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We study the homotopic classifications of maps from circles and spheres to manifolds

and compare the classical approach to define the Hopf invariant with the approach based

on Chen’s iterated integrals. Bibliography: 5 titles.

1 Iterated Integrals

Let ω1, ω2, . . . , ωr be differential 1-forms on a smooth manifold M . Denote by Px0(M) the space

of paths γ : I = [0, 1] → M with starting point x0 = γ(0). By an iterated integral of ω1, ω2, · · ·ωr

we mean a function

∫
ω1 . . . ωr : Px0(M) → R on the path space Px0(M) such that for a path γ

it is inductively defined by the equality

∫

γ

ω1 . . . ωr =

∫

γ

( ∫

γτ

ω1 . . . ωr−1

)
ωr, γτ = γ(τt), t ∈ [0, 1].

We note that

∫

γ

ω1 is a usual curvilinear integral. For complex-valued differential 1-forms

ω1 . . . ωr the iterated integrals take the values in C. We denote by P x1
x0

(M). the space of paths

γ such that γ(0) = x0 and γ(1) = x1 and by Bs(M) the space of iterated integrals

∫

γ

ω1 . . . ωr

of length r � s. We consider some properties of iterated integrals.

1.1. The product of iterated integrals is a linear combination of iterated integrals.
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Theorem 1.1. The product of iterated integrals of length k and l respectively is equal to the

sum of iterated integrals of length k + l

∫

γ

ω1 · · ·ωk ·
∫

γ

ωk+1 · · ·ωk+l =
∑

σ∈Sk,l

∫

γ

ωσ(1) · · ·ωσ(k+l),

where the sum is taken over all shuffles (k, l) in the permutation group Sn+k.

Proof. Let γ∗ωi = fi(t)dt, i = 1, . . . , k + l. By the definition of iterated integrals,

∫

γ

ω1 · · ·ωk ·
∫

γ

ωk+1 · · ·ωk+l =

∫

[0,1]

γ∗ω1 · · · γ∗ωk ·
∫

[0,1]

γ∗ωk+1 · · · γ∗ωk+l

=

∫

Ck

k∏
i=1

fi(ti)dt1 · · · dtk ·
∫

Cl

k+l∏
i=k+1

fi(ti)dtk+1 · · · dtk+l =

∫

Ck×Cl= ∪
σ∈Sk,l

σ(Ck+l)

k+l∏
i=1

fi(ti)dt1 · · · dtk+l,

where the last equality holds in view of the Fubini theorem. Since the integral over the union

of measurable sets is equal to the sum of integrals over each set in this union provided that the

intersection of these sets has zero measure, we have

∫

Ck×Cl= ∪
σ∈Sk,l

σ(Ck+l)

k+l∏
i=1

fi(ti)dt1 · · · dtk+l =
∑

σ∈Sk,l

∫

σ(Ck+l)

k+l∏
i=1

fi(ti)dt1 · · · dtk+l

=
∑

σ∈Sk,l

∫

γ

ωσ−1(1) · · ·ωσ−1(k+l),

where Cn is an n-dimensional standard simplex.

1.2. We consider differential forms ω1, . . . , ωr on Mn and a path γ : [0, 1] → Mn. We set

γ′(τ) = γ(t(τ)), where t(τ) : [0, 1] → [0, 1] is a change of variable. If t(τ) is monotonically

increasing, then the equivalence class of paths, up to a change of variable, is called an ori-

ented curve. We use the induction on r to prove the invariance property under a differentiable

monotonically increasing change of variable

∫

γ′

ω1 · · ·ωr =

∫

γ

ω1 · · ·ωr.

For r = 1 we have the curvilinear integral

∫

γ

ω1 independent of the path parametrization.

For r � 1 we write the definition of an r-iterated integral with t = tr−1 in the recurrent form

∫

γ

ω1 · · ·ωr =

1∫

0

( ∫

γt

ω1 · · ·ωr−1

)
fr(t)dt,
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where fr(t)dt = γ∗(ωr) and the path γt is defined by γτ (t) = γ(tτ), t ∈ [0, 1]. This is possible

because of its representation formula in the form of a repeated integral.

Multiplication by an equivalence class of paths is an associative operation. For example, to

identify the products of three paths (αβ)γ and α(βγ), we can use

t(τ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2τ, 0 � τ � 1

4
,

τ2 +
3

2
τ − 1

4
,

1

4
� τ � 1

2
,

5

2
τ − 3

2
,

1

2
� τ � 1.

1.3. The product α · β : [0, 1] → Mn of two paths α : [0, 1] → Mn and β : [0, 1] → Mn such

that α(1) = β(0) is defined by

(α · β)(t) =
⎧⎨
⎩
α(2t), 0 � t � 1/2,

β(2t− 1), 1/2 � t � 1.

Theorem 1.2. Let α and β be two paths such that their product γ = α · β : [0, 1] → Mn is

defined. Then

∫

γ=α·β
ω1 · · ·ωr =

∫

α

ω1 · · ·ωr +

r−1∑
k=1

∫

α

ω1 · · ·ωk

∫

β

ωk+1 · · ·ωr +

∫

β

ω1 · · ·ωr.

Proof. We argue by induction. For the base step we use the additivity property of usual

curvilinear integrals. Further, let us consider the path γt = (αβ)t. By the definition of γt,

(α · β)t =
⎧⎨
⎩
αt, 0 � t � 1/2,

α · (β)t, 1/2 � t � 1.

Therefore, for any 1-differential form ω

((α · β)t)∗ω =

⎧⎨
⎩
(αt)∗ω = f(2t)dt, 0 � t � 1/2,

(α · βt)∗ω = g(2t− 1)dt, 1/2 � t � 1,

where f(t)dt = (α)∗ω and g(t)dt = (β)∗ω. By the additivity property of usual integrals,

∫

α·β
ω1 · · ·ωr =

1∫

0

( ∫

(α·β)t
ω1 · · ·ωr−1

)
(α · β)tωr

=

1
2∫

0

( ∫

(α)t

ω1 · · ·ωr−1

)
fr(2t)dt+

1∫
1
2

( ∫

α·(β)t
ω1 · · ·ωr−1

)
gr(2t− 1)dt
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which can be written in the form

∫

α

ω1 · · ·ωr +

1∫
1
2

(
r−1∑
k=0

∫

α

ω1 · · ·ωk

∫

βt

ωk+1 · · ·ωr−1

)
gr(2t− 1)dt

=

∫

α

ω1 · · ·ωr +
r−1∑
k=1

∫

α

ω1 · · ·ωk

∫

β

ωk+1 · · ·ωr +

∫

β

ω1 · · ·ωr

in view of the definition of r-iterated integrals.

1.4. We introduce the path γ−1 by γ−1(t) = γ(1 − t), t ∈ [0, 1]. Arguing as in Subsection

1.2, we obtain the following assertion.

Theorem 1.3. ∫

γ−1

ω1 · · ·ωr = (−1)r
∫

γ

ωr · · ·ω1.

1.5. We introduce the definition of a pin.

Definition 1.1. By a pin we mean a path of the form γγ−1. By a pin insertion we mean

that a path α is represented as α = β1γγ
−1β2. We say that a pin is removed if γγ−1 is removed

from the above representation.

Theorem 1.4. An iterated integral is independent of insertions or removals of pins.

Proof. It suffices to prove the equality

∫

γγ−1

ω1 · · ·ωr = 0, r � 1, which is valid in view of

Subsections 1.1, 1.3, and 1.4 and can be proved by induction on r.

1.6. A loop is a path γ such that γ(0) = γ(1). We denote by Ωx0(M) the space of paths with

marked point x0. If we consider loops up to an insertion or removal of pins, then an equivalence

relation is defined on the loop space. The set of equivalence classes is a topological space equipped

with the quotient topology generated by the compact-open topology in the original loop space.

We denote by Ωx0(M) the corresponding quotient space. It is a topological group with the

group operation induced by the product of loops in the original loop space. In particular, the

product of equivalence classes is associative and, in terms of loops, we can say that the product

of loops, regarded up to a monotone change of variable, is an associative operation on loops. A

connected component of the identity element in the group Ωx0(M) is a normal divisor in the

group. The corresponding quotient group is a group isomorphic to the fundamental group of

the manifold Mn. By Subsection 1.5, the iterated integrals are continuous functions on Ωx0(M)

(in fact, differentiable functions of the same smoothness order as the space of differential forms

and the space of loops under consideration).

1.7. The value of 2-iterated integral

∫
ω1ω2 over the commutator [α, β] = αβα−1β−1 of two

loops α and β is calculated via 1-iterated integrals by∫

[α,β]

ω1ω2 =

∫

α

ω1

∫

β

ω2 −
∫

β

ω1

∫

α

ω2.
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We place the brackets in the commutator of two loops α and β as [α, β] = (αβ)(α−1β−1) =

(αβ)((βα)−1) and note that the iterated integral is independent of the bracket disposition in

the product of loops. By properties of iterated integrals, a direct computation shows that

∫

[α,β]

ω1ω2 =

∫

(αβ)((βα)−1)

ω1ω2 =

∫

αβ

ω1ω2 +

∫

(βα)−1

ω1ω2 +

∫

αβ

ω1

∫

(βα)−1

ω2

=

∫

α

ω1ω2 +

∫

β

ω1ω2 +

∫

α

ω1

∫

β

ω2 +

∫

βα

ω2ω1 −
( ∫

α

ω1 +

∫

β

ω1

)( ∫

α

ω2 +

∫

β

ω2

)

=

∫

α

ω1ω2 +

∫

β

ω1ω2 +

∫

α

ω1

∫

β

ω2 +

∫

β

ω2ω1 +

∫

α

ω2ω1 +

∫

α

ω1

∫

β

ω2

−
( ∫

α

ω1 +

∫

β

ω1

)( ∫

α

ω2 +

∫

β

ω2

)

=

( ∫

α

ω1ω2 +

∫

α

ω2ω1

)
+

( ∫

β

ω1ω2 +

∫

β

ω2ω1

)
+

∫

α

ω1

∫

β

ω2 +

∫

α

ω1

∫

β

ω2

−
( ∫

α

ω1 +

∫

β

ω1

)( ∫

α

ω2 +

∫

β

ω2

)

=

∫

α

ω1

∫

α

ω2 +

∫

β

ω1

∫

β

ω2 +

∫

α

ω1

∫

β

ω2 +

∫

α

ω1

∫

β

ω2 −
( ∫

α

ω1 +

∫

β

ω1

)( ∫

α

ω2 +

∫

β

ω2

)

=

∫

α

ω1

∫

β

ω2 −
∫

β

ω1

∫

α

ω2.

1.8. The value of 2-iterated integral

∫
ω1ω2 over the product γ =

m∏
i=1

[αi, βi] of commutators

of loops is equal to the sum of the values of 2-iterated integrals over the factors, i.e.,

∫
m∏

i=1
[αi,βi]

ω1ω2 =
m∑
i=1

∫

[αi,βi]

ω1ω2.

By Subsection 1.7, ∫
m∏

i=1
[αi,βi]

ω1ω2 =
m∑
i=1

( ∫

α

ω1

∫

β

ω2 −
∫

β

ω1

∫

α

ω2

)
.

We prove this assertion by induction on m. The induction step can be easily obtained from

Subsection 1.3 and the induction assumption. We consider the base case, i.e., m = 2. Let
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γ = γ1γ2, where γ1 = [α1, β1] and γ2 = [α2, β2]. According to Subsection 1.3, we can write∫

γ1γ2

ω1ω2 =

∫

γ1

ω1ω2 +

∫

γ2

ω1ω2 +

∫

γ1

ω1

∫

γ2

ω2.

By properties of usual curvilinear integrals, for i = 1, 2∫

γi

ωi =

∫

αiβiα
−1
i β−1

i

ωi =

∫

αi

ωi +

∫

βi

ωi −
∫

αi

ωi −
∫

βi

ωi = 0.

Then we obtain the required equality∫

γ1γ2

ω1ω2 =

∫

γ1

ω1ω2 +

∫

γ2

ω1ω2.

The general case is treated in a similar way.

The definition of iterated integrals and their properties, except for that indicated in Sub-

section 1.4, are generalized to the case of matrix-valued differential 1-forms. One of the most

important properties of iterated integrals concerns the differentiability property and, in partic-

ular, the Stokes formula. Iterated integrals of 1-forms are functions on the loop space Ωx0(M
n)

with a given starting point x0 in the manifold Mn or, in other words, are differential 0-forms on

Ωx0(M
n). Thus, we have the following assertion.

1.9. For iterated integrals of differential 1-forms on the loop space Ωx0M = P x0
x0

(M) we have

the differentiation formula (cf. [1])

d

∫

γ

ω1 · · ·ωq = −
q∑

i=1

∫

γ

ω1 · · ·ωi−1dωiωi+1 . . . ωq

−
q−1∑
i=1

(−1)i
∫

γ

ω1 · · ·ωi−1(ωi ∧ ωi+1)ωi+2ωi+2 · · ·ωq (1.1)

and the Stokes formula
∫

C

(d

∫
ω1 · · ·ωq) =

∫

∂C

( ∫
ω1 · · ·ωq

)
=

∫

C(1)

ω1 · · ·ωq −
∫

C(0)

ω1 · · ·ωq,

where the path C : [0; 1] → P x1
x0

(M) is a singular simplex in the space P x1
x0

(M). This simplex

defines a homotopy between the paths γ1 and γ2; moreover, C(0) = γ1 and C(1) = γ2 in the

path space P x1
x0

(Xn).

We denote by Bs(M) the vector space of iterated integrals on M of length at most s and by

ηx a constant path at a point x in M , i.e., ηx(t) = x for all t. If r � 1, then〈∫
ω1 . . . ωr, ηx

〉
= 0

for all x ∈ M . Thus, the estimation on the constant path ηx defines a linear functional ε :

Bs(M) → R, I → 〈I, ηx〉 independent of x. If

I = λ+
∑

ai

∫
ωi +

∑
aij

∫
ωiωj + · · · ,
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then ε(I) = λ. Denote by Bε(M) the kernel of the map ε. There are iterated integrals of

length at most s with zero constant term. We have the natural inclusion i : R → Bs(M)

such that ε ◦ i = id. As a result, we obtain the natural decomposition into the direct sum

Bs(M) ∼= R⊕Bs(M). For loops α, β ∈ PM attached to the point x we have a differential form

on the commutator [α, β] = αβα−1β−1. We note that a constant loop ηx at x is often denoted

by 1. For paths αηx, ηxα and an iterated integral I we can write

I(α) = I(αηx) = I(ηxα).

We recall that the classical curvilinear integral satisfies the conditions

〈∫
ω, [α, β]

〉
= 0,

〈∫
ω, (α− 1)(β − 1)

〉
= 0,

where α and β are loops attached to the point x. The following assertion generalizes this fact.

Lemma 1.1. Assume that ω1, . . . , ωr ∈ E1(M) and x ∈ M . Assume that α1, α2, . . . , αs are

loops on M attached to the point x.

(a) If I ∈ Br and r < s, then 〈I, (1− α1)(1− α2) · · · (1− αs)〉 = 0, where 1 denotes ηx, i.e.,

a constant path at the point x.

(b) If I ∈ Br and r < s, then 〈I, [α1[α2[. . . [αs−1] . . .]]]〉 = 0.

2 Iterated Integrals of Differential Forms
of Arbitrary Degree

Let ω1, ω2, . . . , ωr be differential forms of deg ωi = pi on a compact closed manifold Mn.

The iterated integral

∫
ω1 · · ·ωr is a differential form of degree p1+p2+ · · ·+pr− r on the path

space P (M) which will be denoted by P x1
x0

if the starting x0 and ending x1 points are given. In

the case x0 = x1, we deal with the loop space Ωx0 . P (M).

We define an iterated integral on the path space P (M). Differential forms of degree n

on the path space are forms on convex sets U, V ⊂ R
n, which will be denoted by ωU and

ωV respectively. We consider maps α : U → P (M) and β : V → P (M). There exists a

differentiable map f : U → V such that β ◦ f = α and f∗ωV = ωU . We consider the suspension

map (cf. [1]) ϕα : I × U → M . We also consider a differential form ω defined on U and such

that deg ω = p > 1. We have ϕ∗
α = dt ∧ ω′ + ω′′. Denote

ω′(t) =
t∫

0

ω′dt.

By definition, a 1-iterated integral is represented as

∫
ω1 =

1∫

0

ω′
1(t1)dt1.
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In this case, we obtain a differential form on U of degree p−1. For a 2-iterated integral we have

∫
ω1ω2 =

1∫

0

( t2∫

0

ω1 ∧ ω′
2(t2)

)
dt2.

We define an r-iterated integral by induction:

∫
ω1 . . . ωr =

1∫

0

( tr∫

0

ω1 . . . ωr−1 ∧ ω′
r(tr)

)
dtr.

For iterated integrals of differential forms of an arbitrary degree the following differentiation

formula holds (cf. [1])

d

∫
ω1ω2 · · ·ωr =

r∑
i=1

(−1)i
∫

Jω1 · · · Jωi−1dωiωi+1 · · ·ωr

−
r−1∑
i=1

Jω1 · · · Jωi−1(Jωi ∧ ωi+1)ωi+2 · · ·ωr,

where Jωi = (−1)deg ωi ·ωi. This formula is a generalization of formula (1.1) for iterated integrals

of differential 1-forms. To obtain the Stokes formula, we restrict the path space P (M) to the

loop space Ωx0(M) with the marked point x0. Then the Stokes formulas can be written as

〈
d

∫
ω1ω2 · · ·ωr, C

〉
=

〈∫
ω1ω2 · · ·ωr, ∂C

〉
.

3 Detection of Homotopically Nontrivial Elements of
Fundamental Groups of One-Dimensional Complex Manifolds

In this section, we consider holomorphic and meromorphic differential 1-forms on one-

dimensional complex manifolds.

The homotopic nontriviality of loops on one-dimensional complex manifolds is determined

by nonzero values of the homotopy periods on the loops. By homotopy periods we mean iterated

integrals depending only on the homotopy class of loops. Thus, the homotopy period is well

defined on the element of the fundamental group corresponding to the loop. The homotopy

periods define functions on the fundamental group of a one-dimensional complex manifold. We

consider one-dimensional complex manifolds whose fundamental groups are given by finitely

many generators and finitely many relations (finitely presented groups).

Proposition 3.1. The intersection of terms of the lower central series of the finitely pre-

sented fundamental group of a one-dimensional complex manifold is the unit group.

Proof. 1. If a one-dimensional complex manifold C is not compact, then its fundamental

group is a free group, π1(C, x0) = Fn, n > 0, with finitely many generators
∞⋂
k=1

ΓkFn = {e}.
2. If a one-dimensional complex manifold is closed, then its fundamental group is either

the trivial group G = {e} or a group with finitely many generators and one relation. The
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fundamental group of the manifold X = C\{x} obtained from C by removing one point is a

free group F2g, where g is the genius of the manifold C. The embedding i : X → C induces

an epimorphism π1(X) → π1(C) → 1 of fundamental groups and an epimorphism Γkπ1(X) →
Γkπ1(C) → 1, k = 1, 2, . . ., of their lower central series. Since

∞⋂
k=1

Γkπ1(X) = {e}, it follows that
∞⋂
k=1

Γkπ1(C) = {e}. Thus, the finitely presented fundamental group π1(C) of a one-dimensional

complex manifold is the trivial intersection of terms of the lower central series.

The group π1(C) is a residually nilpotent group. Thus, for every nontrivial element g of the

fundamental group π1(C) there exists a maximal natural number r such that g has the nonzero

image in the quotient group Γr(C)/Γr+1(C).

We choose a system of canonical loops a1, . . . , ag, b1, . . . , bg on C, cut C along these loops,

and transform this one-dimensional complex manifold to a 2g-polygon. We can choose loops

starting at the point x0 ∈ C and representing the generators of the fundamental group π1(C, x0)

(we preserve the notation). Any iterated integral

∫
ω1 · · ·ωr, r � 1, of holomorphic 1-forms on a

one-dimensional complex manifold is a homotopy period. Indeed, let two loops γ1, γ2 ∈ Ωx0(C)

are homotopic, i.e., there exists a map h : [0, 1] → Ωx0(C) such that h(0) = γ1 and h(1) = γ2.

By properties of iterated integrals,

∫

γ2

ω1 · · ·ωr −
∫

γ1

ω1 · · ·ωr =

∫

∂h

ω1 · · ·ωr =

∫

h

d

∫
ω1 · · ·ωr

= −
∫

h

r∑
i=1

∫
ω1 · · · dωi · · ·ωr −

r−1∑
i=1

∫
ω1 · · · (ωi ∧ ωi+1) · · ·ωr = 0.

The last equality is valid because dωi = 0, i = 1, . . . , r, and ωi ∧ ωi+1 = 0, i = 1, . . . , r − 1, for

holomorphic forms on a one-dimensional complex manifold. Hence

∫

γ1

ω1 · · ·ωr =

∫

γ2

ω1 · · ·ωr,

i.e., the iterated integral

∫
ω1 · · ·ωr of holomorphic forms is a homotopy period. As known,

there is a holomorphic 1-form ωi on C such that

Re

∫

ai

ωi = 1, Re

∫

aj

ωi = 0, j �= i, j = 1, . . . , r, Re

∫

bj

ωi = 0, j = 1, . . . , r,

for b-periods. Similarly, there is a holomorphic form ωj such that Re

∫

bj

ωj = 1. The remaining

periods of this form vanish. Such a 1-form detects the homotopic nontriviality of the generators

a1, . . . , ag, b1, . . . , bg.

Using the Chen isomorphism theorem in the class of smooth differential 1-forms

H0(Br, x0) = Hom (R[π1(M,x0)]/J
r+1,R),
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where H0(Br, x0) are homotopy periods of r-iterated integrals, we can prove the homotopic

nontriviality of any element of π1(M,x0) with the help of iterated integrals. In the class of

holomorphic (or antiholomorphic) 1-forms, the problem is more complicated.

The nontriviality of elements [ai, aj ] = aiaja
−1
i a−1

j can be recognized with the help of holo-

morphic 1-forms ω1, ω2, . . . , ωg with periods

∫

ai

ωj = 2π
√−1 δij ,

where δij is the Kronecker symbol. Indeed,

∫

[ai,aj ]

ωiωj =

∣∣∣∣∣∣∣∣∣∣∣

∫

ai

ωi

∫

ai

ωj

∫

aj

ωi

∫

aj

ωj

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣
2π

√−1 0

0 2π
√−1

∣∣∣∣∣∣ = −4π2 �= 0.

Since

∫

[ai,aj ]

ωiωj is a nonzero homotopy period, the loop commutator [ai, aj ] is not homotopic

to a constant loop. Similarly, the loop commutator [bi, bj ] is not homotopic to a constant loop

either. We will prove this assertion below for the products of loop commutators

[ai1 , ai2 ] · [ai3 , ai4 ] · . . . · [ais , aii+1 ],

[bi1 , bi2 ] · [bi3 , bi4 ] · . . . · [bis , bii+1 ].

We choose a basis of holomorphic forms ω1, . . . , ωg on the one-dimensional complex manifold

C such that the a-periods

∫

ai

ωj are purely imaginary and the b-periods

∫

bi

ωj yield a complex

g × g-matrix with negative definite real part.

For the loop commutators [ai, bj ] we can choose a pair of 1-forms from the above sets so

that the 2-iterated integral

∫

[ai,bj ]

ωkωl is a complex number with nonzero imaginary part. Con-

sequently, the commutator [ai, bj ] is not homotopic to a constant loop.

Analyzing properties of iterated integrals and matrices of periods of holomorphic 1-forms,

we can assert that for any γ ∈ Γrπ1(C) there exists an r-iterated integral of only holomorphic

1-forms (or antiholomorphic 1-forms) which does not vanish on the loop γ,

∫

γ

ωi1 · · ·ωir �= 0.

This fact means that γ is not homotopic to a constant loop.

By the residual nilpotence and the above assumption, we can conclude that if for γ ∈ π1(C)

and all iterated integrals ∫

γ

ωi1 · · ·ωir = 0, r > 0,

then γ is homotopic to a constant loop.
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4 Homotopic Classification of Maps

One of the oldest problems in algebraic topology is the classification problem of maps from

a sphere to a sphere, up to a homotopy f : Sm → Sn. To study this problem, it is useful to

consider the auxiliary space Cf = Dm+1
⋃
f

Sn, called the map cone. In this space, there are

cells of dimension 0, n, m + 1 corresponding to a point, the interior of a disc Dm+1 and the

disc 0Dn = Sn\{pt} respectively. In particular, for m = n we have the space Dn+1
⋃
f

Sn. The

n-dimensional homologies Hn(Cf ,Z) of this space are isomorphic to Z|d|. The number d is a

homotopic invariant of the map f , called the degree of f . This construction was originally used

for a circle, but was later generalized to higher dimensions.

Another interesting classical case concerns the maps f : S2n−1 → Sn, n � 1. In this case,

the map cone is Cf = D2n
⋃
f

Sn. There are cells of dimension 0, n, 2n. In this situation, it is

of interest to consider the cohomologies Hn(Cf ,Z) = Z and H2n(Cf ,Z) = Z. We note that the

generators of these groups correspond to the cells en, e2n in the cell partition of the cone Cf .

We recall that cohomologies possess the multiplicative structure. We denote by xn and x2n
the generators of Hn(Cf ,Z) = Z and H2n(Cf ,Z) = Z respectively. Then the product xn ∪ xn
belongs to the cohomology group H2n(Cf ,Z). Therefore (cf. [2]), xn∪xn = h(f)x2n, where h(f),

called the Hopf invariant of f : S2n−1 → Sn, is an integer depending only on the homotopy

class of the map.

5 Iterated Integrals and Definition of the Hopf Invariant

We consider a map f : S2n−1 → Sn and regard the sphere S2n−1 as the suspension S2n−1 =

ΣS2n−2 over the sphere S2n−2. We fix a point x0 ∈ S2n−2 and for each x ∈ S2n−2 define a loop

αx : I → Sn such that αx(0) = αx(1) = x0. With each x ∈ S2n−2 we associate a loop on the

sphere. Thus, we obtain the map ϕ : S2n−2 → Ωx0S
n in the loop space Ωx0S

n with the marked

point x0.

Let ωn be the volume differential form

∫

Sn

ωn = 1 on Sn. We consider the induced form f∗ωn

on S2n−1. As known, all forms of degree from 1 to 2n − 2 on S2n−1 are exact. We consider a

form ψ on S2n−1 such that dψ = f∗ωn (cf. [3, 4]) and the outer product ψ ∧ f∗ωn which is a

form of degree 2n − 1 on S2n−1. We denote by hf the result of integrating this form over the

sphere and note that it is a homotopic invariant of f (cf. [3, 4]).

Now, we introduce the number invariant in another way by using the Chen theory of iterated

integrals. We consider the 2-iterated integral

∫
ωnωn which is a differential form of degree

2n−2 on the loop space with a marked point in Ωx0S
n. The map ϕf : S2n−2 → Ωx0S

n defines a

singular (2n− 2)-dimensional chain in the loop space Ωx0S
n. Then we integrate this form over

the singular chain and denote by h̃f the obtained result:

〈∫
ωnωn, ϕf (S

2n−2)

〉
= h̃f .

Analyzing the definition of hf and h̃f , we conclude that they are identical (cf. [5]), hf = h̃f ,
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and depend only on the homotopy class of f (cf. [3, 4]). It is also known (cf. [3]) that hf coincides

with the Hopf invariant defined via links (cf. [4]).

Let Mn be a compact closed oriented manifold of dimension n, and let ωn be the volume form

on Mn. We extend the above definition to the map f : S2n−1 → Mn. Indeed, deg f∗ωn = n.

Moreover, there exists a differential form ψ such that dψ = f∗ωn. Then

hf (M) =

∫

S2n−1

ψ ∧ f∗ωn

or S2n−2 ϕf−→ Ωx0M
n, where S2n−1 is regarded as the suspension over the sphere S2n−2. We set

h̃f (M) =

〈∫
ωnωn, ϕf (S

2n−2)

〉
.

Then hf (M) and h̃f (M) are homotopic invariants; moreover, hf (M) = h̃f (M). This generalizes

the Hopf invariant of f : S2n−1 → Sn to a larger class of maps f : S2n−1 → Mn from (2n− 1)-

dimensional spheres to n-dimensional manifolds.
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