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We consider the optimal mean-square estimation problem for the state variables of a

continuous nonlinear stochastic object by using results of time-discrete measurements.

To obtain clock and inter-clock estimates on a computer of limited power in real time,

we propose a procedure for the synthesis of a nonlinear structure of a discrete finite-

dimensional filter, the state vector of which is formed from the desired number of already

obtained preceding clock estimates. We describe the synthesis algorithm for the filter and

its suboptimal approximations. The advantage of the latter is shown in comparison with

the corresponding generalizations of the Kalman filter. Bibliography: 8 titles.

To obtain estimates for the Markov state variables of a stochastic object of observation by an

absolutely optimal filter [1]–[3], it is required to promptly find the posterior probability density

of the estimated random process, which makes such a filter a distributed parameter system.

Therefore, the state vector of such a filter is of infinite order, and it is difficult to implement an

absolutely optimal filter in real time. Therefor, in practice, one has to use approximate finite-

dimensional filtering algorithms such as various generalizations of the Kalman filter, with a loss

of accuracy, or create poly-Gaussian banks of such filters, which complicates the computer. The

implementation of the particle filter [3] requires a very powerful computer due to the use of the

cumbersome Monte Carlo method at each trajectory.

A conditionally optimal filter is finite-dimensional and thereby can be easily realized [4, 5],

but it is only parametric and its order is bounded by the order of the object of observation.

Finite-dimensional filters of optimal structure of different orders, free from these restrictions,

are synthesized in [6]–[8]. In the sense of potential accuracy, the optimal structure filters occupy

an intermediate position between the absolutely and conditionally optimal filters IAOF
t � IOSF

t �
ICOF
t , where It is the mean-square estimation error at the time t. However, the accuracy of an

optimal structure filter of small order [6, 7] is bounded exactly by its order, whereas an optimal

finite memory filter [8] the order of which is a multiple of the dimension of the measurement

vector, forgets the preceding measurements which could be more exact than the current ones.
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In this paper, we construct a rather simple recurrent optimal structure filter of a large order

multiple to the dimension of the estimate vector. The memory of this filter is infinite, and a

contradiction between accuracy and complexity is regulated by the choice of multiplicity. The

estimate vector is still sought as the best function of the last measurement and the filter state

vector. But the latter is proposed to form from the vectors of several preceding estimates,

thereby increasing the operative filter memory, which allows us to obtain the best accuracy by

extending the admissible set of estimates. Furthermore, the preceding measurements are not

forgotten because information about them is accumulated in the stored estimates.

It is shown that the synthesis of a new filter is reduced to finding in advance the corre-

sponding conditional probability densities from the recurrent chain of prediction-correction type

transformations. This is based on the Fokker–Planck–Kolmogorov differential equation and the

integral Bayesian formula. The same can be done numerically by the Monte Carlo method, but

by cumbersome construction of the conditional expectation function histogram at each clock

point; moreover, the sought function has a large number of arguments and histogram should

be further smoothed. Therefore, we also discuss construction of analytic-numerical covariance

approximations of the proposed filter. The computational advantage of such approximations

over similar approximations of an absolutely optimal filter is shown.

1 Statement of the Continuous–Discrete Estimation Problem

Let a Markov diffusion type process Xt ∈ R
n defining the state of an object of observation

on a finite time-interval t ∈ [0, T ] be described by the Itô stochastic equation

dXt = a(t,Xt)dt+B(t,Xt)dWt, X0 ∼ p0(x0), (1.1)

and let its measurements Yk ∈ R
m be obtained only at known clock points t0 = 0 < t1 < . . . <

tK < T by the formula

Yk = ck(Xtk , Vk), Vk ∼ qk(vk), k ∈ 0, . . . ,K. (1.2)

Here, a(t, x) and B(t, x) are the vector-valued drift function and the matrix-valued diffusion

function of the object of observation respectively, Wt is the standard Wiener process vector,

ck(x, v) is the vector-valued measurer function, the measurement number k runs from 0 to

K, and the symbol ∼ means the correspondence between a random variable and its probability

density, so that the initial valueX0 of the process is determined by the probability density p0(x0),

whereas the independent discrete white noise vector Vk has the probability density qk(vk). We

assume that the Itô stochastic equation (1.1) has a strong solution in the form of implementation

of the process Xt and this solution is unique.

On each interval between neighboring clock points, it is required to promptly obtain an

estimate ̂X ′
t ∈ R

n′
for the part X ′

t of the first n′ � n components of the estimated vector Xt,

which is the most interesting for the user, as some explicit or implicit Borel measurable function

of all accumulated measurements at that time

̂X ′
t = ψt,k(Y

k
0 ), Y k

0 = {Y0, Y1, . . . , Yk}, t ∈ (tk, tk+1], k ∈ 0, . . . ,K,

optimal in the sense that the mean-square estimation error is minimal:

It = M[(X ′
t − ̂X ′

t)
TCt(X

′
t − ̂X ′

t)] → min
ψt,k(·)

, Ct = CT
t > 0. (1.3)
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Here, M is the expectation operator, Ct is the weighted coefficient matrix, and the existence of

It is assumed. The sufficient existence condition is formulated in Theorem 4.1.

2 Known Continuous–Discrete Filters of Optimal Structure

Definition 2.1 (cf. [6]). A small order filter is a recurrent algorithm for obtaining an

estimate vector that is the state vector.

The order of a small order filter is equal to the dimension n′ of the estimate vector, but does

not exceed the dimension n of the entire vector Xt. We distinguish three types of such filters.

1. A small order filter with constant prediction in the case ̂X ′
t = Zk, t ∈ [tk, tk+1), finds only

the clock estimates Zk = ̂X ′
tk

by the recurrent formula for a small order discrete filter [6]–[7]

Zk = fk(Yk, Zk−1), k � 1, Z0 = f0(Y0). (2.1)

Here, each function fk(·) is found from the optimality conditions (1.3) for t = tk.

2. A small order filter with continuous prediction is described in the interval between the

measurement times by the autonomous differential equation

d ̂X ′
t = g(t, ̂X ′

t)dt, t ∈ (tk, tk+1]

with the initial condition ̂X ′
t+0

= f0(Y0), and, at each clock point, its solution is corrected

by the new measurement Yk according to the formula

̂X ′
t+k

= fk(Yk, ̂X
′
tk
).

However, in this case, from the optimality conditions (1.3) for t = tk we can obtain only

the correction function fk(·), whereas the continuous prediction function g(·) is found only

from the unbiased estimate condition M [X ′
t − ̂X ′

t] = 0.

3. A small order filter with discrete predictions allows us, in addition to the clock estimates

Zk, to obtain the optimal predictions Zi
k = ̂X ′

τ ik
, i = 1, . . . , L, at L additional points t = τ ik

in the interval (tk, tk+1) between the last Yk and next Yk+1 measurements

tk = τ0k < τ1k < . . . < τLk < τL+1
k = tk+1.

As a result, the prediction is constant only on a small interval between the prediction points

̂X ′
t = Zi

k, t ∈ [τ ik, τ
i+1
k ), i = 1, . . . , L.

These estimates are obtained by using the recurrent formulas

Z0
k = Zk, Zi

k = gik(Z
i−1
k ), i = 1, . . . , L, k � 0, (2.2)

Z0 = f0(Y0), Zk = fk(Yk, Z
L
k−1), k � 1. (2.3)

Here, all the correction functions fk(·) as well as the prediction functions gik(·) can be

obtained from the optimality conditions (1.3) at the time tk and τ ik respectively.
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Remark 2.1. The small order filter with constant prediction is a particular case of the small

order filter with discrete predictions in the case L = 0.

However, the fixed form of equations for any small order filter does not allow us to improve

in any way the potential accuracy of the filter. The only changeable parameter for these filters

is their order n′ � n bounded from above by the dimension of the estimated vector Xt. It is

obvious that the filter of the same order n as the object is the most accurate among all small

order filters because of a wider class of correction functions and the greatest possible number of

arguments [7].

Definition 2.2 (cf. [8]). A finite memory filter is a discrete estimation algorithm, where the

clock estimates and, possibly, inter-clock predictions are functions of only last few measurements,

the number of which is given.

Thus, the clock estimates Zk and inter-clock predictions Zi
k estimates for a finite memory

filter with discrete predictions [8] are sought as Borel functions of the last no more than (l+ 1)

measurements
Zk = fk(Y

k
max(0,k−l)), k � 0,

Zi
k = gik(Y

k
max(0,k−l+1)), i = 1, . . . , L, k � 0.

(2.4)

Here, the integer parameter l � 0 can be changed to change the accuracy of the finite memory

filter and the processing time for the last measurement by this filter. For example, for l = 0

we have the trivial case of dependence of all clock estimates on one measurement Zk = fk(Yk),

k � 0, but for l = 1 only the initial estimate Z0 = f0(Y0) depends on one measurement, whereas

the remaining ones depend on two measurements Zk = fk(Yk, Yk−1), k � 1. Moreover, the

explicit expressions in (2.4) can be written in the following difference form.

Lemma 2.1 (cf. [8]). The finite memory filter (2.4) is a recurrent filter of order lm with

the fixed difference equation Uk = sk(Yk, Uk−1) for its state vector Uk = Y k
max(0,k−l+1), and the

following formulas for the output, optimal in the sense of (1.3), hold:

Z0 = f0(Y0), Zk = fk(Yk, Uk−1), k � 1,

Zi
k = gik(Uk), i = 1, . . . , L, k � 0.

3 Equations for New Continuous–Discrete Large Order Filter

Definition 3.1. A large order filter is a recurrent algorithm for obtaining clock estimates

Zk = ̂X ′
tk

and, possibly, inter-clock predictions Zi
k = ̂X ′

τ ik
, regarded as functions of the last

measurement Yk and at most l ∈ N preceding clock estimates

Z0 = f0(Y0), Zk = fk(Yk, Z
k−1
max(0,k−l)), k � 1,

Zi
k = gik(Z

k
max(0,k−l+1)), i = 1, . . . , L, k � 0.

(3.1)

The Borel estimation function fk(·) and discrete prediction function gik(·) of this filter are

also found from the optimality conditions (1.3) at the time tk and τ ik respectively. Moreover, the

prediction function can be left to be constant only on the first subinterval ̂X ′
t = Zk, t ∈ [tk, τ

1
k ),
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while it can be made more accurate on other subintervals, for example, it can be linear starting

from the second subinterval

̂X ′
t = Zi

k + (Zi
k − Zi−1

k )
t− τ ik

τ ik − τ i−1
k

, t ∈ [τ ik, τ
i+1
k ), i = 1, . . . , L.

Another more economic variant of construction of the prediction function that does not require

intermediate values of Zi
k, i = 1, . . . , L, is its at least linear extrapolation by two only clock

estimates Zk and Zk−1, starting with the second subinterval

̂X ′
t = Zk + (Zk − Zk−1)

t− tk
tk − tk−1

, t ∈ [tk, tk+1), k � 1.

Remark 3.1. The large order filters generalizes the notion of small order filters because not

one, but several preceding estimates are used to derive a new estimate. The large order filters

differ from the finite memory filters by replacing the preceding measurements Y k−1
max(0,k−l) with

the estimates Zk−1
max(0,k−l).

Lemma 3.1. The large order filter (3.1) is a recurrent filter of order ln′ with the fixed

structure sk(·) of its linear equation of state

U0 = Z0, Uk = sk(Zk, Uk−1) �

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

[

Zk

Uk−1

]

, k = 1, . . . , l − 1,

[

Zk

CUk−1

]

, k � l,

(3.2)

where C = [E(l−1)n′ 0(l−1)n′×n′ ], E is the identity matrix, and the output formulas, optimal in

the sense of (1.3), hold:

Z0 = f0(Y0),

Zk = fk(Yk, Uk−1), k � 1,

Zi
k = gik(Uk), i = 1, . . . , L, k � 0.

(3.3)

Proof. We combine the preceding estimates used in (3.1) for obtaining Zk to the block

column-vector Uk−1 = Zk−1
max(0,k−l) of the operative filter memory. Then these higher order

recurrent dependences take the form of the final output formulas (3.3). Analyzing the filling

process of this block column-vector at the next clock point

Uk = Zk
max(0,k−l+1) =

⎧

⎨

⎩

Zk
0 , k = 0, . . . , l − 1 (accumulation stage), dim Zk

0 = n′(k + 1),

Zk
k−l+1, k � l (renewal stage), dim Zk

k−l+1 = n′l,

we obtain the first order difference equation (3.2), where C is the matrix for removing the last

and already obsolete block Zk−l from the vector Uk−1 As a result, the column Uk is the state

vector of the large order filter (3.1) and its dimension, unchanged starting with the lth clock

k = l − 1, is the filter order.
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4 Finding Output Functions of Continuous-Discrete
Large Order Filters

Substituting (3.3) into the criterion (1.3) for the corresponding time moments tk, τ
i
k and

using theorem on the best mean-square regression, we easily obtain the following assertion.

Theorem 4.1. If the estimated vector X ′
t has the finite second moment M |X ′

t|2 < ∞, then

the Borel output functions (3.2), (3.3), optimal in the sense of (1.3) for tk, τ
i
k, exist and, under

the assumption that the corresponding random variables are absolutely continuous, can be found

as the conditional expectations calculated in terms of the corresponding conditional probability

densities ρk(·), πk(·) by the formulas

f0(y0) = M [X ′
0|y0] =

∫

x′0ρ0(x0|y0)dx0,

fk(yk, uk−1) = M [X ′
tk
|yk, uk−1] =

∫

x′kρk(xk|yk, uk−1)dxk, k � 1,

gik(uk) = M [X ′
τ ik
|uk] =

∫

x′πk(τ ik, x|uk)dx, i = 1, . . . , L, k � 1.

(4.1)

Moreover, the estimates Zk and Zi
k are unbiased, M[Zk −X ′

tk
] = 0, M[Zi

k −X ′
τ ik
] = 0, and have

the finite second moments M |Zk|2 < ∞ and M |Zi
k|2 < ∞.

Hereinafter, for the sake of simplicity we write integrals over the whole space in the notation

of indefinite integrals, for example,
∫

f(x)dx =

∫

Rn

f(x)dx.

We note that the assumption and last assertion of Theorem 4.1 guarantee the existence of

the mean-square estimation error (1.3) at the required times.

In the first relation in (4.1), the conditional probability density is known:

ρ0(x|y) = β0(y|x)p0(x)
∫

numerator dx

.

Hereinafter, βk(·) denotes the likelihood function obtained from (1.2) and p0(x) is the density

of the initial object state (1.1). The remaining probability densities in (4.1) are found by the

Bayesian formula as follows.

Theorem 4.2. If there exists a joint probability density rk(t, x, uk) of the states of the object

Xt and the filter Uk, then the prediction πk(·) and correction ρk(·) probability densities in (4.1)

are represented in terms of rk by the formulas

πk(t, x|uk) = rk(t, x, uk)
∫

numerator dx

t ∈ (tk, tk+1], k � 0,

ρk(x|yk, uk−1) =
βk(yk|x)πk−1(tk, x|uk−1)

∫

numerator dx

, k � 1.

(4.2)
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Finally, let us find a sequence of probability densities rk(t, x, uk), k � 0. For this purpose

we use the Fokker–Planck–Kolmogorov equation for the transition probability density of the

random diffusion process Xt defined by the Itô equation (1.1). Furthermore, to describe the

replacement of the old state vector Uk−1 with the new one Uk at the measurement time tk by

formulas (3.2) and (3.3), we again apply known properties of probability densities. In particular,

we use the formula, convenient because of its shortness, for the probability density q(y) of the

result of the nonlinear transformation Y = h(X) of the random variable X with probability

density p(x)

q(y) =

∫

δ[y − h(x)] p(x)dx,

where δ(·) is the Dirac function. Then, as in [8], we obtain the following assertion.

Theorem 4.3. If the drift function a(t, x) and diffusion function B(t, x) of the object of

observation (1.1) are once and twice continuously differentiable with respect to x respectively,

then the probability density rk(·) satisfies the equation

∂rk(t, x, uk)

∂t
= −∇T

x {a(t, x)rk(t, x, uk)}+ 0.5 tr [∇x∇T
x {B(t, x)BT (t, x)rk(t, x, uk)}] (4.3)

for t ∈ (tk, tk+1], where ∇x is the gradient operator with respect to x ∈ R
n and tr denotes the

matrix trace, and the initial conditions with known initial data in the first interval t ∈ (t0, t1] :

r0(t
+
0 , x, u0) = p0(x)

∫

δ[z0 − f0(y0)]β0(y0|x)dy0.

For each next following interval the corresponding initial condition rk(t
+
k , x, uk) is calculated

from the finite section rk−1(tk, x, uk−1) of the solution to the same equation on the preceding

interval and for already known from (4.1) and (4.2) optimal clock output function fk(yk, uk−1)

by one of the following formulas:

rk(t
+
k , xk, z

k
0 ) =

∫

δ[zk − fk(yk, z
k−1
0 )] βk(yk|xk)rk−1(tk, x, z

k−1
0 )dyk, k = 1, . . . , (l − 1),

rk(t
+
k , xk, z

k
k−l+1) =

∫∫

δ[zk − fk(yk, z
k−1
k−l )] βk(yk|xk)rk−1(tk, x, z

k−1
k−l )dykdzk−l, k � l.

In the last expression, the integration with respect to zk−l corresponds to removing the obsolete

block Zk−l from the vector Uk−1 = Zk−1
k−l in (3.2).

Remark 4.1. The strong smoothness conditions on the drift and diffusion functions in

Theorem 4.3 can be omitted if a solution to Equation (4.3) is understood as a generalized

solution in the sense of Galerkin.

The relations of this section constitute a synthesis algorithm for optimal functions of a large

order filter. This algorithm does not use the measurement results and, consequently, can be

realized before the estimation process. This fact favorably distinguishes this and other filters of

optimal structure from the classical absolutely optimal filter. This is similar to the advantage

of the linear Kalman filter over its nonlinear generalizations since its measurement gain matrix

can be found in advance by solving the Riccati matrix equation for covariances on a powerful

computer long enough.
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5 Covariance Approximations of Continuous–Discrete
Large Order Filters

By the above-mentioned connection between large order filters and finite memory filters, the

Gaussian approximations of the numerators of both fractions in (4.2) leads, as in [8], to the

following assertion.

Proposition 5.1. If the measurements Yk have the finite second moment M |Yk|2 < ∞ and

the conditional means of the sensor (1.2)

νk(x) = M [ck(x, Vk)] �
∫

ck(x, v)qk(v)dv, Πk(x) = M [ck(x, Vk)c
T
k (x, Vk)]

have the Gaussian moments

hk(m,D) = M m,D
N [νk(X)] �

∫

νk(x)N(x||m,D)dx,

Fk(m,D) = M m,D
N [Πk(X)]− hk(m,D)hTk (m,D),

Gk(m,D) =
∂hk(m,D)

∂m
,

(5.1)

where N(x||m,D) is the Gaussian distribution density of the random variable X with parameters

m, D, then the following equations of a suboptimal large order filter hold:

Z0 = H0Y0 + e0, U0 = Z0, Uk = sk(Zk, Uk−1), Λk = ΓkUk−1 + κk,

Zk = Λ′
k + T ′

kG
T
k (Λk;Tk)F

⊕
k (Λk;Tk)[Yk − hk(Λk;Tk)], Zi

k = Γi
kUk + κ

i
k, i = 1, . . . , L,

(5.2)

where k � 1, Λ′
k and T ′

k are the first n′ rows of the matrices Λk and Tk respectively, ⊕ denotes the

Moore–Penrose pseudoinversion symbol for matrices, and the function sk(·) is defined in (3.2).

Moreover, the initial H0, e0 and current parameters, the estimates Γk, κk, Tk, and predictions

Γi
k, κ

i
k, are expressed only in terms of the first two moments m, D of known random variables

by the formula

H0 = Dx′ y
0 0 (Dy

0)
⊕, e0 = mx′

0 −H0m
y
0,

Γk = Dx,u
tk,k−1(D

u
k−1)

⊕, κk = mx
tk
− Γkm

u
k−1, Tk = Dx

tk
− Γk(D

x,u
tk,k−1)

T ,

Γi
k = Dx′,u

τ ik,k
(Du

k )
⊕, κ

i
k = mx′

τ ik
− Γi

km
u
k , i = 1, . . . , L.

(5.3)

Since the calculation of sampled values of the parameters m and D in (5.3) does not cause

difficulties, these parameters of the covariance large order filter (5.2) can be easily found in

advance by the Monte Carlo method. For this purpose one can perform the trivial processing

of the results of statistical modeling of the object (1.1), sensor (1.2), and filter (5.2).

As in the case of the finite memory filter, the following assertion holds [8].

Proposition 5.2. If the sensor (1.2) can be linearized at the point of clock prediction Λk

and the mean value of its noise mv
k, i.e.,

ck(Xtk , Vk) ≈ ck(Λk,m
v
k) + Cx

k (Λk)(Xtk − Λk) + Cv
k(Λk)(Vk −mv

k),
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where Cx
k (x) and Cv

k (x) denote the sections of the Jacobi matrix of partial derivatives of the

sensor function

Cx
k (x) =

∂ck(x, v)

∂x

∣

∣

∣

∣

∣

v=mv
k

, Cv
k (x) =

∂ck(x, v)

∂v

∣

∣

∣

∣

∣

v=mv
k

,

then the Gaussian correction functions (5.1) are approximated by

hk(m,D) ≈ ck(m,mv
k), Gk(m,D) ≈ Cx

k (m),

Fk(m,D) ≈ Cx
k (m)DCx

k
T(m) + Cv

k(m)RkC
v
k
T(m),

(5.4)

where Rk = cov [Vk] is the covariance matrix for the measurement noise.

Thus, both covariance approximations of the large order filter have the same equation (5.2)

and the same formula (5.3) for parameters, but the correction functions are defined by (5.1) for

the Gaussian filter and by (5.4) for the linearized one. Moreover, the adjustment process of the

approximate large order filter on the solution to a particular estimation problem consists in not

only obtaining analytically the structure functions (5.1) or (5.4) from the models of object (1.1)

and sensor (1.2), but also it is required to find the parameters of the filter (5.3). The latter can

be easily implemented by numerical successive statistical simulation of the values of the signal

Xt at clock points and, possibly, inter-clock times, as well as the values of the measurement Yk
and the filter state vector Uk−1 consisting of the preceding estimates Zk−1

max(0,k−l) with further

processing the results of this simulation by simple formulas of mathematical statistics.

Remark 5.1. Covariance approximations similar to (5.2) (the generalized Kalman filter

and the filter of normal approximation) of an absolutely optimal filter can have the suboptimal

estimate ̂Xt only for the whole object state vector (1.1) and only together with the positive

definite approximation Pt of the posterior covariance of the estimation error [1, 2, 8]. For this

purpose it is necessary to alternate integration of the autonomous prediction system of ordinary

differential equations on each interval between the measurement times

d

dt
̂Xt = τ(t, ̂Xt, Pt), t ∈ (tk, tk+1],

d

dt
Pt = A(t, ̂Xt, Pt)Pt + PtA

T (t, ̂Xt, Pt) + Θ(t, ̂Xt, Pt), t ∈ (tk, tk+1],

(5.5)

with recalculation of the final values of their solutions on the preceding interval ̂Xtk , Ptk into

the initial data for the next one by the correction formulas

̂Xt+k
= ̂Xtk +Hk[Yk − hk( ̂Xtk , Ptk)], Pt+k

= Ptk −HkGk( ̂Xtk , Ptk)Ptk ,

where the current measurement Yk is taken into account, Hk = PtkG
T
k (

̂Xtk , Ptk)F
⊕
k ( ̂Xtk , Ptk),

and the initial values of variables ̂Xt0 = M[X0] and Pt0 = cov [X0] are deterministic. Here,

the correction functions hk(·), Gk(·), Fk(·) are also defined by (5.1) or (5.4), and the additional

prediction functions τ(·), Θ(·), A(·) are found in a similar way, but by using the object functions

a(·), B(·). However, we have to solve the differential equations (5.5) with small step and the

estimate vector, together with different entries of the symmetric covariance matrix, constitutes

a rather large state vector of the filter, so that the orders of the generalized Kalman filter and

the filter of normal approximation are equal to n(n+ 3)/2.
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