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We propose a method for solving the Navier–Stokes and Euler equations by introducing

new unknowns and transforming the defining equations, which allows us to reduce the

problem to simpler mathematical problems. Bibliography: 4 titles.

1 Introduction

The Navier–Stokes equations describe the motion of viscous media. In the case of an incompress-

ible medium and in the presence of the external force potential, the Navier–Stokes equations

can be written in the dimensionless variables as
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∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0, (1.4)

where u, v, w are components of the velocity vector, p is the pressure depending on the coor-

dinates x, y, z and time t, Φ is a given potential of external forces, and Re is the Reynolds

number.

In the absence of viscous friction forces, the motion of an ideal medium is described by the

Euler equations which can be written in the form (1.1)–(1.3) without terms proportional to

1/Re on the right-hand sides; moreover, the order of equations is reduced, whereas the equation

of continuity (1.4) is preserved.
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One of the main difficulties appearing in the study of the Navier–Stokes and Euler equations

is that there are no general constructive methods for solving the equations. However, in spite

of different orders of higher order derivatives, the structure of the Navier–Stokes equations is

similar to that of the Euler equations; namely, both contain nonlinear convective terms combined

with linear terms. Due to this fact, it is possible to apply the same approach to studying both

systems. In this paper, we propose a constructive method for solving Equations (1.1)–(1.4).

Using properties of the equations, we reduce (1.1)–(1.4) to a family of simpler mathematical

problems.

2 The First Integral

2.1. Canonical form of equations.

Theorem 2.1. Each of Equations (1.1)–(1.4) can be represented in the divergence form

∂Pi
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+

∂Qi
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∂Ri

∂z
+

∂Si

∂t
= 0, (2.1)

where Pi, Qi, Ri, Si are combinations of the unknowns and their first order derivatives.

Proof. 1. Equation (1.4) takes the form (2.1) for P4 = u, Q4 = v, R4 = w, S4 = 0.

2. We transform the nonlinear terms as follows:
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By (1.4), the last two terms on the right-hand sides take the form
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.

As a result, the nonlinear terms in (1.1)–(1.3) can be written as
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Since the linear terms in (1.1)–(1.3) are represented as the sums of the first order derivatives

with respect to x, y, z, t, we can write (1.1)–(1.3) in the divergence form in view of (2.2):
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The theorem is proved.

A similar assertion holds for the Euler equations. Moreover, each of the Navier–Stokes and

Euler equations is linear with respect to Pi, Qi, Ri, Si.

2.2. Solution of the canonical equation. Equation (2.1) is said to be canonical.

Theorem 2.2. Equation (2.1) has the general solution.

Proof. 1. Equation (2.1) is linear. We consider partial solutions. For example, the two-term

equation
∂Pi

∂x
+

∂Qi

∂y
= 0

generates one partial solution to Equation (2.1)

Pi =
∂Ψi1

∂y
, Qi = −∂Ψi1

∂x
, Ri = 0, Si = 0,

where Ψi1 is an arbitrary twice continuously differentiable function of x, y, z, t. From (2.1) we

can extract six different two-term equations
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∂y
= 0,

∂Pi

∂x
+

∂Ri
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= 0,

∂Pi
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= 0,
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∂y
+
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∂z
= 0,

∂Qi
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+
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+
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(2.4)

Solving each equation in (2.4), we obtain a particular solution to Equation (2.1). Thus, we have

six different partial solutions

Pi =
∂Ψi1

∂y
, Qi = −∂Ψi1

∂x
, Ri = 0, Si = 0,

Pi = −∂Ψi2

∂z
, Qi = 0, Ri =

∂Ψi2

∂x
, Si = 0,

Pi =
∂Ψi3

∂t
, Qi = 0, Ri = 0, Si = −∂Ψi3

∂x
, (2.5)

Pi = 0, Qi =
∂Ψi4

∂z
, Ri = −∂Ψi4

∂y
, Si = 0,

Pi = 0, Qi = −∂Ψi5

∂t
, Ri = 0, Si =

∂Ψi5

∂y
,
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Pi = 0, Qi = 0, Ri =
∂Ψi6

∂t
, Si = −∂Ψi6

∂z
,

where Ψi1, i = 1, . . . , 6, are arbitrary twice continuously differentiable functions of x, y, z, t.

We consider the partial solutions as a four-dimensional vector and prove that these solutions

are linearly independent. For this purpose we consider a linear combination with constant

coefficients λk, k = 1, . . . , 6, and equate it to zero. We show that the coefficients are necessarily

zero. For the first components we have

λ1
∂Ψi1

∂y
− λ2

∂Ψi2

∂z
+ λ3

∂Ψi3

∂t
= 0.

We assume that there is at least one nonzero coefficient, for example, λ1. Then

∂Ψi1

∂y
=

λ2

λ1

∂Ψi2

∂z
− λ3

λ1

∂Ψi3

∂t
,

which contradicts the arbitrariness of Ψik. Consequently, λ1 = 0. In the same way, λj = 0 for

j = 2, . . . , 6. Thus, the solutions are linearly independent.

2. We construct the general solution as a linear combination of six partial solutions. Since

Ψik are arbitrary, we can assume that λk = 1. Then the general solution to Equation (2.1) is

defined by

Pi =
∂Ψi1

∂y
− ∂Ψi2

∂z
+

∂Ψi3

∂t
, Qi = −∂Ψi1

∂x
+

∂Ψi4

∂z
− ∂Ψi5

∂t
,

Ri =
∂Ψi2

∂x
− ∂Ψi4

∂y
+

∂Ψi6

∂t
, Si = −∂Ψi3

∂x
+

∂Ψi5

∂y
− ∂Ψi6

∂z
.

(2.6)

The theorem is proved.

Corollary 2.1. A solution to Equation (2.1) is determined by the twice continuously differ-

entiable functions Ψij, j = 1, . . . , 6, of x, y, z, t.

The aforesaid is also related to complete equations of the form (2.1), in particular, for (1.1)–

(1.3), whereas Equation (1.4) is not complete because it does not contain the time-derivative.

Since C2
3 = 3, from (1.4) we can extract only three different two-term equations. Respectively,

we have only three independent partial solutions. The general solution to Equation (1.4) is

determined by the three functions Ψ4k, Ψ4(k+1), Ψ4(k+2) as follows:

P4 =
∂Ψ4(k+2)

∂y
− ∂Ψ4(k+1)

∂z
,

Q4 = −∂Ψ4(k+2)

∂x
+

∂Ψ4k

∂z
,

R4 =
∂Ψ4(k+1)

∂x
− ∂Ψ4k

∂y
.

(2.7)

The above formulas for the solutions to Equation (2.1) determine relations between Pi, Qi,

Ri, Si and, consequently, implicit relations between u, v, w, p. We study them in more detail.

We compare Equations (2.3) and formulas for solutions (2.6). Each equation in (2.3) has a

solution of the form (2.6). Consequently, for every equation in (2.3) we have four expressions for
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Pi, Qi, Ri, Si. Thus, we have in total 12 such expressions. Each of the expressions generated

by one equation contains six arbitrary functions. For Equation (1.4) we additionally have three

expressions for u, v, w with three arbitrary functions. Thus, we have 15 relations, where,

together with the main unknowns u, v,w, p, there are 21 new functions of four variables. We

enumerate these functions, starting with j = 1, and denote Ψ1,j . Then we can write
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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+
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Re
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+
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,

(2.10)

u =
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∂Ψ1,19
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2.3. The integral of the original equations. The functions Ψ1,j , j = 1, . . . , 21, on the

right-hand sides of (2.8)–(2.11) are called stream pseudofunctions of the first order (cf. [1]–[3]).

In the simplest case of 2D equations of steady flow, Ψ1,21 is the usual stream function Ψ(x, y).

We consider Ψ1,j as new associated unknowns and preserve the unknowns u, v, w, p. We try

to simplify Equations (2.8)–(2.11) and reduce them to the most convenient form in practice.

The solution of this particular problem can be found in [2, 3]. After some transformations of

(2.8)–(2.11) we obtain the nine equations

p = p0 − Φ− U2

2
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]
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)
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∂z

]
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1
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)

+
1

2
· ∂
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+

∂Ψ6

∂y
+

∂Ψ4

∂z

]
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u =
1

2
·
[ ∂

∂y

(
− ∂Ψ3

∂x
+

∂Ψ1

∂y
+

∂Ψ7

∂z

)
+

∂

∂z

(
− ∂Ψ5

∂x
+

∂Ψ8

∂y
− ∂Ψ2

∂z

)]
, (2.18)

v =
1

2
·
[ ∂

∂x

(∂Ψ3

∂x
− ∂Ψ1

∂y
− ∂Ψ7

∂z

)
+

∂

∂z

(∂Ψ9

∂x
+

∂Ψ6

∂y
− ∂Ψ4

∂z

)]
, (2.19)

w =
1

2
·
[ ∂

∂x

(∂Ψ5

∂x
− ∂Ψ8

∂y
+

∂Ψ2

∂z

)
+

∂

∂y

(
− ∂Ψ9

∂x
− ∂Ψ6

∂y
+

∂Ψ4

∂z

)]
. (2.20)

In (2.12)–(2.20), we used the simpler notation for the associated unknowns Ψk, where the sub-

script indicates the number of a pseudofunction without its order. The number of the unknowns

Ψk is equal to 15, so that k = 1, . . . , 15. In (2.12), p0 is the additive pressure constant, U is the

absolute value of the velocity vector, and d is the dissipative term defined by

U =
√

u2 + v2 + w2,

d = −U2

6
+

1

3

(
−ΔxyΨ10 +ΔxzΨ11 −ΔyzΨ12 − ∂2Ψ13

∂x∂y
+

∂2Ψ14

∂x∂z
− ∂2Ψ15

∂y∂z

)
,

(2.21)

where Δxy, Δxz, Δyz denote the incomplete Laplace operators

Δxy =
∂2

∂x2
+

∂2

∂y2
, Δxz =

∂2

∂x2
+

∂2

∂z2
, Δyz =

∂2

∂y2
+

∂2

∂z2
.

Equations (2.12)–(2.20) are relations between the main unknowns u, v, w, p, the associated
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unknowns Ψn, n = 1, . . . , 15, the Reynolds number Re, and the external force potential Φ. The

derivatives with respect to u, v, w, p has the order less by 1 than their order in (1.1)–(1.4).

From (2.12)–(2.20) we easily obtain the first integral for the Euler equations. It suffices to

put 1/Re = 0 in (2.13)–(2.17). One can show that the classical integrals of the Bernoulli, Euler–

Bernoulli, and Lagrange–Cauchy equations governing the motion of an incompressible fluid are

particular cases of (2.12)–(2.20) (cf. [4]).

Analyzing (2.12)–(2.20), we come to the following conclusion. We have the system of nine

equations with 19 unknowns, i.e., the main unknowns u, v, w, p and the associated unknowns

Ψn, where n = 1, . . . , 15. The fact that the number of unknowns exceeds the number of equations

plays a positive role in particular problems since we have the possibility to model solutions and

to satisfy some additional conditions, for example, the initial and boundary conditions.

Thus, we have constructed the first integral. Now, we find the main unknowns u, v, w, p.

3 Finding the Main Unknowns

We consider (2.12) and (2.18)–(2.20). We emphasize that these four relations determine

the general structure of solutions to the Navier–Stokes equations. By (2.12), the pressure p is

represented as the algebraic sum of the following four different terms: the external force potential

Φ, the velocity pressure U2/2, and the dissipative terms d and dt, where d is defined in (2.21)

and dt is defined by

dt =
1

3
· ∂

∂t

( ∂

∂x
(Ψ2 −Ψ1) +

∂

∂y
(Ψ4 −Ψ3) +

∂

∂z
(Ψ6 −Ψ5)

)
. (3.1)

By (2.18)–(2.20), the velocities u, v, w are represented as a linear combination of the second

order derivatives of the functions Ψk, k = 1, . . . , 9. We note that the linear combination is

determined by only nine associated unknowns among 15 ones. To specify particular fragments

of the linear combination and terms determining the pressure, it is necessary to solve the five

nonlinear equations (2.13)–(2.17). Apparently, making transformations of (2.13)–(2.17), one can

obtain two relations guaranteeing the validity of the remaining ones.

3.1. The prime generator of solutions. We consider (2.13)–(2.17). Denote by fk, k =

2, . . . , 6, the sums of terms in (2.13)–(2.17) depending only on the six associated unknowns with

numbers 10, . . . , 15. We have

f2 = −∂2Ψ10

∂x2
+

∂2Ψ10

∂y2
− ∂2Ψ11

∂z2
− ∂2Ψ12

∂z2
+

∂2Ψ15

∂y∂z
+

∂2Ψ14

∂x∂z
,

f3 =
∂2Ψ10

∂x2
+

∂2Ψ11

∂x2
− ∂2Ψ12

∂y2
+

∂2Ψ12

∂z2
− ∂2Ψ13

∂x∂y
− ∂2Ψ14

∂x∂z
,

f4 = −∂2Ψ10

∂x∂y
+

1

2

∂

∂z

(
− ∂Ψ15

∂x
+

∂Ψ14

∂y
+

∂Ψ13

∂z

)
, (3.2)

f5 =
∂2Ψ11

∂x∂z
+

1

2

∂

∂y

(
− ∂Ψ15

∂x
− ∂Ψ14

∂y
− ∂Ψ13

∂z

)
,

f6 = −∂2Ψ12

∂y∂z
+

1

2

∂

∂x

(∂Ψ14

∂y
+

∂Ψ15

∂x
− ∂Ψ13

∂z

)
.
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Then we can write (2.13)–(2.17) as

f2 = u2 − v2 +
2

Re

(
− ∂u

∂x
+

∂v

∂y

)
+

∂

∂t

(∂Ψ1

∂x
− ∂Ψ3

∂y
− ∂Ψ5

∂z
− ∂Ψ6

∂z

)
,

f3 = v2 − w2 +
2

Re

(
− ∂v

∂y
+

∂w

∂z

)
− ∂

∂t

(∂Ψ1

∂x
+

∂Ψ2

∂x
+

∂Ψ4

∂y
− ∂Ψ6

∂z

)
,

f4 = uv − 1

Re

(∂v
∂x

+
∂u

∂y

)
+

1

2

∂

∂t

(∂Ψ3

∂x
+

∂Ψ1

∂y
+

∂Ψ8

∂z
+

∂Ψ9

∂z

)
,

f5 = uw − 1

Re

(
− ∂w

∂x
+

∂u

∂z

)
+

1

2

∂

∂t

(∂Ψ5

∂x
+

∂Ψ7

∂y
− ∂Ψ9

∂y
− ∂Ψ2

∂z

)
,

f6 = vw − 1

Re

(
− ∂w

∂y
+

∂v

∂z

)
− 1

2

∂

∂t

(∂Ψ7

∂x
+

∂Ψ8

∂x
+

∂Ψ6

∂y
+

∂Ψ4

∂z

)
.

(3.3)

Equations (3.2) are linear inhomogeneous equations for Ψj , j = 10, . . . , 15. Calculating the

derivatives with respect to the coordinates in the last three equations in (3.2) and substituting

the result into the first two equations in (3.2), we can obtain the zero right-hand sides. The

obtained two equations have the form

∂2f2
∂x∂y

− ∂2f4
∂x2

+
∂2f4
∂y2

+
∂2f5
∂y∂z

− ∂2f6
∂x∂z

= 0,

∂2f3
∂y∂z

+
∂2f4
∂x∂z

− ∂2f5
∂x∂y

− ∂2f6
∂y2

+
∂2f6
∂z2

= 0.

(3.4)

By (3.3), it is clear that the functions fk depend on u, v, w and Ψj , j = 1, . . . , 9. However,

by (2.18)–(2.20), u, v, w can be also found from Ψj , j = 1, . . . , 9. Thus, the functions fk
are determined by Ψj , j = 1, . . . , 9, and (3.4) can be regarded as a system of two nonlinear

equations of the fifth order with respect to Ψj containing 1/Re as a parameter at the higher

order derivative. Similar assertions are valid for the Euler equations with the only difference

that we should put 1/Re = 0. Moreover, the order of higher derivatives in (3.4) is reduced

from 5 to 4. Any collection of functions Ψj , j = 1, . . . , 9, satisfying (3.4) generates a solution

to Equations (1.1)–(1.4). Equations (3.4) can be regarded as a prime generator of solutions to

Equations (1.1)–(1.4).

3.2. Finding the main unknowns. We describe an algorithm for finding u, v, w, p.

Step 1. Express fk, k = 2, . . . , 6, in terms of Ψj , j = 1, . . . , 9, from (3.3) and (2.18)–(2.20).

Step 2. Solve Equations (3.4) for Ψj , j = 1, . . . , 9.

Step 3. Find the main unknowns u, v, w from (2.18)–(2.20).

Step 4. Find the associated unknowns Ψj , j = 10, . . . , 15, from the last three equations in

(3.2).

Step 5. Find p from (2.12), taking into account (2.21) and (3.1).

Thus, the solution of Equations (1.1)–(1.4) is reduced to solving five simpler problems. As a

result, all the main unknowns u, v, w, p can be found and Equations (1.1)–(1.4) can be solved.

For the Euler equations an analogous conclusion can be made with the only difference that

we put 1/Re = 0 at all intermediate steps.
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Remark 3.1. Analyzing the algorithm, we can conclude that the second and fourth steps

are the most complicated. At the second step, we need to solve the system of two nonlinear

equations (3.4) for nine unknowns Ψj , j = 1, . . . , 9. At the fourth step, we need to solve three

linear equations (3.2) for six unknowns Ψj , j = 10, . . . , 15. Thus, to solve the Navier–Stokes

equations (1.1)–(1.3), we need to solve nonlinear, as well as linear problems.

A deeper analysis of the obtained equations leads to the conclusion that the fourth and fifth

steps can be considerably simplified. We prove the following assertion.

Theorem 3.1. The main unknowns u, v, w, p are independent of the associated unknowns

Ψi, i = 10, . . . , 15.

Proof. 1. For u, v, w the assertion is obvious. Indeed, u, v, w are found by formulas (2.18)–

(2.20) where the right-hand sides depend only on the associated unknowns Ψj , j = 1, . . . , 9.

2. We show that the function p defined by (2.12), is independent of Ψk, k = 10, . . . , 15. We

consider the last equation in (3.2) and calculate term-by-term the double integral with respect

to y and z, where for the sake of simplicity we assume that the additive functions appearing

while integrating vanish:

Ψ12 = −
y∫

y0

z∫

z0

f6dydz +
1

2

( z∫

z0

∂Ψ14

∂x
dz +

y∫

y0

z∫

z0

∂2Ψ15

∂x2
dydz −

y∫

y0

∂Ψ13

∂x
dy

)
.

Similarly, for the third and fourth equations in (3.2) we calculate the double integrals with

respect to x, z and x, y respectively. As a result, for the unknowns Ψ11 and Ψ10 we find

Ψ11 =

x∫

x0

z∫

z0

f5dxdz +
1

2

( z∫

z0

∂Ψ15

∂y
dz +

x∫

x0

z∫

z0

∂2Ψ14

∂y2
dxdz +

x∫

x0

∂Ψ13

∂y
dx

)
,

Ψ10 = −
x∫

x0

y∫

y0

f4dxdy +
1

2

(
−

y∫

y0

∂Ψ15

∂z
dy +

x∫

x0

y∫

y0

∂2Ψ13

∂z2
dxdy +

x∫

x0

∂Ψ14

∂z
dx

)
.

Using (2.21), we calculate the incomplete Laplace operators ΔxyΨ10, ΔxzΨ11, ΔyzΨ12:

∂2Ψ10

∂x2
+

∂2Ψ10

∂y2
= −

y∫

y0

∂f4
∂x

dy −
x∫

x0

∂f4
∂y

dx+
1

2

( y∫

y0

∂3Ψ13

∂z2∂x
dy +

x∫

x0

∂3Ψ13

∂z2∂y
dx

+

x∫

x0

∂3Ψ14

∂y2∂z
dx+

∂2Ψ14

∂x∂z
−

y∫

y0

∂3Ψ15

∂x2∂z
dy − ∂2Ψ15

∂y∂z

)
,

∂2Ψ11

∂x2
+

∂2Ψ11

∂z2
=

z∫

z0

∂f5
∂x

dz +

x∫

x0

∂f5
∂z

dx+
1

2

( x∫

x0

∂3Ψ13

∂z2∂y
dx+

∂2Ψ13

∂y∂x

+

x∫

x0

∂3Ψ14

∂y2∂z
dx+

z∫

z0

∂3Ψ14

∂y2∂x
dz +

∂2Ψ15

∂y∂z
+

z∫

z0

∂3Ψ15

∂x2∂y
dz

)
, (3.5)
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∂2Ψ12

∂y2
+

∂2Ψ12

∂z2
= −

z∫

z0

∂f6
∂y

dz −
y∫

y0

∂f6
∂z

dy +
1

2

( z∫

z0

∂3Ψ14

∂y2∂x
dz +

∂2Ψ14

∂x∂z

−
y∫

y0

∂3Ψ13

∂z2∂x
dy − ∂2Ψ13

∂x∂y
+

y∫

y0

∂3Ψ15

∂x2∂z
dy +

z∫

z0

∂3Ψ15

∂x2∂y
dz

)
.

We write the right-hand side of (2.21) taking into account the obtained relations. We note that

all the terms with Ψk, k = 10, . . . , 15, cancel, and for d we get

d = −U2

6
+

1

3

( y∫

y0

∂f4
∂x

dy +

x∫

x0

∂f4
∂y

dx+

x∫

x0

∂f5
∂z

dx+

z∫

z0

∂f5
∂x

dz +

y∫

y0

∂f6
∂z

dy +

z∫

z0

∂f6
∂y

dz

)
. (3.6)

The right-hand sides of (3.6) involve only U, f4, f5, f6, depending on the unknowns Ψj , j =

1, . . . , 9, whereas the unknowns Ψk, k = 10, . . . , 15, are absent. The same is true for (2.12).

Hence p is independent of Ψk, k = 10, . . . , 15, which is required.

Thus, the fourth and fifth steps can be replaced with a single step of calculating the unknown

p by formulas (2.12), (3.1), (3.6). Thereby the procedure is considerably simplified.

4 Examples

We consider examples of realization of the algorithm. We construct solutions to the Navier–

Stokes equations in the case where a cascade of plane waves propagates in deep water without

actions of external forces (Φ = 0). Such waves are the simplest ones in a liquid medium. From

the physical point of view, such a wave process means that the wave propagates in the direction

of some (wave) vector and the wave front is the plane orthogonal to this vector.

To simplify calculations, we construct the solutions in the complex form. The unknowns u,

v, w are looked for as a combination of plane waves by formulas (2.18)–(2.20)

u =
i

2

(
Am1e

i(n1x+m1y+l1z) +Bl2e
i(n2x+m2y+l2z)

)
,

v =
i

2

(
−An1e

i(n1x+m1y+l1z) + Cl3e
i(n3x+m3y+l3z)

)
,

w =
i

2

(
−Bn2e

i(n2x+m2y+l2z) − Cm3e
i(n3x+m3y+l3z)

)
,

(4.1)

where i is the imaginary unity, (nk,mk, lk), k = 1, 2, 3, are wave vectors, and A(t), B(t), C(t)

are amplitudes depending on the time. The equation of continuity (1.4) follows from (4.1).

Equations (3.4) are valid under the following two assumptions.

Assumption 1. The amplitudes satisfy the ordinary differential equations

dA

dt
= − A

Re
(n2

1 +m2
1 + l21),

dB

dt
= − B

Re
(n2

2 +m2
2 + l22),

dC

dt
= − C

Re
(n2

3 +m2
3 + l23).

(4.2)
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It is easy to find the solution to the system (4.2)

A(t) = A(0) exp

{
− (n2

1 +m2
1 + l21)t

Re

}
,

B(t) = B(0) exp

{
− (n2

2 +m2
2 + l22)t

Re

}
,

C(t) = C(0) exp

{
− (n2

3 +m2
3 + l23)t

Re

}
,

(4.3)

where A(0), B(0), C(0) are arbitrary constants.

Assumption 2. The coordinates of the wave vectors satisfy a system of algebraic equations.

Each solution, complex or real, to this system generates a solution to the Navier–Stokes equa-

tions.

We describe two variants of new solutions.

Solution 1: n1 = n2 = n3 = 1, m1 = m3 = 0, m2 =
√
5, l1 = l3 = 3, l2 = −2. Then the

velocities are defined by

u = −iB(0)) exp

{
−10t

Re
+ i(x+

√
5y − 2z)

}
,

v =
i

2
(3C(0)−A(0)) exp

{
−10t

Re
+ i(x+ 3z)

}
,

w = − iB(0)

2
exp

{
−10t

Re
+ i(x+

√
5y − 2z)

}
(4.4)

and the pressure is defined by

p = p0 +

√
5

4
B(0)(A(0)− 3C(0)) exp

{
−20t

Re
+ i(2x+

√
5y + z)

}
. (4.5)

Solution 2: n1 = n2 = 0, n3 = −i
√
3, m1 = m2 = m3 = i

√
3, l1 = l2 = 1, l3 = 2. Then the

velocities are defined by

u =
i

2
(i
√
3A(0) +B(0)) exp

{
2t

Re
−

√
3y + iz

}
,

v = iC(0) exp

{
2t

Re
+

√
3x−

√
3y + 2iz

}
,

w =

√
3

2
C(0) exp

{
2t

Re
+

√
3x−

√
3y + 2iz

}
(4.6)

and the pressure is defined by

p = p0 − 1

4
C(0)(i

√
3A(0) +B(0)) exp

{
4t

Re
+

√
3x− 2

√
3y + 3iz

}
. (4.7)
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