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We consider the Dirichlet problem for the p-Laplacian with weight and continuous bound-

ary function in a domain D divided into two parts by the hyperplane Σ. The weight is

equal to 1 in some part of the domain D and coincides with a small parameter ε in

the other. We estimate the modulus of continuity for the solution at a boundary point

x0 ∈ ∂D ∩ Σ with a constant independent of ε. Bibliography: 22 titles.

Dedicated to the 80th anniversary of Vasilii Vasil’evich Zhikov

1 Introduction

In a bounded domain D ⊂ R
n, n � 2, we consider the equation

Lu = div
(
ωε(x)|∇u|p−2∇u

)
= 0, p = const > 1. (1.1)

We assume that the domain D is divided into the parts D(1) = D ∩ {xn > 0} and D(2) =

D ∩ {xn < 0} by the hyperplane Σ = {xn = 0} and

ωε(x) = ωε(xn) =

{
ε, xn > 0,

1, xn < 0,
ε ∈ (0, 1]. (1.2)

Below, W 1,p(D) denotes the Sobolev space of functions that, together with all generalized first

order derivatives, belong to Lp(D) and W 1,p
0 (D) is the closure of the set C∞

0 (D) of compactly
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supported and infinitely differentiable functions in D in the W 1,p(D)-norm. We say that a

function u ∈ W 1,p(D) is a solution to Equation (1.1) in D if the integral identity

∫

D

ωε|∇u|p−2∇u · ∇ϕdx = 0 (1.3)

holds for any test function ϕ ∈ W 1,p
0 (D). A function u ∈ W 1,p(D) is called a supersolution to

Equation (1.1) in D if for all nonnegative ϕ ∈ W 1,p
0 (D)

∫

D

ωε|∇u|p−2 ∇u · ∇ϕdx � 0. (1.4)

We consider the Dirichlet problem

Lu = 0 in D, u ∈ W 1,p(D), h ∈ W 1,p(D), (u− h) ∈ W 1,p
0 (D). (1.5)

The solution to this problem coincides with the minimizer of the variational problem

min
ψ−h∈W 1,p

0 (D)
F (ψ), F (ψ) =

∫

D

ωε(x)
|∇ψ|p

p
dx.

This paper is devoted to the study of boundary properties of solutions to the Dirichlet

problem

Luf = 0 in D, uf |∂D = f, (1.6)

where f is continuous on ∂D.

A solution to the problem (1.6) is defined as follows. Using the Tietze–Uryson theorem, we

extend the boundary function f by continuity to R
n, preserving the same notation. We consider

a sequence of infinitely differentiable functions fk in R
n, uniformly converging to f in D. We

solve the Dirichlet problem

Luk = 0 in D, uk ∈ W 1
p (D), (uk − fk) ∈

◦
W 1

p (D).

By the maximum principle, the sequence uk converges uniformly in D to a function u that

belongs to the space W 1,p(D′) in an arbitrary subdomain D′ � D and satisfies the integral

identity (1.3) with test functions ϕ ∈ W 1,p(D) with compact support in D. The limit function

is independent of the extension method and approximation of the boundary function f and is

called a weak solution to the Dirichlet problem (1.6). We refer, for example, to [1]–[3] for details

of this construction.

Definition 1.1. A boundary point x0 ∈ ∂D is said to be regular if lim
D�x→x0

uf (x) = f(x0)

for any continuous function f on ∂D.

In what follows, we need the notion of a capacity. The capacity of a compact set K ⊂ B

relative to a ball B ⊂ R
n is the number

Cp(K, B) = inf

⎧
⎨

⎩

∫

B

|∇ϕ|p dx : ϕ ∈ C∞
0 (B), ϕ � 1 on K

⎫
⎬

⎭
.
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We denote by Bx0
r an open ball in R

n with center x0 and radius r and by B
x0

r its closure. The

criterion for regularity of a boundary point x0 ∈ ∂D for the classical p-Laplacian ((1.1) with

ε = 1) consists in the following identity

∫

0

(
Cp

(
B

x0

r \D, Bx0
2r )

)

rn−p

) 1
p−1 dr

r
= ∞. (1.7)

For the Laplace equation this assertion is the classical result due to Wiener [4, 5]. In the case

of linear divergence-form uniformly elliptic equations with measurable coefficients, the Wiener

criterion was obtained in [6]. In the case p �= 2, a sufficient condition in the form (1.7) for the

regularity of a boundary point was found in [7], where for equation of the form (1.1) without small

parameter ε the estimate for the modulus of continuity of a solution at a regular boundary point

was also proved. The estimates obtained in [7] were generalized to a large class of quasilinear

elliptic equations of the p-Laplacian type in [8]. The necessity of the condition (1.7) for the

regularity of a boundary point in the case of p-Laplacian type equations was established in [9]

for n− 1 < p � n and in [10] in the general case.

As was already mentioned, for equation of the form (1.1) without small parameter ε the esti-

mate for the modulus of continuity for solutions to the Dirichlet problem at a regular boundary

point was obtained in [7]. In this paper, we prove an analogous estimate for the modulus of

continuity of a solution to the Dirichlet problem (1.6) for Equation (1.1) with constants inde-

pendent of ε in the case where the boundary point x0 ∈ ∂D lies on the phase interface Σ, i.e.,

x0 ∈ ∂D ∩ Σ.

We note that for any fixed ε the regularity criterion for a boundary point x0 ∈ Σ coincides

with that for the classical p-Laplacian. In particular, the condition (1.7) is necessary and

sufficient for the regularity of a boundary point. However, the known from [7, 8] estimates

for the boundary modulus of continuity considerably degenerate as ε → 0.

Similar questions for interior estimates for degenerate linear elliptic equations were considered

in [11]–[14]. For linear parabolic equations that degenerate with respect to a small parameter

on a part of the domain it was proved in [15] that the solution is Hölder on the interface Σ,

whereas the upper Nash–Aronson type estimates were obtained in [16]. The results of [15] were

generalized to the case of parabolic p-Laplacian type equations in [17, 18]. Similar phenomena

arise in the study of the p(x)-Laplacian with variable exponent [19].

For x0 ∈ ∂D ∩ Σ we set

γ(r) =

(
Cp((B

x0

r ∩ {xn � 0}) \D, Bx0
2r ))

rn−p

) 1
p−1

Theorem 1.1. If for x0 ∈ ∂D ∩ Σ the condition (1.7) holds, then for 0 < r � ρ/4 �
diam D/4 the solution uf to the Dirichlet problem (1.6) satisfies the estimate

ess sup
D∩Bx0

r

|uf − f(x0)| � 2 osc
∂D∩Bx0

ρ

f + osc
∂D

f · exp
(

−C

ρ∫

r

γ(t)t−1 dt

)

, (1.8)

where the positive constant C depends only on n and p.
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If in a neighborhood of a boundary point x0, the domain is symmetric with respect to the

hyperplane Σ, then the obtained estimate coincides with the classical estimate obtained in [7].

The proof of Theorem 1.1 is based on the weak type Harnack inequality (cf. Lemma 2.5)

for nonnegative bounded supersolutions to Equation (1.1). Throughout the paper, BR is an

open ball with radius R and a fixed center located on Σ and the half-balls are denoted by

B
(1)
R = BR ∩ {xn > 0} and B

(2)
R = BR ∩ {xn < 0}.

2 The Weak Type Harnack Inequality for Nonnegative

Supersolutions

Let |E| be the n-dimensional Lebesgue measure of a measurable set E ⊂ Rn, and let
∫

E

f dx =
1

|E|
∫

|E|
f dx.

We use the Sobolev embedding theorem

( ∫

BR

|ϕ|pkdx
)1/k

� C(n, p)Rp

∫

BR

|∇ϕ|pdx, ϕ ∈ C∞
0 (BR), k =

n

n− 1
. (2.1)

In what follows, w is a nonnegative supersolution to Equation (1.1) in B4R, w̃ is the even

extension of w from B
(2)
4R to B

(1)
4R with respect to the hyperplane Σ, and

v =

{
min(w, w̃) in B

(1)
4R ,

w in B
(2)
4R .

(2.2)

Lemma 2.1. For any q > 0 the following estimate holds:

inf
BR

v � C(n, p, q)

( ∫

B3R

v−q(x)dx

)−1/q

. (2.3)

Proof. Without loss of generality we assume that the supersolution w is positive. Otherwise,

we consider the function w + δ and pass to the limit as δ → 0 in the estimate (2.3). Taking

the test function ϕ = vγηp in (1.4), where γ < 1 − p and the cut-off function η ∈ C∞
0 (B4R) is

radially symmetric and such that 0 � η � 1, we obtain the estimate

|γ|
∫

B4R

ωε|∇w|pwγ−1ηp dx � p

∫

B4R

ωε|∇w|p−1|∇η|ηp−1 dx.

Applying the Young inequality to the integrand on the right-hand side, we find
∫

B4R

ωε|∇w|pwγ−1ηp dx � C(p)

∫

B4R

ωεw
γ+p−1|∇η|p dx.

By (1.2), the choice of γ, and the definition (2.2) of v, we have
∫

B
(2)
4R

|∇v|pvγ−1ηp dx =

∫

B
(2)
4R

|∇w|pwγ−1ηp dx � C(p)

∫

B4R

vγ+p−1|∇η|p dx. (2.4)
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We proceed with a similar estimate in the half-ball B
(1)
4R . Setting

GR = B
(1)
4R ∩ {w < w̃} (2.5)

and assuming that GR is not empty, we substitute the function

ϕ = (wγ − w̃γ)+ ηp =

{
(wγ − w̃γ) ηp in GR,

0 in B4R \GR,

into (1.4); here η and γ are the same as above. As a result, using (1.2), we get

|γ|
∫

GR

|∇w|pwγ−1ηp dx � |γ|
∫

GR

|∇w|p−1|∇w̃|w̃γ−1ηp dx+ p

∫

GR

|∇w|p−1(wγ − w̃γ)|∇η|ηp−1 dx.

Further, applying the Young inequality to the integrands on the right-hand side of this inequality

and recalling the definition (2.5) of the set GR, we find

∫

GR

|∇w|pwγ−1ηp dx � C(p)

( ∫

GR

|∇w̃|pw̃γ−1ηp dx+

∫

GR

wγ+p−1|∇η|p dx
)

.

Adding the integral ∫

B
(1)
4R\GR

|∇w̃|pwγ−1ηp dx

to both sides of the last inequality and recalling the definition (2.2) of v, we obtain the estimate

∫

B
(1)
4R

|∇v|pvγ−1ηp dx � C(p)

( ∫

B
(1)
4R

|∇w̃|pw̃γ−1ηp dx+

∫

B
(1)
4R

vγ+p−1|∇η|p dx
)

.

From properties of the even extension of w, the radially symmetry of the cut-ff function η, and

the relations (2.4) it follows that

∫

B
(1)
4R

|∇v|pvγ−1ηp dx � C(p)

∫

B4R

vγ+p−1|∇η|p dx. (2.6)

Adding both sides of (2.4) and (2.6), we find

∫

B4R

|∇v|pvγ−1ηp dx � C(p)

∫

B4R

vγ+p−1|∇η|p dx,

which implies
∫

B4R

|∇(v(γ+p−1)/pη)|p dx � C(p)|γ + p− 1|p
∫

B4R

vγ+p−1|∇η|p dx. (2.7)

In the above consideration, the set GR is assumed to be nonempty. If GR is empty, then v = w̃

in B
(1)
4R and (2.7) immediately follows from (2.4) and properties of the even extension of w̃.
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From (2.7) and the Sobolev embedding theorem (2.1) it follows that

( ∫

B4R

vk(γ+p−1)ηkp dx

)1/k

� C(p)|γ + p− 1|pRp

∫

B4R

vγ+p−1|∇η|p dx. (2.8)

For R � ρ < r � 3R we take a cut-off function η ∈ C∞
0 (Br) in (2.8) such that 0 � η � 1,

η = 1 in Bρ and |∇η| � Cr(R(r − ρ))−1. Then

( ∫

Bρ

vk(γ+p−1) dx

)1/k

� C(p)|γ + p− 1|p
( r

r − ρ

)p
∫

Br

vγ+p−1 dx. (2.9)

We iterate this estimate. For j = 0, 1, . . . we denote rj = R+2−j+1R, χj = −qkj and substitute

r = rj , ρ = rj+1, γ = χj − p+ 1 into (2.9). As a result, for

Φj =

( ∫

Brj

vχj dx

)1/χj

we obtain the recurrent relation

Φj � C1/|χj |(2j |χj |)p/|χj |Φj+1,

which implies (cf. [20]) the required estimate (2.3).

Due to the following assertion we can obtain an auxiliary weak type Harnack inequality for

the function v defined in (2.2). Below, Bz
r denotes an open ball of radius r and center z.

Lemma 2.2. For any ball Bz
2r ⊂ B4R the following estimate holds:

∫

Bz
r

|∇ ln v|p dx � C(p)rn−p. (2.10)

Proof. Let η ∈ C∞
0 (Bz

2r) be a radially symmetric cut-off function nonincreasing with respect

to the distance from its argument to z and such that η = 1 in Bz
r and |∇η| � Cr−1. Substituting

the test function ϕ = w1−pηp into the integral inequality (1.4), we find, as in (2.4),

∫

Bz
2r∩B(2)

4R

|∇ ln v|pηp dx =

∫

Bz
2r∩B(2)

4R

|∇ lnw|pηp dx � C(n, p)rn−p. (2.11)

If Bz
r ⊂ B

(2)
4R , then the required estimate (2.10) is proved. Let Bz

r ∩B
(1)
4R be nonempty. To prove

a similar estimate in Bz
r ∩ B

(1)
4R , we first assume that the set GR defined by (2.5) is not empty

and choose the test function

ϕ = (w1−p − w̃1−p)+η
p =

{(
w1−p − w̃1−p

)
ηp in GR,

0 in B4R \GR.
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Then it is easy to see that

(p− 1)

∫

GR

|∇ lnw|pηp dx � (p− 1)

∫

GR

|∇w|p−1|∇ ln w̃|w̃1−pηp dx

+ p

∫

GR

|∇ lnw|p−1|∇η|ηp−1 dx.

Since w � w̃ on GR, we can use the Cauchy inequality to find

∫

GR

|∇ lnw|pηp dx � C(p)

( ∫

GR

|∇ ln w̃|pηp dx+

∫

GR

|∇η|p dx
)

. (2.12)

Adding the integral ∫

(Bz
2r\GR)∩B(1)

4R

|∇ ln w̃|pηp dx

to both sides of the estimate (2.12) and using the definition (2.2) of v, we get

∫

Bz
2r∩B(1)

4R

|∇ ln v|pηp dx � C(p)

( ∫

Bz
2r∩B(1)

4R

|∇ ln w̃|pηp dx+

∫

Bz
2r∩B(1)

4R

|∇η|p dx
)

. (2.13)

We first consider the case where the center of the ball Bz
r is located in B

(2)
4R. Then in view of

(2.11), properties of the even extension of the function w, the choice of the center of Bz
r , and

properties of the cut-off function η, we have
∫

Bz
2r∩B(1)

4R

|∇ ln w̃|pηp dx � C(n, p)rn−p

and, in view of (2.13), ∫

Bz
2r∩B(1)

4R

|∇ ln v|pηp dx � C(n, p)rn−p.

Therefore, from (2.11) we obtain the estimate
∫

Bz
2r

|∇ ln v|pηp dx � C(n, p)rn−p,

which implies (2.10). Now, we consider the case where GR is not empty and the center of

the ball Bz
r is located in B

(1)
4R . We denote by Qz

r the image of the ball Bz
r under the mirror

extension with respect to the hyperplane Σ. We introduce the function η̃(x1, . . . , xn−1, xn) =

η(x1, . . . , xn−1,−xn). By (2.11) and the choice of the cut-off function η, we have
∫

Bz
2r∩B(1)

4R

|∇ ln w̃|pηp dx =

∫

Qz
2r∩B(2)

4R

|∇ lnw|pη̃p dx � C(n, p)rn−p.

Now, (2.10) follows from (2.13) and (2.11). If the set GR is empty, then v = w̃ in B
(1)
4R and

(2.10) follows from (2.11).
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By the John–Nirenberg lemma (cf. [20, 21]) or by the embedding theorem for functions

with gradient in the Morrey space [22, Theorem 7.21], we obtain the following assertion from

Lemma 2.2.

Corollary 2.1. There exist positive constants q0 and C depending only on n and p such that

( ∫

B3R

v−q0 dx

)−1/q0

� C

( ∫

B3R

vq0 dx

)1/q0

. (2.14)

Now, from (2.3) and (2.14) we obtain the following auxiliary weak type Harnack inequality.

Lemma 2.3. There exists positive constants q0 and C depending only on n and p and such

that for q ∈ (0, q0]

inf
BR

v � C

( ∫

B3R

vq dx

)1/q

. (2.15)

Our next goal is to specify q0 in (2.15). Since the arguments of the proof of Lemma 2.1 do

not lead to the key estimate (2.4) in the case γ > 1−p, we need to use some other test functions.

We first prove an intermediate gradient estimate.

Lemma 2.4. For 0 < β0 � β < p− 1 under the condition that

εp−p/(p−1)(p− 1)2 � β0
4

(2.16)

for a nonnegative radially symmetric function η ∈ C∞
0 (B4R) the following estimate holds:

∫

B4R

|∇v|pv−β−1ηp dx � C(p)β
−p/(p−1)
0

∫

B4R

vp−β−1|∇η|p dx. (2.17)

Proof. We choose the following test function in (1.4):

ϕ = min(w̃p−1−βw1−p, w−β)ηp =

{
w̃p−1−βw1−pηp in B

(1)
4R \GR,

w−βηp in GR ∪B
(2)
4R ,

where the set GR is defined by (2.5). Then we obtain the inequality

(p− 1)

∫

B
(1)
4R\GR

ωε|∇w|pw−pw̃p−1−βηp dx+ β

∫

GR∪B(2)
4R

ωε|∇w|pw−β−1ηp dx

� (p− 1− β)

∫

B
(1)
4R\GR

ωε|∇w|p−1|∇w̃|w1−pw̃p−β−2ηp dx

+ p

∫

B
(1)
4R\GR

ωε|∇w|p−1w1−pw̃p−β−1|∇η|ηp−1 dx+ p

∫

GR∪B(2)
4R

ωε|∇w|p−1w−β |∇η|ηp−1 dx. (2.18)
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Successively applying the Young inequality to each of the integrands on the right-hand side of

(2.18), we obtain

|∇w|p−1|∇w̃|w1−pw̃p−β−2 � p−1δ1|∇w|pw−pw̃p−β−1 + (p− 1)p−1δ
−1/(p−1)
1 |∇w̃|pw̃−β−1, (2.19)

|∇w|p−1w1−pw̃p−β−1|∇η|ηp−1 � p−1δ2|∇w|pw−pw̃p−β−1ηp

+ (p− 1)p−1δ
−1/(p−1)
2 w̃p−β−1|∇η|p, (2.20)

|∇w|p−1w−β|∇η|ηp−1 � p−1δ3|∇w|pw−β−1ηp + (p− 1)p−1δ
−1/(p−1)
3 w−β+p−1|∇η|p, (2.21)

where δi > 0, i = 1, 2, 3. Inserting δ1 = (p− 1)p(p− 1− β)−1/2, δ2 = (p− 1)/2, δ3 = β/2, into

(2.19)–(2.21) and taking into account these estimates in (2.18), we find

β

2

∫

B
(2)
4R

|∇w|pw−β−1ηpωε dx � (p− 1)

∫

B
(1)
4R\GR

((p− 1− β)p−1δ
−1/(p−1)
1 |∇w̃|pw̃−β−1ηp

+ δ
−1/(p−1)
2 w̃−β+p−1|∇η|p)ωεdx+

∫

B
(2)
4R∪GR

(p− 1)δ
−1/(p−1)
3 w−β+p−1|∇η|pωε dx.

Taking into account the definition (1.2) of the weight, we have

β

2

∫

B
(2)
4R

|∇w|pw−β−1ηp dx � εC1(p, β)

∫

B
(1)
4R\GR

|∇w̃|pw̃−β−1ηp dx+ εC2(p)

∫

B
(1)
4R\GR

w̃−β+p−1|∇η|p dx

+ εC3(p, β)

∫

GR

w−β+p−1|∇η|p dx+ C3(p, β)

∫

B
(2)
4R

w−β+p−1|∇η|p dx,

where

C1(p, β) = 21/(p−1)p−p/(p−1)(p− 1)(p−2)/(p−1)(p− 1− β)p/(p−1),

C2(p) = 21/(p−1)(p− 1)(p−2)/(p−1), C3(p, β) = 21/(p−1)(p− 1)β−1/(p−1).

For ε such that

εC1(p, β) � β0/4 � β/4, (2.22)

using the evenness of the extension of w̃ and the definition of v (recall that v = w in B
(2)
4R ∪GR

and v = w̃ inB
(1)
4R \GR), we find

β

4

∫

B
(2)
4R

|∇w|pw−β−1ηp dx � εC2(p)

∫

B
(1)
4R\GR

v−β+p−1|∇η|p dx

+ εC3(p, β)

∫

GR

v−β+p−1|∇η|p dx+ C3(p, β)

∫

B
(2)
4R

v−β+p−1|∇η|p dx.
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Thus, we obtain the estimate

∫

B
(2)
4R

|∇w|pw−β−1ηp dx � C(p)β
−p/(p−1)
0

∫

B4R

v−β+p−1|∇η|p dx. (2.23)

In particular,

∫

B
(1)
4R\GR

|∇w̃|pw̃−β−1ηp dx � C(p)β
−p/(p−1)
0

∫

B4R

vp−β−1|∇η|p dx. (2.24)

Now, we substitute the test function

ϕ = (w−β − w̃−β)+η
p =

{
(w−β − w̃−β)ηp in GR,

0 in B4R \GR,

into (1.4). Then

β

∫

GR

|∇w|pw−β−1ηp dx � β

∫

GR

|∇w|p−1|∇w̃|w̃−β−1ηp dx+ p

∫

GR

|∇w|p−1w−β |∇η|ηp−1 dx.

Applying the Young inequality to the integrands on the right-hand side of the last estimate and

using the definition (2.5) of the set GR, we get

∫

GR

|∇w|pw−β−1ηp dx � C(p)β
−p/(p−1)
0

( ∫

GR

|∇w̃|pw̃−β−1ηp dx+

∫

GR

w−β+p−1|∇η|p dx
)

.

Therefore, in view of (2.23) and the definition of w̃, we have

∫

GR

|∇w|pw−β−1ηp dx � C(p)β
−p/(p−1)
0

( ∫

B4R

v−β+p−1|∇η|p dx+

∫

GR

w−β+p−1|∇η|p dx
)

. (2.25)

Adding (2.23), (2.24), (2.25) and using the definition (2.2) of v, we find

∫

B4R

|∇v|pv−β−1ηp dx � C(p)β
−p/(p−1)
0

∫

B4R

v−β+p−1|∇η|p dx,

which means the required estimate (2.17). It remains to note that (2.16) implies (2.22).

Now, we proceed by proving the weak type Harnack inequality.

Lemma 2.5. Let 0 < β0 < p−1, and let the condition (2.16) hold. Then for r � (p−β0−1)k,

where k = n/(n− 1),

inf
BR

v � C(n, p, β0)

( ∫

B5R/2

vr dx

)1/r

. (2.26)
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Proof. Let β0 � β < p− 1. From (2.17) we find
∫

B4R

|∇(v(−β+p−1)/pη|p dx � C(n, p)β
−p/(p−1)
0

∫

B4R

v−β+p−1|∇η|p dx

and, by the Sobolev embedding theorem (2.1),

( ∫

B4R

vk(−β+p−1)ηkp dx

)1/k

� C(n, p)β
−p/(p−1)
0 Rp

∫

B4R

v−β+p−1|∇η|p dx. (2.27)

If (p − β0 − 1)k � q0, then the required inequality (2.26) is a consequence of (2.15) and the

Hölder inequality. Let q > q0. We choose q1 ∈ (q0/k, q0] such that q1k
m = (p − β0 − 1)k for

some m ∈ N. For s > 0 we introduce the functional

Φ(s,Br, v) =

( ∫

Br

vs dx

)1/s

and show that

Φ((p− β0 − 1)k,B5R/2, v) � C(n, p, β0)Φ(q1, B3R, v) (2.28)

For this purpose for 5R/2 � ρ < R � 3R we take in (2.27) a cut-off function η ∈ C∞
0 (Br) that

is equal to 1 in Bρ and such that |∇η| � Cr(R(r− ρ))−1. We set β = p− 1− θ. As a result, we

obtain the estimate

Φ(kθ,Bρ, v) �
(
C(n, p)β

−p/(p−1)
0

)1/θ
(

r

r − ρ

)p/θ

Φ(θ,Br, v), (2.29)

is valid for 0 < θ � p − 1 − β0. Now, for j = 0, 1, . . . ,m − 1 we set rj = 3R − 2−j−1R.

Taking r = rj+1, ρ = rj , θ = (p − β0 − 1)k−j in (2.29), we iterate the obtained relation. As

a result, we obtain the relation (2.28). Now, by the choice of q1, the estimate (2.15), and

the Hölder inequality Φ(q1, B3R, v) � Φ(q0, B3R, v) we obtain the required estimate (2.26) for

r = (p − β0 − 1)k. For r < (p − β0 − 1)k the estimate (2.26) again follows from the Hölder

inequality Φ(r,B5R/2v) � Φ((p− β0 − 1)k,B5R/2, v)

From Lemmas 2.4 and 2.5 we obtain the key estimate.

Lemma 2.6. There is ε0 = ε0(n, p) such that for ε � ε0
∫

B2R

|∇v|p−1 dx � C(n, p)R1−p
(
inf
BR

v
)p−1

, (2.30)

∫

B2R

vp−1 dx � C(n, p)
(
inf
BR

v
)p−1

. (2.31)

Proof. Let β ∈ (0, p− 1). Using the Hölder inequality, we obtain the estimate

∫

B4R

|∇v|p−1ηp dx �
( ∫

B4R

|∇v|pv−β−1ηp dx

)(p−1)/p( ∫

B4R

v(β+1)(p−1)ηp dx

)1/p

. (2.32)
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We choose β0 such that

(β0 + 1)(p− 1) = (p− β0 − 1)k, (2.33)

which implies

β0 =
p− 1

n+ (p− 1)(n− 1)
. (2.34)

In (2.32), we take β = β0 from (2.34) and use the inequality in Lemma 2.4 to estimate the first

term on the right-hand side of (2.32). Under such a choice of β0, the condition (2.16) takes the

form

ε � ε0(n, p) =
pp/(p−1)

4n(p− 1) + 4(p− 1)2(n− 1)
.

We have

∫

B4R

|∇v|p−1ηp dx �
( ∫

B4R

v−β0+p−1|∇η|p dx
)(p−1)/p( ∫

B4R

v(−β0+p−1)kηp dx

)1/p

. (2.35)

Choosing η ∈ C∞
0 (B5R/2) such that η = 1 in B2R and |∇η| � 8R−1, applying the estimate from

Lemma 2.5 to the integrals on the right-hand side of (2.35), and using (2.33) again, we arrive

at the required estimate (2.30). The inequality (2.31) under the same bound on ε follows from

the same estimate in Lemma 2.5 and the definition of β0 since (β0 + 1)(p− 1) > p− 1.

3 The Oscillation Lemma

We derive boundary estimates for the modulus of continuity.

For the solutions uf to the Dirichlet problem (1.5) with smooth boundary function h defined

on D and nonnegative on ∂D we set m = inf
∂D∩Bx0

4R

h, x0 ∈ ∂D ∩ Σ and

um =

{
min(u,m), in D ∩Bx0

4R,

m, in Bx0
4R \D.

Lemma 3.1. The function um is a bounded nonnegative supersolution to Equation (1.1) in

the ball Bx0
4R.

Proof. Let ϕ ∈ C∞
0 (Bx0

4R), ϕ � 0. Then (u− l)−ϕ ∈ W 1,2
0 (D ∩Bx0

4R) for l � m. We consider

the function Tδ(s) = δ−1((s−m)−−(s−(m−δ))−), δ > 0. It is clear that Tδ(s) = 1 for s � m−δ,

Tδ(s) = 0 for s � m, the function Tδ(·) is nonincreasing, and Tδ(u)ϕ ∈ W 1,p
0 (Bx0

4R ∩D). Taking

Tδ(u)ϕ for a test function in the definition of the solution (1.3), we get
∫

B
x0
4R

ωε|∇u|p−2Tδ(u)∇u · ∇ϕdx = −
∫

B
x0
4R

ωε|∇u|pT ′
δ(u)ϕdx � 0.

Passing to the limit as δ → 0, we find
∫

B
x0
4R

ωε|∇um|p−2∇um · ∇ϕdx � 0,

which is equivalent to the definition of a supersolution to Equation (1.1) in the ball Bx0
4R.
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Further, we set w = um and introduce v by formula (2.2) in the ball Bx0
4R, i.e., v =

min(um, ũm).

Lemma 3.2. The function v is supersolution to Equation (1.1) in the ball Bx0
4R.

Proof. Let ϕ ∈ C∞
0 (Bx0

4R). We set

Tδ(s) =

⎧
⎪⎨

⎪⎩

1, s � 0,

1− sδ−1, 0 < s < δ,

0, s � δ.

, T̃δ(s) = 1− Tδ(s).

Choosing in the definition of the supersolution (1.4) the test function Tδ(w − w̃)ϕ for w and

using the monotonicity of the flow |ξ|p−2ξ, we find
∫

B
x0
4R

ωεTδ(w − w̃)|∇w|p−2∇w · ∇ϕdx � −
∫

B
x0
4R

ωεT
′
δ(w − w̃)ϕ|∇w|p−2∇w · ∇(w − w̃) dx

� −
∫

B
x0
4R

ωεT
′
δ(w − w̃)ϕ|∇w̃|p−2∇w̃ · ∇(w − w̃) dx := J.

For the integral J on the right-hand side we use the definition of T̃δ and the fact that w̃ is a

supersolution to Equation (1.1) in Bx0
4R ∩ {xn > 0} and w − w̃ = 0 in Bx0

4R ∩ {xn < 0}. Then

J =

∫

B
x0
4R∩{xn>0}

ωεT̃
′
δ(w − w̃)ϕ|∇w̃|p−2∇w̃ · ∇(w − w̃) dx

� −
∫

B
x0
4R∩{xn>0}

ωεT̃δ(w − w̃)|∇w̃|p−2∇w̃ · ∇ϕdx.

Consequently,
∫

B
x0
4R

ωεTδ(w − w̃)|∇w|p−2∇w · ∇ϕdx+

∫

B
x0
4R∩{xn>0}

ωεT̃δ(w − w̃)|∇w̃|p−2∇w̃ · ∇ϕdx � 0.

Passing to the limit as δ → 0, we find
∫

{w�w̃}
ωε|∇w|p−2∇w · ∇ϕdx+

∫

{w>w̃}
ωε|∇w̃|p−2∇w̃ · ∇ϕdx � 0.

Hence ∫

B
x0
4R

ωε|∇min(w, w̃)|p−2∇min(w, w̃) · ∇ϕdx � 0,

which is equivalent to the definition of a supersolution in the ball Bx0
4R.

In what follows, ε0(n, p) is the same as in Lemma 2.6. We recall that the function γ(·) was
introduced before Theorem 1.1.
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Lemma 3.3. Let ε � ε0(n, p). Then

inf
B

x0
R

u � C(n, p)mγ(R). (3.1)

Proof. Inserting the test function ϕ = (m − v)ηp, into the integral inequality (1.4) for the

supersolution v in the domain Bx0
2R, where the function η ∈ C∞

0 (Bx0
2R) is radially symmetric,

η = 1 in Bx0
R , and |∇η| � 4R−1, we find

∫

B
x0
2R

|∇v|pηp ωε dx � 4R−1m

∫

B
x0
2R

|∇v|p−1 ωε dx.

In particular, by the choice of the weight ωε and the definition of v, we have
∫

B
x0
2R∩{xn<0}

|∇w|pηp dx � 4R−1m

∫

B
x0
2R

|∇v|p−1 dx. (3.2)

We recall that w = um. Let GR = {w < w̃} ∩Bx0
2R. Inserting the test function

ϕ = (w̃ − w)+η
p =

{
(w̃ − w)ηp in GR,

0 in Bx0
2R \GR,

into the integral inequality (1.4) for the supersolution v, where the cut-off function η is the same

as above, we find
∫

GR

|∇w|pηp dx �
∫

GR

|∇w|p−1|∇w̃|ηp dx+ p

∫

GR

|∇w|p−1w̃|∇η|ηp−1 dx.

Since w̃ = ũm � m, applying the Young inequality to the integrand in the first term on the

right-hand side of this estimate, we find

∫

GR

|∇w|pηp dx � C(p)

( ∫

GR

|∇w̃|pηp dx+R−1m

∫

GR

|∇w|p−1 dx

)

.

Taking into account (3.2) and properties of the even extension w̃ of w, we find
∫

(B
x0
2R∩{xn<0})∪GR

|∇w|pηp dx � C(p)R−1m

∫

B
x0
2R

|∇v|p−1 dx. (3.3)

Furthermore, in view of (3.2) and the definition of w̃, we have
∫

(B
x0
2R∩{xn>0})\GR

|∇w̃|pηp dx � C(p)R−1m

∫

B
x0
2R

|∇v|p−1 dx. (3.4)

Adding (3.3) and (3.4) and recalling the definition of v, we obtain the relation
∫

B
x0
2R

|∇v|pηp dx � C(p)R−1m

∫

B
x0
2R

|∇v|p−1 dx
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which, together with the estimate vp � mvp−1, implies

∫

B
x0
2R

|∇(ηv)|pηp dx � C(p)

(

R−1m

∫

B
x0
2R

|∇v|p−1 dx+R−pm

∫

B
x0
2R

vp−1 dx

)

. (3.5)

Using (2.30) and (2.31) to estimate the integrals on the right-hand side of (3.5) and multiplying

both sides of the obtained relation by m−p, we get

∫

B
x0
2R

|∇(ηvm−1)|pηp dx � C(n, p)m1−pRn−p
(
inf
B

x0
R

v
)p−1

.

Since ηvm−1 � 1 on (B
x0

R ∩ {xn � 0}) \D, from the definition of capacity we have

Cp((B
x0

R ∩ {xn � 0}) \D,Bx0
2R) � C(n, p)m1−pRn−p

(
inf
B

x0
R

v
)p−1

.

Now, the required inequality (3.1) follows from the definition of v and γ.

Lemma 3.4. Let ε � ε0(n, p), and let C = C(n, p) be the same constant as in Lemma 3.3.

Then

ess osc
D∩Bx0

R

u � (1− Cγ(R))ess osc
D∩Bx0

4R

u+ Cγ(R) osc
∂D∩Bx0

4R

h.

Proof. We set HR = sup
∂D∩Bx0

R

h, hR = inf
∂D∩Bx0

R

h, MR = sup
D∩Bx0

R

u, mR = inf
D∩Bx0

R

u. Applying

the estimate (3.1) to M4R − u and u−m4R, we get

(M4R −H4R)Cγ(R) � M4R −MR, (h4R −m4R)Cγ(R) � mR −m4R,

where the constant C depends only on n and p. Adding these inequalities, we obtain the estimate

MR −mR � (1− Cγ(R))(M4R −m4R) + Cγ(R)(H4R − h4R),

which implies the required assertion.

4 Proof of the Main Result

In this section, we prove Theorem 1.1. We recall that ε0 = ε0(n, p) is a positive number

defined in Lemma 2.6. If ε ∈ [ε0, 1], then the assertion of the theorem (and even stronger

estimates) follows from the results of [7, 8]. In what follows, we assume that ε ∈ (0, ε0).

It suffices to prove the required estimate for a smooth boundary function. We set ξ(r) =

ess osc
D∩Bx0

r

u, ξj = ξ(4−jR), γj = γ(4−jR). Successively applying Lemma 3.4 and taking into account

that ess osc
D

u � osc
∂D

f by the maximum principle, we obtain the iterated relation

ξk �
k∏

j=1

(1− Cγj) osc
∂D

f + C

k∑

j=1

γj

k∏

l=j+1

(1− Cγj) osc
∂D∩Bx0

ρ

f.
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We assume that the constant C in Lemmas 3.3 and 3.4 is sufficiently small; namely,

C � (Cp(B
x0

1 , Bx0
2 ))1/(1−p)/4.

Since γ(r) � (Cp(B
x0

1 , Bx0
2 ))1/(p−1) for any r, we have Cγ(r) � 1/4 . Since the logarithmic

function is convex for x ∈ [0, 1/2], we have the inequality ln(1− x) � −2x ln 2 which implies

k2∏

j=k1

(1− Cγj) = exp

(
k2∑

j=k1

ln(1− Cγj)

)

� exp

(

− C̃

k2∑

j=k1

γj

)

,

where C̃ = C ln 4. Therefore,

ξk � exp

(

− C̃

k∑

j=1

γj

)

osc
∂D

f + C̃

k∑

j=1

γj exp

(

− C̃

k∑

l=j+1

γl

)

osc
∂D∩Bx0

ρ

f.

Since 1− e−x � x/2 for x ∈ [0, 1] in view of the concavity of the function 1− e−x, we have

exp

(

− C̃
k∑

l=j+1

γl

)

− exp

(

− C̃
k∑

l=j

γl

)

� C̃γj
2

exp

(

− C̃
k∑

l=j+1

γl

)

,

which implies

C̃

k∑

j=1

γj exp

(

− C̃

k∑

l=j+1

γl

)

� 2

k∑

j=1

(

exp

(

− C̃

k∑

l=j+1

γl

)

− exp

(

− C̃

k∑

l=j

γl

))

� 2.

Hence

ξk � exp

(

− C̃
k∑

j=1

γj

)

osc
∂D

f + 2 osc
∂D∩Bx0

ρ

f. (4.1)

By the definition of γ(r), for t ∈ [4−j−1ρ, 4−jρ] we have γ(t) � 4(n−p)/(p−1)γj . Consequently,

k∑

j=1

γj �
4(p−n)/(p−1)

ln 4

ρ∫

4−1−kρ

γ(t)t−1 dt.

The last estimate and (4.1) for r ∈ (4−k−1ρ, 4−kρ], k ∈ N, imply

ξ(r) � ξk � exp

(

− C(n, p)

ρ∫

4−1−kρ

γ(t)t−1 dt

)

osc
∂D

f + 2 osc
∂D∩Bx0

ρ

f

� exp

(

− C(n, p)

ρ∫

r

γ(t)t−1 dt

)

osc
∂D

f + 2 osc
∂D∩Bx0

ρ

f.

Theorem 1.1 is proved.
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10. T. Kilpeläinen and J. Malý, “The Wiener test and potential estimates for quasilinear elliptic
equations,” Acta Math. 172, 137–161 (1994).

11. Yu. A. Alkhutov and V. V. Zhikov, “On the Hölder property of solutions of degenerate
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