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SOLVABILITY OF THE CAUCHY PROBLEM FOR
A QUASILINEAR SYSTEM IN ORIGINAL COORDINATES
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23, Gagarina Pr., Nizhny Novgorod 603950m Russia

dontsowa.marina2011@yandex.ru UDC 517.9

We study the Cauchy problem for a system of quasilinear equations in the original

coordinates by using the additional argument method. We obtain sufficient conditions

for the existence and uniqueness of a local solution and show that the solution has the

same x-smoothness as the initial function. We also obtain sufficient conditions for the

existence and uniqueness of a global solution. Bibliography: 4 titles.

1 Introduction

We consider the system

∂tu(t, x) + (a1(t)u(t, x) + b1(t)v(t, x))∂xu(t, x) = a2u(t, x) + b2(t)v(t, x),

∂tv(t, x) + (c1(t)u(t, x) + g1(t)v(t, x))∂xv(t, x) = g2v(t, x),
(1.1)

where u(t, x) and v(t, x) are unknown functions, a1(t), b1(t), b2(t), c1(t), g1(t) are known func-

tions, a2 and g2 are known constants. For the system (1.1) we consider the initial conditions

u(0, x) = ϕ1(x), v(0, x) = ϕ2(x), (1.2)

where ϕ1(x) and ϕ2(x) are known. The problem (1.1), (1.2) is considered in the domain ΩT =

{(t, x) | 0 � t � T, x ∈ (−∞,+∞), T > 0}.
A similar problem was studied in [1]. In this paper, we get other sufficient conditions in the

case of negative a1(t), b1(t), c1(t), g1(t) and nonnegative b2(t) on [0, T ]. Using the additional

argument method, we obtain a system of integral equations which is equivalent to the system

considered in [1], but allowing one to prove estimates in a simper way.

By the additional argument method, we consider the extended characteristic system

dη1(s, t, x)

ds
= a1(s)w1(s, t, x) + b1(s)w3(s, t, x), (1.3)

dη2(s, t, x)

ds
= c1(s)w4(s, t, x) + g1(s)w2(s, t, x), (1.4)
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dw1(s, t, x)

ds
= a2w1(s, t, x) + b2(s)w3(s, t, x), (1.5)

dw2(s, t, x)

ds
= g2w2(s, t, x), (1.6)

w3(s, t, x) = w2(s, s, η1), w4(s, t, x) = w1(s, s, η2), (1.7)

η1(t, t, x) = x, η2(t, t, x) = x, (1.8)

w1(0, t, x) = ϕ1(η1(0, t, x)), w2(0, t, x) = ϕ2(η2(0, t, x)). (1.9)

The unknowns ηi, wj , i = 1, 2, j = 1, . . . , 4, depend not only on t and x, but also on the

additional variable s. Integrating (1.3)–(1.6) with respect to s and taking into account the

conditions (1.7)–(1.9), we obtain the equivalent system of integral equations

η1(s, t, x) = x−
t∫

s

(a1(τ)w1 + b1(τ)w3)dτ, (1.10)

η2(s, t, x) = x−
t∫

s

(c1(τ)w4 + g1(τ)w2)dτ, (1.11)

w1(s, t, x) = ϕ1(η1(0, t, x)) exp(a2s) +

s∫

0

b2(τ)w3 exp(a2(s− τ))dτ, (1.12)

w2(s, t, x) = ϕ2(η2(0, t, x)) exp(g2s), (1.13)

w3(s, t, x) = w2(s, s, η1), (1.14)

w4(s, t, x) = w1(s, s, η2). (1.15)

Substituting (1.10), (1.11) into (1.12)–(1.15), we get

w1(s, t, x) = ϕ1

(
x−

t∫

0

(a1(τ)w1 + b1(τ)w3)dτ

)
exp(a2s)

+

s∫

0

b2(τ)w3 exp(a2(s− τ))dτ, (1.16)

w2(s, t, x) = ϕ2

(
x−

t∫

0

(c1(τ)w4(τ, t, x) + g1(τ)w2(τ, t, x))dτ

)
exp(g2s), (1.17)

w3(s, t, x) = w2

(
s, s, x−

t∫

s

(a1(τ)w1 + b1(τ)w3)dτ

)
, (1.18)

w4(s, t, x) = w1

(
s, s, x−

t∫

s

(c1(τ)w4 + g1(τ)w2)dτ

)
. (1.19)

Lemma 1.1. Let w1(s, t, x), w2(s, t, x) satisfy the system of integral equations (1.16)–(1.19).

Assume that w1(s, t, x) and w2(s, t, x) are continuously differentiable and bounded, together with
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their first order derivatives. Then the pair u(t, x) = w1(t, t, x), v(t, x) = w2(t, t, x) is a solution

to the problem (1.1), (1.2) on ΩT0, T0 � T , where T0 is a constant.

Lemma 1.1 plays the key role in the additional argument method. It is proved in a standard

way (cf., for example, [2]).

2 Existence of Local Solution

We introduce the notation

ΓT = {(s, t, x) | 0 � s � t � T, x ∈ (−∞,+∞), T > 0},
Cϕ = max{sup

R
|ϕ(l)

i | | i = 1, 2, l = 0. . . . , 2},

l = max{sup |a1(t)|, sup |b1(t)|, sup b2(t), sup |c1(t)|, sup |g1(t)|, |a2|, |g2|},
where the supremum is taken over [0, T ]. We also set ‖U‖ = sup

ΓT

|U(s, t, x)|, ‖f‖ = sup
ΩT

|f(t, x)|
and introduce the spaces:

C
1,2,2

(ΩT ) is the space of functions that are differentiable with respect to t, twice differen-

tiable with respect to x, have mixed second order derivatives, and are bounded, together with

their derivatives on ΩT ,

C
2
(R) is the space of functions that are continuous and bounded, together with their first

and second order derivatives on R,

C([0, T ]) is the space of continuous functions on [0, T ].

Theorem 2.1. Assume that ϕ1(x), ϕ2(x) ∈ C
2
(R), a1(t), b1(t), b2(t), c1(t), g1(t) ∈ C([0, T ]),

a1(t) < 0, b1(t) < 0, b2(t) � 0, c1(t) < 0, g1(t) < 0, t ∈ [0, T ], and ϕ′
1(x) � 0, ϕ′

2(x) � 0, x ∈ R.

Then for all 0 � t � T2, where T2 = min{1/(25Cϕl), 1/(10l)}, the Cauchy problem (1.1), (1.2)

has a unique solution u(t, x), v(t, x) ∈ C
1,2,2

(ΩT2) which can be found from the system of integral

equations (1.16)–(1.19).

We divide the proof of Theorem 2.1 into two lemmas.

Lemma 2.1. Assume that ϕ1(x), ϕ2(x) ∈ C
2
(R), a1(t), b1(t), b2(t), c1(t), g1(t) ∈ C([0, T ]),

a1(t) < 0, b1(t) < 0, b2(t) � 0, c1(t) < 0, g1(t) < 0, t ∈ [0, T ]. Then the system of

integral equations (1.16)–(1.19) has a unique solution wj ∈ C
1,1,1

(ΓT2), j = 1, . . . , 4, T2 =

min{1/(25Cϕl), 1/(10l)}.

Proof. The zeroth approximation to the solution to the system (1.16)–(1.19) is given by

w10(s, t, x) = ϕ1(x), w20(s, t, x) = ϕ2(x), w30(s, t, x) = ϕ2(x), w40(s, t, x) = ϕ1(x).

The next approximations are defined by the recurrent sequence of systems of equations (n =

1, 2, . . .)

w1n(s, t, x) = ϕ1

(
x−

t∫

0

(a1(τ)w1n + b1(τ)w3n)dτ

)
exp(a2s)

+

s∫

0

b2(τ)w3n exp(a2(s− τ))dτ, (2.1)
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w2n(s, t, x) = ϕ2

(
x−

t∫

0

(c1(τ)w4n(τ, t, x) + g1(τ)w2n(τ, t, x))dτ

)
exp(g2s), (2.2)

w3n(s, t, x) = w2(n−1)

(
s, s, x−

t∫

s

(a1(τ)w1n + b1(τ)w3n)dτ

)
, (2.3)

w4n(s, t, x) = w1(n−1)

(
s, s, x−

t∫

s

(c1(τ)w4n + g1(τ)w2n)dτ
)
. (2.4)

For the system (2.1)–(2.4) we define the zeroth approximation by w0
jn = wj(n−1), j = 1, . . . , 4,

and the next approximations by

wk+1
1n (s, t, x) = ϕ1

(
x−

t∫

0

(a1(τ)w
k
1n + b1(τ)w

k
3n)dτ

)
exp(a2s)

+

s∫

0

b2(τ)w
k
3n exp(a2(s− τ))dτ, (2.5)

wk+1
2n (s, t, x) = ϕ2

(
x−

t∫

0

(c1(τ)w
k
4n(τ, t, x) + g1(τ)w

k
2n(τ, t, x))dτ

)
exp(g2s), (2.6)

wk+1
3n (s, t, x) = w2(n−1)

(
s, s, x−

t∫

s

(a1(τ)w
k
1n + b1(τ)w

k
3n)dτ

)
, (2.7)

wk+1
4n (s, t, x) = w1(n−1)

(
s, s, x−

t∫

s

(c1(τ)w
k
4n + g1(τ)w

k
2n)dτ

)
. (2.8)

By the assumptions on coefficients, for all 0 � t � T1, where T1 = min{1/(20Cϕl), 1/(4l)}, we
have ‖wk

jn‖ � 2Cϕ, j = 1, . . . , 4. Further, the successive approximations (2.5)–(2.8) are bounded,

continuous and converge to the solution to the system (2.1)–(2.4). Furthermore, ‖wjn‖ � 2Cϕ,

j = 1, . . . , 4. Differentiating (2.5)–(2.8) with respect to x, we get

wk+1
1nx (s, t, x) = ϕ′

1

(
x−

t∫

0

(a1(τ)w
k
1n + b1(τ)w

k
3n)dτ

)(
1−

t∫

0

(a1(τ)w
k
1nx + b1(τ)w

k
3nx)dτ

)

× exp(a2s) +

s∫

0

b2(τ)w
k
3nx exp(a2(s− τ))dτ, (2.9)

wk+1
2n (s, t, x) = ϕ′

2

(
x−

t∫

0

(c1(τ)w
k
4n + g1(τ)w

k
2n)dτ

)

×
(
1−

t∫

0

(c1(τ)w
k
4nx + g1(τ)w

k
2nx)dτ

)
exp(g2s), (2.10)
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wk+1
3nx (s, t, x) = w2(n−1)x

(
1−

t∫

s

(a1(τ)w
k
1nx + b1(τ)w

k
3nx)dτ

)
, (2.11)

wk+1
4nx (s, t, x) = w1(n−1)x

(
1−

t∫

s

(c1(τ)w
k
4nx + g1(τ)w

k
2nx)dτ

)
. (2.12)

By the assumptions on coefficients, for all 0 � t � T1, where T1 = min{1/(20Cϕl), 1/(4l)},

‖wk
1nx‖ � 4Cϕ, ‖wk

2nx‖ � 4Cϕ, ‖wk
3nx‖ � 6Cϕ, ‖wk

4nx‖ � 6Cϕ.

Differentiating (2.1)–(2.4) with respect to x, we get

w1nx = ϕ′
1

(
x−

t∫

0

(a1(τ)w1n + b1(τ)w3n)dτ

)(
1−

t∫

0

(a1(τ)w1nx + b1(τ)w3nx)dτ

)

× exp(a2s) +

s∫

0

b2(τ)w3nx exp(a2(s− τ))dτ, (2.13)

w2nx = ϕ′
2

(
x−

t∫

0

(c1(τ)w4n + g1(τ)w2n)dτ

)

×
(
1−

t∫

0

(c1(τ)w4nx + g1(τ)w2nx)dτ

)
exp(g2s), (2.14)

w3nx = w2(n−1)x

(
1−

t∫

s

(a1(τ)w1nx + b1(τ)w3nx)dτ

)
, (2.15)

w4nx = w1(n−1)x

(
1−

t∫

s

(c1(τ)w4nx + g1(τ)w2nx)dτ

)
. (2.16)

The successive approximations wk
1nx, w

k
2nx, w

k
3nx, w

k
4nx converge to w1nx, w2nx, w3nx, w4nx as

k → ∞, and

‖∂xw1n‖ � 4Cϕ, ‖∂xw2n‖ � 4Cϕ, ‖∂xw3n‖ � 6Cϕ, ‖∂xw4n‖ � 6Cϕ.

The successive approximations (2.1)–(2.4) converge to the solution to the system (1.16)–(1.19),

and ‖wj‖ � 2Cϕ, j = 1, . . . , 4. Differentiating twice the system (2.1)–(2.4) with respect to x

and setting ωn
j = wjnxx, j = 1, . . . , 4, we obtain the system of equations

ωn
1 = −ϕ′

1

t∫

0

(a1(τ)ω
n
1 + b1(τ)ω

n
3 )dτ exp(a2s) +

s∫

0

b2(τ)ω
n
3 exp(a2(s− τ))dτ

+ ϕ′′
1

(
1−

t∫

0

(a1(τ)w1nx + b1(τ)w3nx)dτ

)2

exp(a2s), (2.17)
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ωn
2 = −ϕ′

2

t∫

0

(c1(τ)ω
n
4 + g1(τ)ω

n
2 )dτ exp(g2s)

+ ϕ′′
2

(
1−

t∫

0

(c1(τ)w4nx + g1(τ)w2nx)dτ

)2

exp(g2s), (2.18)

ωn
3 = ωn−1

2

(
1−

t∫

s

(a1(τ)w1nx + b1(τ)w3nx)dτ

)2

− w2(n−1)x

t∫

s

(a1(τ)ω
n
1 + b1(τ)ω

n
3 )dτ, (2.19)

ωn
4 = ωn−1

1

(
1−

t∫

s

(c1(τ)w4nx + g1(τ)w2nx)dτ

)2

− w1(n−1)x

t∫

s

(c1(τ)ω
n
4 + g1(τ)ω

n
2 )dτ. (2.20)

For all 0 � t � T2, where T2 = min{1/(25Cϕl), 1/(10l)}, the following estimates hold:

‖ωn
i ‖ � 25Cϕ, i = 1, 2, ‖ωn

3 ‖ � 124Cϕ, ‖ωn
4 ‖ � 124Cϕ.

Denote qn =

(
w1nx

w2nx

)
, pn =

4∑
j=1

‖wj(n+1) − wjn‖ and introduce the norm ‖qn‖ = ‖w1nx‖+‖w2nx‖.
Using induction, for all 0 � t � T2, where T2 = min{1/(25Cϕl), 1/(10l)}, we find

N∑
n=0

‖qn+1 − qn‖ � 2‖q1 − q0‖+ 0.9
N∑

n=1

pn,

where
N∑

n=1
pn are bounded for any N . Consequently, the partial sums

N∑
n=0

‖qn+1 − qn‖ are

bounded for any N and the series
∞∑
n=0

‖qn+1 − qn‖ converges. Therefore, winx → wix = ∂xwi,

i = 1, 2. Further, w3nx → w3x = ∂xw3 and w4nx → w4x = ∂xw4. Consequently, wjnx → wjx =

∂xwj , j = 1, . . . , 4, where the functions ∂xwj are continuous with respect to all its arguments on

ΓT2 , T2 = min{1/(25Cϕl), 1/(10l)}. The following estimates hold:

‖∂xwi‖ � 4Cϕ, i = 1, 2, ‖∂xw3‖ � 6Cϕ, ‖∂xw4‖ � 6Cϕ.

Similarly, wj , j = 1, . . . , 4, have continuous bounded t-derivatives on ΓT2 . The uniqueness of a

solution is proved in the same way as in [3].

Lemma 2.2. Assume that ϕ1(x), ϕ2(x) ∈ C
2
(R), a1(t), b1(t), b2(t), c1(t), g1(t) ∈ C([0, T ]),

a1(t) < 0, b1(t) < 0, b2(t) � 0, c1(t) < 0, g1(t) < 0, t ∈ [0, T ], ϕ′
1(x) � 0, ϕ′

2(x) � 0, x ∈ R.

Then the functions {wj}, j = 1, . . . , 4, solving the system (1.16)–(1.19) have the continuous

bounded derivatives
∂2wj

∂x2
,
∂2wj

∂x∂t
, j = 1, . . . , 4 on ΓT2 , where T2 = min{1/(25Cϕl), 1/(10l)}.

Proof. As proved in [1], the following inequalities hold on ΓT2 :
∣∣∣∣∣

t∫

s

(a1(τ)w1n + b1(τ)w3n)dτ

∣∣∣∣∣ � 0.16,

∣∣∣∣∣
t∫

s

(c1(τ)w4n + g1(τ)w2n)dτ

∣∣∣∣∣ � 0.16,
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where T2 = min{(1/(25Cϕl), 1/(10l)}. We fix x0 ∈ R and consider the set Ωx0 = {x |
x0 − 0.16 � x �x0 + 0.16}. Let x1, x2 ∈ Ωx0 . We prove that

|η1n(s, t, x1)− η1n(s, t, x2)| � |x1 − x2|, (2.21)

|η2n(s, t, x1)− η2n(s, t, x2)| � |x1 − x2|, (2.22)

where

η1n(s, t, x) = x−
t∫

s

(a1(τ)w1n(τ, t, x) + b1(τ)w3n(τ, t, x))dτ,

η2n(s, t, x) = x−
t∫

s

(c1(τ)w4n(τ, t, x) + g1(τ)w2n(τ, t, x))dτ.

We assume that

w1(n−1)x � 0, w2(n−1)x � 0. (2.23)

For all n ∈ N on ΓT2 , where T2 = min{1/(25Cϕl), 1/(10l)}, we have

1−
t∫

s

(a1(τ)w1nx + b1(τ)w3nx)dτ > 0, 1−
t∫

s

(c1(τ)w4nx + g1(τ)w2nx)dτ > 0. (2.24)

From (2.15), (2.23), (2.24) it follows that w3nx � 0. From (2.16), (2.23), (2.24) it follows that

w4nx � 0. Since w3nx � 0, from (2.13), (2.24), and the conditions b2(t) � 0, t ∈ [0, T ], ϕ′
1(x) � 0,

x ∈ R, we find w1nx � 0.

From (2.14), (2.24), and the conditions ϕ′
2(x) � 0, x ∈ R, we find w2nx � 0.

Since w1nx � 0, w2nx � 0, w3nx � 0, w4nx � 0, we have

1−
t∫

s

(a1(τ)w1nx + b1(τ)w3nx)dτ � 1, 1−
t∫

s

(c1(τ)w4nx + g1(τ)w2nx)dτ � 1. (2.25)

By (2.24), (2.25) and the finite increment formula, we obtain (2.21) and (2.22).

Arguing in the same way as in [4], we can prove the x-equicontinuity of ωn
1 and ωn

2 for

x ∈ Ωx0 , which implies the x-equicontinuity of ωn
1 and ωn

2 at any point x0 ∈ R.

We consider the system of equations

ω̃n
1 = −ϕ′

1(η1(0, t, x))

t∫

0

(a1(τ)ω̃
n
1 + b1(τ)ω̃

n
3 )dτ exp(a2s) +

s∫

0

b2(τ)ω̃
n
3 exp(a2(s− τ))dτ

+ ϕ′′
1

(
1−

t∫

0

(a1(τ)w1x + b1(τ)w3x)dτ

)2

exp(a2s),

ω̃n
2 = −ϕ′

2(η2(0, t, x))

t∫

0

(c1(τ)ω̃
n
4 + g1(τ)ω̃

n
2 )dτ exp(g2s)

+ ϕ′′
2

(
1−

t∫

0

(c1(τ)w4x + g1(τ)w2x)dτ

)2

exp(g2s),
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ω̃n
3 = ω̃n−1

2

(
1−

t∫

s

(a1(τ)w1x + b1(τ)w3x)dτ

)2

− w2x(s, s, η1(s, t, x))

t∫

s

(a1(τ)ω̃
n
1 + b1(τ)ω̃

n
3 )dτ,

ω̃n
4 = ω̃n−1

1

(
1−

t∫

s

(c1(τ)w4x + g1(τ)w2x)dτ

)2

− w1x(s, s, η2(s, t, x))

t∫

s

(c1(τ)ω̃
n
4 + g1(τ)ω̃

n
2 )dτ.

On ΓT2 , the following estimates hold:

‖ω̃n
1 ‖ � 2Cϕ, ‖ω̃n

2 ‖ � 2Cϕ, ‖ω̃n
3 ‖ � 3Cϕ, ‖ω̃n

4 ‖ � 3Cϕ.

Further, ω̃n
j → ω̃j , j = 1, . . . , 4, on ΓT2 and

‖ω̃1‖ � 2Cϕ, ‖ω̃2‖ � 2Cϕ, ‖ω̃3‖ � 3Cϕ, ‖ω̃4‖ � 3Cϕ.

We show that ωn
j converge to ω̃j , j = 1, . . . , 4, as n → ∞ on ΓT2 . On ΓT2 , we have

|ωn
1 − ω̃1| � |Rn

1 |+ 0.14(‖ωn
1 − ω̃1‖+ ‖ωn

3 − ω̃3‖),
‖ωn

3 − ω̃3‖ � |Rn
2 |+ |ωn−1

2 − ω̃2|+ 0.16(‖ωn
1 − ω̃1‖+ ‖ωn

3 − ω̃3‖),

where

Rn
1 =

∣∣∣∣∣ (ϕ′′
1(η1n(0, t, x)− ϕ′′

1(η1(0, t, x)))η
2
1nx(s, t, x) + ϕ′′

1(η1(0, t, x))[η
2
1nx(0, t, x)− η21x(0, t, x)]

− (ϕ′
1(η1n(0, t, x))− ϕ′

1(η1(0, t, x)))

t∫

0

(a1(τ)ω
n
1 (τ, t, x) + b1(τ)ω

n
3 (τ, t, x))dτ

∣∣∣∣∣ exp(a2s),

Rn
2 =

∣∣∣∣∣ωn−1
2 (s, s, η1n(s, t, x))[η

2
1nx(s, t, x)− η21x(s, t, x)]−

t∫

s

(a1(τ)ω
n
1 (τ, t, x) + b1(τ)ω

n
3 (τ, t, x))dτ

× [
w2(n−1)x(s, s, η1n(s, t, x))− w2x(s, s, η1(s, t, x))

] ∣∣∣∣∣,

η1n(s, t, x) = x−
t∫

s

(a1(τ)w1n(τ, t, x) + b1(τ)w3n(τ, t, x))dτ,

η2n(s, t, x) = x−
t∫

s

(c1(τ)w4n(τ, t, x) + g1(τ)w2n(τ, t, x))dτ.

Since all functions in Rn
1 and Rn

2 are uniformly continuous, equicontinuous, and bounded, for

any ε there exists N such that |Rn
1 | < ε and |Rn

2 | < ε for n � N . Consequently, for n � N

‖ωn
1 − ω̃1‖ � 1.2ε+ 0.2‖ωn

3 − ω̃3‖ ,
‖ωn

3 − ω̃3‖ � 1.2ε+ 1.2‖ωn−1
2 − ω̃2‖+ 0.2‖ωn

1 − ω̃1‖ .
(2.26)

Hence for n � N

‖ωn
1 − ω̃1‖ � 4

3
ε+

1

3
‖ωn−1

2 − ω̃2‖. (2.27)

925



Similarly, for n � N

‖ωn
2 − ω̃2‖ � 4

3
ε+

1

3
‖ωn−1

1 − ω̃1‖. (2.28)

Adding (2.27) and (2.28), we get

‖ωn
1 − ω̃1‖+ ‖ωn

2 − ω̃2‖ � 8

3
ε+

1

3
(‖ωn−1

2 − ω̃2‖+ ‖ωn−1
1 − ω̃1‖).

The following inequality can be proved by induction:

‖ωN+k
1 − ω̃1‖+ ‖ωN+k

2 − ω̃2‖ �
(1
3

)k
(‖ωN

1 − ω̃1‖+ ‖ωN
2 − ω̃2‖) + 4ε

for n � N . Consequently, ωN+k
1 → ω̃1, ω

N+k
2 → ω̃2 as N → ∞, k → ∞. From (2.26) it follows

that ωn
3 → ω̃3 as n → ∞. Similarly, ωn

4 → ω̃4 as n → ∞ and

‖ω̃1‖ � 2Cϕ, ‖ω̃2‖ � 2Cϕ, ‖ω̃3‖ � 3Cϕ, ‖ω̃4‖ � 3Cϕ.

Thus, wjnxx → wjxx = ω̃j , where the functions
∂2wj

∂x2
, j = 1, . . . , 4, are continuous and bounded

on ΓT2 . Furthermore, they have continuous bounded derivatives
∂2wj

∂x∂t
, j = 1, . . . , 4 on ΓT2 .

3 Existence of Global Solution

Theorem 3.1. Assume that ϕ1(x), ϕ2(x) ∈ C
2
(R), a1(t), b1(t), b2(t), c1(t), g1(t) ∈ C([0, T ]),

a1(t) < 0, b1(t) < 0, b2(t) � 0, c1(t) < 0, g1(t) < 0, t ∈ [0, T ]; ϕ′
1(x) � 0, ϕ′

2(x) � 0, x ∈ R.

Then for any T > 0 the Cauchy problem (1.1), (1.2) has a unique solution u(t, x), v(t, x) ∈
C

1,2,2
(ΩT ) that can be found from (1.16)–(1.19).

Proof. Differentiating (1.1) with respect to x and denoting p(t, x) = ux(t, x), q(t, x) =

vx(t, x), we obtain the system of equations

∂tp+ (a1(t)u(t, x) + b1(t)v(t, x))∂xp = −a1(t)p
2 − b1(t)pq + a2p+ b2(t)q,

∂tq + (c1(t)u(t, x) + g1(t)v(t, x))∂xq = −g1(t)q
2 − c1(t)pq + g2q,

p(0, x) = ϕ′
1(x), q(0, x) = ϕ′

2(x).

(3.1)

We add (1.10)–(1.15) and the equations

dγ1(s, t, x)

ds
= −a1(s)γ

2
1 − b1(s)γ1γ2(s, s, η1) + a2γ1 + b2(s)γ2(s, s, η1),

dγ2(s, t, x)

ds
= −g1(s)γ

2
2 − c1(s)γ1(s, s, η2)γ2 + g2γ2

(3.2)
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with the conditions γ1(0, t, x) = ϕ′
1(η1) and γ2(0, t, x) = ϕ′

2(η2). We write (3.2) in the form

γ1(s, t, x) = ϕ′
1(η1) exp

(
−

s∫

0

(a1(τ)γ1 + b1(τ)γ2(τ, τ, η1)− a2)dτ

)

+

s∫

0

b2(τ)γ2(τ, τ, η1) exp

(
−

s∫

τ

(a1(τ)γ1 + b1(τ)γ2(ν, ν, η1)− a2)dν

)
dτ,

γ2(s, t, x) = ϕ′
2(η2) exp

(
−

s∫

0

(g1(τ)γ2 + c1(τ)γ1(τ, τ, η2)− g2)dτ

)
.

(3.3)

Using the method of successive approximations, we establish the existence of continuous solution

to the system (3.3) on ΓT2 , where T2 = min{1/(25Cϕl), 1/(10l)}. We define the successive

approximations

γn+1
1 = ϕ′

1(η1) exp

(
−

s∫

0

(a1(τ)γ
n
1 + b1(τ)γ

n
2 (τ, τ, η1)− a2)dτ

)

+

s∫

0

b2(τ)γ
n
2 (τ, τ, η1) exp

(
−

s∫

τ

(a1(τ)γ
n
1 + b1(τ)γ

n
2 (ν, ν, η1)− a2)dν

)
dτ,

γn+1
2 = ϕ′

2(η2) exp

(
−

s∫

0

(g1(τ)γ
n
2 + c1(τ)γ

n
1 (τ, τ, η2)− g2)dτ

)
;

(3.4)

moreover, γ01 = ϕ′
1(η1), γ

0
2 = ϕ′

2(η2). On ΓT2 , we have

|γn+1
i | � 2Cϕ, |ηix| � 1, | γn+1

ix | � 5Cϕ, i = 1, 2.

The successive approximations {γni }, i = 1, 2, converge to a continuous solution to the system

(3.3) on ΓT2 since

‖γn+1
1 − γn1 ‖+ ‖γn+1

2 − γn2 ‖ � 0.6(‖γn1 − γn−1
1 ‖+ ‖γn2 − γn−1

2 ‖).

On ΓT2 , we have |γi| � 2Cϕ, i = 1, 2. As in [1], we can prove the existence of a continuously

differentiable solution to the problem (3.3). Consequently,

γ1(t, t, x) = p(t, x) =
∂u

∂x
, γ2(t, t, x) = q(t, x) =

∂v

∂x
.

As in [4], we can prove that for all t and x on ΩT

‖v‖ � Cϕ exp(|g2|T ), ‖u‖ � Cϕ exp(|a2|T )(1 + T l exp(|g2|T )). (3.5)

From (3.3) it follows that γ1 � 0 and γ2 � 0 on ΓT . Consequently,

‖γ2‖ � Cϕ exp(|g2|T ), ‖γ1‖ � Cϕ exp(|a2|T )(1 + T l exp(|g2|T )).

Since

γ1(t, t, x) =
∂u

∂x
, γ2(t, t, x) =

∂v

∂x
,
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for all t and x on ΩT the following estimates hold:

‖∂xv‖ � Cϕ exp(|g2|T ),
‖∂xu‖ � Cϕ exp(|a2|T )(1 + T l exp(|g2|T )).

(3.6)

As in [4], for all t and x we obtain the estimates

|∂2
x2u| � E11 ch (T

√
C12C21) +E21

√
C12

C21
sh (T

√
C12C21), (3.7)

|∂2
x2v| � E21 ch (T

√
C12C21) + E11

√
C21

C12
sh (T

√
C12C21), (3.8)

where E11, E21, C12, C21 are constants. Owing to the global estimates (3.5), (3.6)–(3.8), we can

extend the solution to any given interval [0, T ]. We take u(T0, x) and v(T0, x) for the initial

values. Using Theorem 2.1, we extend the solution to the interval [T0, T1]. Then for the initial

values we take u(T1, x), v(T1, x). Using Theorem 2.1, we extend the solution to the interval

[T1, T2]. In particular, u(Tk, x), v(Tk, x) ∈ C
2
(R) satisfy the estimate

|u(Tk, x)| � Cϕ exp(|a2|T )(1 + T l exp(|g2|T )), |v(Tk, x)| � Cϕ exp(|g2|T ),
|∂xu(Tk, x)| � Cϕ exp(|a2|T )(1 + T l exp(|g2|T )), |∂xv(Tk, x)| � Cϕ exp(|g2|T ).

The second order derivatives satisfy the estimates (3.7) and (3.8), where T can be taken for t.

As a result, we can extend the solution to any given interval [0, T ] in finitely many steps.

The uniqueness of a solution to the Cauchy problem (1.1), (1.2) is proved with the help of

estimates similar to those used in the proof of the convergence of successive approximations.
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