider the Dirichlet problem
Lu=0 in D, uweW"(D), he W(D), (u—h)e W,?(D). (1.5)

The solution to this problem coincides with the minimizer of the variational problem

min  F(v), F)= /wa(aﬁ)’vd}p dx.

Y—heW, P (D) A p

This paper is devoted to the study of boundary properties of solutions to the Dirichlet
problem
LUf =0 in D, Uf|8D = f, (1.6)

where f is continuous on 9D.

A solution to the problem (1.6) is defined as follows. Using the Tietze—Uryson theorem, we
extend the boundary function f by continuity to R™, preserving the same notation. We consider
a sequence of infinitely differentiable functions fj in R”, uniformly converging to f in D. We
solve the Dirichlet problem

(¢}

Luk =0 in D, Uk S Wpl(D)v (ukz _fk) GWpl (D)

By the maximum principle, the sequence uj converges uniformly in D to a function u that
belongs to the space WYP(D’) in an arbitrary subdomain D’ € D and satisfies the integral
identity (1.3) with test functions ¢ € W1P(D) with compact support in D. The limit function
is independent of the extension method and approximation of the boundary function f and is
called a weak solution to the Dirichlet problem (1.6). We refer, for example, to [1]-[3] for details
of this construction.

Definition 1.1. A boundary point zy € 9D is said to be regular if b lim wg(x) = f(zo)
2T—T0

for any continuous function f on 9D.
In what follows, we need the notion of a capacity. The capacity of a compact set K C B

relative to a ball B C R™ is the number

Cp(K, B) = inf /\th\pdm cpeC®(B), =1 on K
B
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We denote by B0 an open ball in R with center xy and radius = and by B’ its closure. The
criterion for regularity of a boundary point z¢p € 9D for the classical p-Laplacian ((1.1) with
e = 1) consists in the following identity

/ (cp (BX\ D, B;”;f)))”_l dr _ (1.7)

rn—p T
0

For the Laplace equation this assertion is the classical result due to Wiener [4, 5]. In the case
of linear divergence-form uniformly elliptic equations with measurable coefficients, the Wiener
criterion was obtained in [6]. In the case p # 2, a sufficient condition in the form (1.7) for the
regularity of a boundary point was found in [7], where for equation of the form (1.1) without small
parameter ¢ the estimate for the modulus of continuity of a solution at a regular boundary point
was also proved. The estimates obtained in [7] were generalized to a large class of quasilinear
elliptic equations of the p-Laplacian type in [8]. The necessity of the condition (1.7) for the
regularity of a boundary point in the case of p-Laplacian type equations was established in [9]
for n —1 < p < n and in [10] in the general case.

As was already mentioned, for equation of the form (1.1) without small parameter ¢ the esti-
mate for the modulus of continuity for solutions to the Dirichlet problem at a regular boundary
point was obtained in [7]. In this paper, we prove an analogous estimate for the modulus of
continuity of a solution to the Dirichlet problem (1.6) for Equation (1.1) with constants inde-
pendent of ¢ in the case where the boundary point zg € 9D lies on the phase interface ¥, i.e.,
rg € 0D NX.

We note that for any fixed e the regularity criterion for a boundary point xg € 3 coincides
with that for the classical p-Laplacian. In particular, the condition (1.7) is necessary and
sufficient for the regularity of a boundary point. However, the known from [7, 8] estimates
for the boundary modulus of continuity considerably degenerate as ¢ — 0.

Similar questions for interior estimates for degenerate linear elliptic equations were considered
n [11]-[14]. For linear parabolic equations that degenerate with respect to a small parameter
on a part of the domain it was proved in [15] that the solution is Holder on the interface X,
whereas the upper Nash—Aronson type estimates were obtained in [16]. The results of [15] were
generalized to the case of parabolic p-Laplacian type equations in [17, 18]. Similar phenomena
arise in the study of the p(z)-Laplacian with variable exponent [19].

For zp € 0D N'X we set

1

() = (%((E N {za <O)\D, B%;?))) g

rn—p

Theorem 1.1. If for xo € 0D N X the condition (1.7) holds, then for 0 < r < p/4 <
diam D/4 the solution us to the Dirichlet problem (1.6) satisfies the estimate

p
esssuplus — f(xo)| <2 osc_f+oscf-exp —C’/’y(t)t_1 dt |, (1.8)
DNB;° oDNB,° oD

where the positive constant C' depends only on n and p.
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If in a neighborhood of a boundary point zg, the domain is symmetric with respect to the
hyperplane ¥, then the obtained estimate coincides with the classical estimate obtained in [7].

The proof of Theorem 1.1 is based on the weak type Harnack inequality (cf. Lemma 2.5)
for nonnegative bounded supersolutions to Equation (1.1). Throughout the paper, Bg is an
open ball with radius R and a fixed center located on ¥ and the half-balls are denoted by
BY = Brn{z, >0} and BY = Brn {z, < 0}.

2 The Weak Type Harnack Inequality for Nonnegative
Supersolutions

Let |E| be the n-dimensional Lebesgue measure of a measurable set E C R", and let

ffdx:ﬁ/fdm.

|E]

We use the Sobolev embedding theorem

n—1

1/k
( owwhmj <anJnRPfWV¢de7 o€ CF(Br), k=—"— (21
BR BR

In what follows, w is a nonnegative supersolution to Equation (1.1) in Byg, w is the even
extension of w from Bﬁ% to BS{). with respect to the hyperplane 3, and

min(w, w) in B(l),
v= { _ & (2.2)
w in Bp.

Lemma 2.1. For any q > 0 the following estimate holds:

—1/q
iélfv > C(n,p, q)< ][vq(x)da:> . (2.3)
" Bsr

Proof. Without loss of generality we assume that the supersolution w is positive. Otherwise,
we consider the function w + ¢ and pass to the limit as 6 — 0 in the estimate (2.3). Taking
the test function ¢ = v"nP in (1.4), where v < 1 — p and the cut-off function n € C§°(Ba4r) is
radially symmetric and such that 0 < n < 1, we obtain the estimate

ol [ wdVulre s < [l ol Oale da.
Bagr Buir

Applying the Young inequality to the integrand on the right-hand side, we find

/ w€|Vw\pw7*17]p dr < C(p) / waw'yﬂofl’vn‘p dz.
Bir Byr

By (1.2), the choice of v, and the definition (2.2) of v, we have

/|Vv\p1ﬂ_177pd:v— / ]Vw]pwv_lnpdxé(?(p)/v7+p_1V77\pdx. (2.4)

2 2 B
5 5 in
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We proceed with a similar estimate in the half-ball BAS%). Setting

1 ~
Gr =B n{w < @} (2.5)
and assuming that G'g is not empty, we substitute the function

(WY —wY)nP  in Gp,

= (wY — " yZ—
4 ( )+77 {O in B4R \ GR,

into (1.4); here n and ~ are the same as above. As a result, using (1.2), we get

ol [ 1vurw e < b [ 1Vel = wata et p [ 19007 @0 - @)l de
GR GR GR

Further, applying the Young inequality to the integrands on the right-hand side of this inequality
and recalling the definition (2.5) of the set Gg, we find

/ |Vw[Puw) P d < C(p)( / V@ P@? ™ P da + /uﬂﬂollvmp dx).
GRr GRr Gr

Adding the integral
/ | V@ [Pw P da
BS%)\GR

to both sides of the last inequality and recalling the definition (2.2) of v, we obtain the estimate

/ |VoPoY P de < C(p)( / \V@[P@? ™ P da + / VPP dm).
5 5 5

From properties of the even extension of w, the radially symmetry of the cut-ff function 7, and
the relations (2.4) it follows that

/ |VolPY ™Iy de < C(p) / VPP da. (2.6)
s s
Adding both sides of (2.4) and (2.6), we find
/ |VolPoY "Iy de < C(p) / VPP da,
B4R B4R
which implies
[ 196 ds < o)y +p-1p [ o e (27)
Byr Bur
In the above consideration, the set Gg is assumed to be nonempty. If Gg is empty, then v = w

in Bf&% and (2.7) immediately follows from (2.4) and properties of the even extension of w.
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From (2.7) and the Sobolev embedding theorem (2.1) it follows that

1/k
( ][vk(wp_l)”kp dw) <C(p)ly+p—1PRP ][ VPP da, (2.8)

Bur Byr

For R < p < r < 3R we take a cut-off function n € C§°(B,) in (2.8) such that 0 < n < 1,
n=1in B, and |Vn| < Cr(R(r — p))~*. Then

1/k
( ][vkwwdx) <ch+p-11() forrrtan (2.9)

r—p
B, B,

We iterate this estimate. For j = 0,1,... we denote r; = R+277FIR, Xj = —gk? and substitute
r=rj, p="j41, ¥ =x; —p+1into (2.9). As a result, for

1/x;
Q; = ( ][’UXj da;)

By,

we obtain the recurrent relation
D; < Cl/lx]'l(2j|Xj|)p/\Xj\q)j+17
which implies (cf. [20]) the required estimate (2.3). O

Due to the following assertion we can obtain an auxiliary weak type Harnack inequality for
the function v defined in (2.2). Below, B? denotes an open ball of radius r and center z.

Lemma 2.2. For any ball B3, C Bag the following estimate holds:
/|V1nv|p dx < C(p)r"~P. (2.10)
BE

Proof. Let n € C§°(B3,) be aradially symmetric cut-off function nonincreasing with respect
to the distance from its argument to z and such that n = 1 in B? and |Vn| < Cr~!. Substituting
the test function ¢ = w!'~PnP into the integral inequality (1.4), we find, as in (2.4),

/ |V Inov|PnP de = / |V Inw|Pn? de < C(n,p)r"P. (2.11)
B3, 0B B5.NB{Y)

If B C Bﬁg, then the required estimate (2.10) is proved. Let BZ N Bﬁ% be nonempty. To prove

a similar estimate in BZ N BS%, we first assume that the set G defined by (2.5) is not empty
and choose the test function

(wl_p — 1171_1’) 7P in GRp,

— (pl—P _ 1Py P —
= (w —w =
4 ( )+77 {0 in B4R\GR.
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Then it is easy to see that

(p—1) / IVInwPn?dr < (p—1) / |Vw[P~HV In @|w' PnP da
GR GR

+p / IV Inw|P~|Vn|n~t de.
GRr

Since w < w on G, we can use the Cauchy inequality to find

/\Vlnw\pnpd:réC(p)< /ywnmpnpder/vmpdx). (2.12)
Gr Gr Gr

Adding the integral
/ |V Inw|Pn? dx
1)

(Bz,\Gr)NBY

to both sides of the estimate (2.12) and using the definition (2.2) of v, we get

/ |VInovPn? dz < C(p) / |V Inw|Pn? dz + / |Vn|pdm>. (2.13)
B3,NBip B3,0Bip B5,NBin
We first consider the case where the center of the ball B? is located in Pﬁ%. Then in view of

(2.11), properties of the even extension of the function w, the choice of the center of B?, and
properties of the cut-off function 7, we have

/ |V Inw|Pn? de < C(n,p)r™ P
B3,NBjx
and, in view of (2.13),
/ |V InvPn? de < C(n,p)r"P.
B3,NB{R
Therefore, from (2.11) we obtain the estimate
/ |V InvPnPdx < C(n,p)r" P,
B3,
which implies (2.10). Now, we consider the case where G is not empty and the center of
the ball B? is located in BEZ)' We denote by ()7 the image of the ball B under the mirror

extension with respect to the hyperplane ¥. We introduce the function 7(z1,...,zy—1,2,) =
n(z1,...,Tn—1,—xy). By (2.11) and the choice of the cut-off function 7, we have

/ |VInwPnP de = / |VInwPiP de < C(n,p)r" P,
B3,NBiy Q3,NBR

Now, (2.10) follows from (2.13) and (2.11). If the set G is empty, then v = w in BS%) and
(2.10) follows from (2.11). O
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By the John-Nirenberg lemma (cf. [20, 21]) or by the embedding theorem for functions
with gradient in the Morrey space [22, Theorem 7.21], we obtain the following assertion from
Lemma 2.2.

Corollary 2.1. There exist positive constants qo and C' depending only on n and p such that

—1/q0 1/q0
< ][vqo da:) > C( ][vqo dx) . (2.14)
Bsr Bsr

Now, from (2.3) and (2.14) we obtain the following auxiliary weak type Harnack inequality.

Lemma 2.3. There exists positive constants qo and C depending only on n and p and such

that for q € (0, qo]
1/q
infv > C( ][vq d:z:) . (2.15)
Br

Bsgr

Our next goal is to specify go in (2.15). Since the arguments of the proof of Lemma 2.1 do
not lead to the key estimate (2.4) in the case v > 1—p, we need to use some other test functions.
We first prove an intermediate gradient estimate.

Lemma 2.4. For 0 < By < 8 < p — 1 under the condition that

ep P/ =D (p—1)% < % (2.16)

for a nonnegative radially symmetric function n € C§°(Bar) the following estimate holds:
/ |VolPo =P 1nP da < C’(p)ﬂo_p/(p_l) / VPP WP de. (2.17)
Bar Bur

Proof. We choose the following test function in (1.4):

@p*kﬁwl*pnp in BS% \ GR,

= min(@? P! P, w P nP =
v ( ) w PP in GpU ij;g,

where the set G is defined by (2.5). Then we obtain the inequality

(p—1) / we| VwlPw PP~ PP dx + B / we | Vw|Pw =P 1yP dz
B{\Gr GrUB{Y)
<(p—1-7) / we |[Vw[P~H V@ |w! PaP =P 2yP dx
Bii\Gr
+p / we | Vw|P~ Lt PP A=Y P~ de + p / we | Vw|P~ L P|V|pP~tdz.  (2.18)

Big \GR GRUBAS—Q
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Successively applying the Young inequality to each of the integrands on the right-hand side of
(2.18), we obtain

IV P~ Vid|w' Parb2 < p= 16 [VwlPw Pa? P~ + (p— 1)p 6y YOV | vapa A1, (2.19)
|Vw [P~ twt PP~ AL | Wn Pt < p~ Lo | Vw[Pw PaP P~ 1yP

+(p— Dp 8, O @ g, (2:20)

[Vt PVl < p s [ Vw4 (p— 1)ptay VT B, (2.21)

where 6; > 0, i = 1,2,3. Inserting 1 = (p — D)p(p — 1 — B)"1/2, § = (p — 1)/2, 63 = 3/2, into

(2.19)-(2.21) and taking into account these estimates in (2.18), we find

g / VwlPw™ " P dz < (p— 1) / ((p—1-Bp~toy OV vapa=1yp

B B \Gr

+ 0y V@ P TP wed + / (b= 135 "V Uy de.
2)

BiRUGR

Taking into account the definition (1.2) of the weight, we have

s [wepe st i<y [ vaPE e secay) [ a0 vaPde
B B{)\Gr B{)\Gr
4 eCylp, B) / w PP TlP dz + Cy(p, B) / w1 VlP da,

Cr B2

R

where
Ci(p, B) = 2Y/@=Dp=p/0=1) () _ 1)=2/(=V)(, _ 1 _ g)p/>=1)
Co(p) = 2V @D (p — 1)e=D/=1)  Cy(p, B) = 2V/ =V (p — 1)g~ /=1,

For ¢ such that
eC1(p, B) < Bo/4 < B/4, (2.22)

using the evenness of the extension of w and the definition of v (recall that v = w in Bg% UGRr
and v = w ian&% \ GRr), we find

g / \Vw[Pw PP dz < eCo(p) / v PP P da
BiR Bip\Gr
+eCulp,B) [0 F TP do 4 Cap.p) [ oV da,

G 52
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Thus, we obtain the estimate

/ \Vw[Pw P~ nP dz < C(p)ﬁo_p/(p_l) / PP OpIP da. (2.23)
P B
In particular,
/ \Va|Po PP dz < C(p),@o_p/(p_l) / WP AL WP da. (2.24)
Bip\Gr Pan

Now, we substitute the test function

B 1P = (w™? —w PP in Gp,
* 0 in Byr \ Gg,

into (1.4). Then

5 [ IVuPwpd < [ Vel Vala S e de s p [ 19up e et da,
Gr GRr Gr

Applying the Young inequality to the integrands on the right-hand side of the last estimate and
using the definition (2.5) of the set Gr, we get

/ |Vw[Pw =P~ tnP dz < C’(p)ﬁo_p/(p_l) < / \Va|Pw P~ P dx + /w_ﬂ+p_1\V77|p da:).
Gr Gr Gr

Therefore, in view of (2.23) and the definition of w, we have

/ |Vw[Pw PP dz < C(p)ﬁap/(pfl) < / v PP P da + /w_ﬂ+p_1|V77|p dm). (2.25)

GRr Bsr GRr
Adding (2.23), (2.24), (2.25) and using the definition (2.2) of v, we find
/ ]Vv|p’u_ﬁ_177p de < C(p)ﬁo_p/(p_l) / v—ﬁ-&-p—l‘vmp de,
Bur Bur

which means the required estimate (2.17). It remains to note that (2.16) implies (2.22). O

Now, we proceed by proving the weak type Harnack inequality.
Lemma 2.5. Let 0 < By < p—1, and let the condition (2.16) hold. Then forr < (p—Bo—1)k,
where k =n/(n —1),

Br

1/r
infv > C’(n,p,ﬁ@( ][ v” da:) . (2.26)

Bsgr/2
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Proof. Let 5y < 8 <p— 1. From (2.17) we find

[ 19E g de < O p)s Y [0 vy da
B4R B4R

and, by the Sobolev embedding theorem (2.1),

1/k
( ][Uk(—ﬁ—l-p—l)nkp d:c) < C(n,p)ﬁop/(p1)Rp][v_ﬂ+p_1w77|p dz. (2.27)

Bir Byr

If (p — By — 1)k < qo, then the required inequality (2.26) is a consequence of (2.15) and the
Holder inequality. Let ¢ > go. We choose ¢1 € (qo/k, qo] such that ¢:k™ = (p — Bo — 1)k for
some m € N. For s > 0 we introduce the functional

(s, By, v) = <][U d:z:)l/s

T

and show that
®((p — Bo — 1)k, Bspy2,v) < C(n,p, Bo)®(q1, Bsr, v) (2.28)

For this purpose for 5R/2 < p < R < 3R we take in (2.27) a cut-off function n € C§°(B,) that
is equal to 1 in B, and such that |Vy| < Cr(R(r —p))~'. Weset 3 =p—1—0. As a result, we
obtain the estimate

”

p/0
—> ®(6, B,,v), (2.29)
p

r—

B(k8. Byev) < (COn )5 7)Y

is valid for 0 < § < p—1— fBy. Now, for j = 0,1,...,m — 1 we set r; = 3R — 27771R.
Taking r = 741, p = 74, 0 = (p — Bo — 1)k~ in (2.29), we iterate the obtained relation. As
a result, we obtain the relation (2.28). Now, by the choice of ¢, the estimate (2.15), and
the Holder inequality ®(q1, Bsg,v) < ®(qo, Bsr,v) we obtain the required estimate (2.26) for
r = (p—pPo—1)k. For r < (p— o — 1)k the estimate (2.26) again follows from the Holder
inequality ®(r, Bsr/ov) < ®((p — fo — 1)k, Bsg/2,v) [

From Lemmas 2.4 and 2.5 we obtain the key estimate.

Lemma 2.6. There is g = €o(n,p) such that for e < g

][ |VolP~tdz < C(n,p)R*P (inf U)p_l, (2.30)
Bar .
][vp_l dx < C(n,p) (ié’lf v)p_l. (2.31)
R

Baor

Proof. Let 5 € (0,p — 1). Using the Holder inequality, we obtain the estimate

(p=1)/p 1/p
][|Vv|p_177p dz < ( ][|va21_[3_1771’ dm) ( ][U(B"’l)(p_l)np dm) . (2.32)
Bsr

Bsr Bsr

193



We choose By such that
(Bo+1)(@—1)=(—Fo— Dk, (2.33)

which implies

_ p—1
fo = oy (2.34)

In (2.32), we take 8 = fp from (2.34) and use the inequality in Lemma 2.4 to estimate the first

term on the right-hand side of (2.32). Under such a choice of By, the condition (2.16) takes the
form

pp/(P=1)
TS = ) i - - 1)
We have
(p—1)/p 1/p
][\Vv]plnp dzr < ( ][vfgﬁpl]Vn\p dm) < ][v(ﬂ“pl)knp da:) . (2.35)
Bar Byr Bar

Choosing 1 € C§°(Bspg/2) such that n =1 in Bag and [Vr| < 8R~!, applying the estimate from
Lemma 2.5 to the integrals on the right-hand side of (2.35), and using (2.33) again, we arrive
at the required estimate (2.30). The inequality (2.31) under the same bound on ¢ follows from
the same estimate in Lemma 2.5 and the definition of 3y since (fo+1)(p —1) > p — 1. O

3 The Oscillation Lemma

We derive boundary estimates for the modulus of continuity.

For the solutions uy to the Dirichlet problem (1.5) with smooth boundary function h defined
on D and nonnegative on 9D we set m = inf h, zg € 9D NY and

dDNBLY
min(u,m), in DN B,
Uy = '
m, in B\ D.

Lemma 3.1. The function uy, is a bounded nonnegative supersolution to Equation (1.1) in
the ball By,

Proof. Let ¢ € C3°(Bj}), ¢ = 0. Then (u—1)_p € W01’2(D N Byy) for I < m. We consider
the function Ts(s) = 6 ((s—m)_—(s—(m—95))_), d > 0. It is clear that Ts(s) = 1 for s < m—d,
T5(s) = 0 for s > m, the function Ts(-) is nonincreasing, and T5(u)yp € Wol’p(BZ% N D). Taking
Ts(u)p for a test function in the definition of the solution (1.3), we get

/ we|[VulP?Ts(u)Vu - Vo dr = — / we|Vul|PT§(u)p dx > 0.
Bih Bin

Passing to the limit as § — 0, we find

/ We |V [P~ 2V, - Vi dz > 0,
Bih

which is equivalent to the definition of a supersolution to Equation (1.1) in the ball Bj},. O
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Further, we set w = wu,, and introduce v by formula (2.2) in the ball Bj}, ie., v =
min (U, U, )-

Lemma 3.2. The function v is supersolution to Equation (1.1) in the ball B}p,.

Proof. Let ¢ € C5°(B}},). We set

1, s <0,
Ts(s) =<1—s6"t, 0<s<d,, Ts(s)=1—Tss).
0, s = 0.

Choosing in the definition of the supersolution (1.4) the test function Ts(w — w)¢ for w and
using the monotonicity of the flow |¢[P~2¢, we find

/ wTs(w — )| Vw|P2Vw - Vo dr > — / wTH(w — )| VwP2Vw - V(w — @) dz

Qo o
Bir Bir

> — / w T (w — 0)p| VO P 2Vw - V(w — @) da = J.

0
B4R

For the integral J on the right-hand side we use the definition of TV(; and the fact that w is a
supersolution to Equation (1.1) in By N {z, > 0} and w —w = 0 in Bj} N {z, < 0}. Then

J= / . T w = @) | VTP 2VE - V(1w — @) da
Bzgﬂ{zn>0}
> / w.Ts(w — @)\ VEP2VE - Ve da.
Bypn{zn>0}

Consequently,

/ wTs5(w — @) |Vw|P2Vw - Vi dx + / wTs(w — @) |VO|P2Vw - Vpda > 0.
Bip BN {zn>0}

Passing to the limit as § — 0, we find

/ we|VwlP~2Vw - Vi dz + / we|[VO|P2Vw - Vi dz > 0.

{w<w} {w>w}
Hence
/ we |V min(w, w)[P~2V min(w, @) - Vo dx > 0,
Bih
which is equivalent to the definition of a supersolution in the ball BJ%. O

In what follows, £o(n,p) is the same as in Lemma 2.6. We recall that the function () was
introduced before Theorem 1.1.
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Lemma 3.3. Let e < gg(n,p). Then

inf u > C(n,p)m~y(R). (3.1)

o
BR

Proof. Inserting the test function ¢ = (m — v)nP, into the integral inequality (1.4) for the
supersolution v in the domain Bj},, where the function n € C§°(B3}) is radially symmetric,
n=1in BY, and |Vn| < 4R~!, we find

/ |VolPrP we dz < AR7'm | |VolP~ w, d.
0

o
B2R B2R

In particular, by the choice of the weight w. and the definition of v, we have
/ \VwPn? de < 4R7'm | |Vo|P~! da. (3.2)
By {z,<0} BYY
We recall that w = up,. Let Ggr = {w < w} N B3}. Inserting the test function

(w—w)n? in Gpg,

=(w—w) nf =
= )41 {0 i B\ G,

into the integral inequality (1.4) for the supersolution v, where the cut-off function 7 is the same
as above, we find

/|Vfw|pnpdx</]Vw|p1V1’E]npdx+p/|Vw|p1{17\V77|77p1d37.
GRr GRr Gr

Since w = u,;, < m, applying the Young inequality to the integrand in the first term on the
right-hand side of this estimate, we find

/|Vw\pnpda:<C(p)< /]V{E]pnpd:c—l—le/NMpl dm).
Gr GRr Gr

Taking into account (3.2) and properties of the even extension w of w, we find
/ VPP de < Cp)Rm | Vo da. (3.3)
(Byp{an<0hUGR By}
Furthermore, in view of (3.2) and the definition of w, we have
/ \Va|PnP de < C(p)R™'m [ |Vo|P~dz. (3.4)
By {zn>0P)\Gr By
Adding (3.3) and (3.4) and recalling the definition of v, we obtain the relation

/ |VolPrpPdz < C(p)R™'m [ |Vo[P~tdx
z

o
BQR BQR
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which, together with the estimate v? < mvP~!, implies

/|V nv)|[PnP dz < ()(R_lm/ Vv|p_1dx—|—R_pm/vp_1dx>. (3.5)

o 0
2R BZR B2R

Using (2.30) and (2.31) to estimate the integrals on the right-hand side of (3.5) and multiplying
both sides of the obtained relation by m ™", we get

/ |V (pom™1)[PnP da: < C’(n,p)ml_pRn_p(ing v)"”
B(E
B34 ’

Since num = > 1 on (B N {z, < 0})\ D, from the definition of capacity we have

Cp((BR N{xn <0})\ D, B3y < C(n,p)m' PR" P (inf )"~

o
BR

Now, the required inequality (3.1) follows from the definition of v and ~. O

Lemma 3.4. Let € < g9(n,p), and let C = C(n,p) be the same constant as in Lemma 3.3.
Then

essoscu < (1 — Cy(R))ess oscu + Cvy(R) osc_ h.
DNBE DNByY dDNBY

Proof. We set Hp = sup h, hg = inf h, Mp = sup u, mp = inf wu. Applying
aDmBZO aDﬂB ¥o DQBEO DQB

the estimate (3.1) to Myr — u and u — myR, we get
(Myr — Hyr)Cy(R) < Myp — MR, (har — mur)Cy(R) < mpr — myg,
where the constant C' depends only on n and p. Adding these inequalities, we obtain the estimate
Mg —mp < (1= Cy(R))(Mar — mar) + Cy(R)(Har — har),

which implies the required assertion. O

4 Proof of the Main Result

In this section, we prove Theorem 1.1. We recall that ¢g = £¢(n,p) is a positive number
defined in Lemma 2.6. If ¢ € [gg, 1], then the assertion of the theorem (and even stronger
estimates) follows from the results of [7, 8]. In what follows, we assume that ¢ € (0,&g).

It suffices to prove the required estimate for a smooth boundary function. We set (1) =
eDss gsc u, & = (477 R), v; = v(47 R). Successively applying Lemma 3.4 and taking into account

n

that ess  05C u < %sc f by the maximum principle, we obtain the iterated relation

k k
H (1-Cvj) osc f+C E V; H (1—-C~j) osc_ f.
-- ) dDNB,0
j=1 =1 I=j+1 P
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We assume that the constant C' in Lemmas 3.3 and 3.4 is sufficiently small; namely,
C < (Cp(BY", B3®)) /7P /4.

Since y(r) < (Cy(B1°, B3*))Y/®=Y for any r, we have Cy(r) < 1/4 . Since the logarithmic
function is convex for = € [0,1/2], we have the inequality In(1 — z) > —22In2 which implies

ko ka ko
[ =exp<Zln<l—Cvj>> <exp (—52%')

Jj=k1 Jj=k1 j=k1
where C = C'ln4. Therefore,
_ k _ k _ k
& < exp —CZ% oscf—}—C’Zvjexp —CZW 0sc
=)o =1 g1 /) oPnBye

—T —T

Since 1 —e™* > /2 for z € [0, 1] in view of the concavity of the function 1 — e™, we have

k k
exp(—CZ*y)—exp( C’ZW) —exp( CZ’Yl>>
I=j+1
which implies
K _k k k _k
CZ'yjexp<—CZ > 22<6XP< Z’Yl>—€Xp<—CZ’YZ>><2-
j=1 I=j+1 j=1 I=j+1 =y

Hence

& < exp( CZ’y]> osc f+2 osc f. (4.1)

J=1 BDB

By the definition of (), for t € 4777 p, 477 p] we have (t) < 4(=P)/ (P~ Consequently,

k A-m)/(p-1) ] »
D / AL dt.
j=1

4717kp

The last estimate and (4.1) for r € (4 %"1p,47%p], k € N, imply

\b

§(r)<§k<exp< (n,p) y(t )c(g)sbchrz osc_ f

aDNB,o
4—1— k

p
< exp <— C(n,p) /fy(t)t1 dt) osc f+2 osc f.

dDNB,°

Theorem 1.1 is proved.
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