SOLVABILITY OF THE CAUCHY PROBLEM FOR A QUASILINEAR SYSTEM IN ORIGINAL COORDINATES

M. V. Dontsova

Lobachevsky State University of Nizhny Novgorod 23, Gagarina Pr., Nizhny Novgorod 603950m Russia dontsowa.marina2011@yandex.ru UDC 517.9

We study the Cauchy problem for a system of quasilinear equations in the original coordinates by using the additional argument method. We obtain sufficient conditions for the existence and uniqueness of a local solution and show that the solution has the same x*-smoothness as the initial function. We also obtain sufficient conditions for the existence and uniqueness of a global solution. Bibliography*: 4 *titles.*

1 Introduction

We consider the system

$$
\partial_t u(t, x) + (a_1(t)u(t, x) + b_1(t)v(t, x))\partial_x u(t, x) = a_2u(t, x) + b_2(t)v(t, x),
$$

\n
$$
\partial_t v(t, x) + (c_1(t)u(t, x) + g_1(t)v(t, x))\partial_x v(t, x) = g_2v(t, x),
$$
\n(1.1)

where $u(t, x)$ and $v(t, x)$ are unknown functions, $a_1(t), b_1(t), b_2(t), c_1(t), g_1(t)$ are known functions, a_2 and g_2 are known constants. For the system (1.1) we consider the initial conditions

$$
u(0,x) = \varphi_1(x), \quad v(0,x) = \varphi_2(x), \tag{1.2}
$$

where $\varphi_1(x)$ and $\varphi_2(x)$ are known. The problem (1.1), (1.2) is considered in the domain $\Omega_T =$ $\{(t, x) \mid 0 \leq t \leq T, x \in (-\infty, +\infty), T > 0\}.$

A similar problem was studied in [1]. In this paper, we get other sufficient conditions in the case of negative $a_1(t)$, $b_1(t)$, $c_1(t)$, $g_1(t)$ and nonnegative $b_2(t)$ on [0, T]. Using the additional argument method, we obtain a system of integral equations which is equivalent to the system considered in [1], but allowing one to prove estimates in a simper way.

By the additional argument method, we consider the extended characteristic system

$$
\frac{d\eta_1(s,t,x)}{ds} = a_1(s)w_1(s,t,x) + b_1(s)w_3(s,t,x),\tag{1.3}
$$

$$
\frac{d\eta_2(s,t,x)}{ds} = c_1(s)w_4(s,t,x) + g_1(s)w_2(s,t,x),\tag{1.4}
$$

Translated from *Problemy Matematicheskogo Analiza* **¹⁰³**, 2020, pp. 91-100.

1072-3374/20/2496-0918 *-***c 2020 Springer Science+Business Media, LLC**

$$
\frac{dw_1(s,t,x)}{ds} = a_2w_1(s,t,x) + b_2(s)w_3(s,t,x),\tag{1.5}
$$

$$
\frac{dw_2(s,t,x)}{ds} = g_2w_2(s,t,x),
$$
\n(1.6)

$$
w_3(s, t, x) = w_2(s, s, \eta_1), \quad w_4(s, t, x) = w_1(s, s, \eta_2), \tag{1.7}
$$

$$
\eta_1(t, t, x) = x, \quad \eta_2(t, t, x) = x,\tag{1.8}
$$

$$
w_1(0, t, x) = \varphi_1(\eta_1(0, t, x)), \quad w_2(0, t, x) = \varphi_2(\eta_2(0, t, x)). \tag{1.9}
$$

The unknowns η_i , w_j , $i = 1, 2, j = 1, \ldots, 4$, depend not only on t and x, but also on the additional variable s. Integrating (1.3) – (1.6) with respect to s and taking into account the conditions (1.7) – (1.9) , we obtain the equivalent system of integral equations

$$
\eta_1(s,t,x) = x - \int_s^t (a_1(\tau)w_1 + b_1(\tau)w_3)d\tau,
$$
\n(1.10)

$$
\eta_2(s,t,x) = x - \int_s^t (c_1(\tau)w_4 + g_1(\tau)w_2)d\tau,
$$
\n(1.11)

$$
w_1(s,t,x) = \varphi_1(\eta_1(0,t,x)) \exp(a_2s) + \int_0^s b_2(\tau) w_3 \exp(a_2(s-\tau)) d\tau,
$$
 (1.12)

$$
w_2(s,t,x) = \varphi_2(\eta_2(0,t,x)) \exp(g_2s), \qquad (1.13)
$$

$$
w_3(s, t, x) = w_2(s, s, \eta_1), \tag{1.14}
$$

$$
w_4(s, t, x) = w_1(s, s, \eta_2). \tag{1.15}
$$

Substituting (1.10) , (1.11) into (1.12) – (1.15) , we get

$$
w_1(s,t,x) = \varphi_1 \left(x - \int_0^t (a_1(\tau)w_1 + b_1(\tau)w_3) d\tau \right) \exp(a_2s)
$$

+
$$
\int_0^s b_2(\tau)w_3 \exp(a_2(s-\tau)) d\tau,
$$
 (1.16)

$$
w_2(s,t,x) = \varphi_2 \left(x - \int_0^t (c_1(\tau)w_4(\tau,t,x) + g_1(\tau)w_2(\tau,t,x))d\tau \right) \exp(g_2s), \tag{1.17}
$$

$$
w_3(s,t,x) = w_2\left(s,s,x - \int\limits_s^t (a_1(\tau)w_1 + b_1(\tau)w_3)d\tau\right),\tag{1.18}
$$

$$
w_4(s,t,x) = w_1 \left(s, s, x - \int_s^t (c_1(\tau)w_4 + g_1(\tau)w_2) d\tau\right).
$$
 (1.19)

Lemma 1.1. Let $w_1(s,t,x)$, $w_2(s,t,x)$ *satisfy the system of integral equations* (1.16)–(1.19)*. Assume that* $w_1(s,t,x)$ *and* $w_2(s,t,x)$ *are continuously differentiable and bounded, together with* *their first order derivatives. Then the pair* $u(t, x) = w_1(t, t, x)$, $v(t, x) = w_2(t, t, x)$ *is a solution to the problem* (1.1), (1.2) *on* Ω_{T_0} , $T_0 \leq T$, where T_0 *is a constant.*

Lemma 1.1 plays the key role in the additional argument method. It is proved in a standard way (cf., for example, [2]).

2 Existence of Local Solution

We introduce the notation

$$
\Gamma_T = \{ (s, t, x) \mid 0 \le s \le t \le T, x \in (-\infty, +\infty), T > 0 \},
$$

\n
$$
C_{\varphi} = \max \{ \sup_R |\varphi_i^{(l)}| \mid i = 1, 2, l = 0, \dots, 2 \},
$$

\n
$$
l = \max \{ \sup |a_1(t)|, \sup |b_1(t)|, \sup b_2(t), \sup |c_1(t)|, \sup |g_1(t)|, |a_2|, |g_2| \},
$$

where the supremum is taken over $[0, T]$. We also set $||U|| = \sup_{\Gamma_T} |U(s, t, x)|$, $||f|| = \sup_{\Omega_T} |f(t, x)|$ and introduce the spaces:

 $\overline{C}^{1,2,2}(\Omega_T)$ is the space of functions that are differentiable with respect to t, twice differentiable with respect to x , have mixed second order derivatives, and are bounded, together with their derivatives on Ω_T ,

 $\overline{C}^2(R)$ is the space of functions that are continuous and bounded, together with their first and second order derivatives on R,

 $C([0,T])$ is the space of continuous functions on $[0,T]$.

Theorem 2.1. *Assume that* $\varphi_1(x), \varphi_2(x) \in \overline{C}^2(R)$, $a_1(t), b_1(t), b_2(t), c_1(t), g_1(t) \in C([0, T]),$ $a_1(t) < 0, b_1(t) < 0, b_2(t) \geq 0, c_1(t) < 0, g_1(t) < 0, t \in [0, T], and \varphi'_1(x) \leq 0, \varphi'_2(x) \leq 0, x \in R.$ *Then for all* $0 \le t \le T_2$ *, where* $T_2 = \min\{1/(25C_{\varphi}l), 1/(10l)\}$ *, the Cauchy problem* (1.1)*,* (1.2) $has~a~unique~solution~u(t,x), v(t,x) \in \overline{C}^{1,2,2}(\Omega_{T_2})~which~can~be~found~from~the~system~of~integral$ *equations* (1.16)*–*(1.19)*.*

We divide the proof of Theorem 2.1 into two lemmas.

Lemma 2.1. *Assume that* $\varphi_1(x), \varphi_2(x) \in \overline{C}^2(R)$, $a_1(t), b_1(t), b_2(t), c_1(t), g_1(t) \in C([0, T]),$ $a_1(t) < 0, b_1(t) < 0, b_2(t) \geq 0, c_1(t) < 0, g_1(t) < 0, t \in [0, T].$ Then the system of *integral equations* (1.16)–(1.19) *has a unique solution* $w_j \in \overline{C}^{1,1,1}(\Gamma_{T_2}), j = 1,\ldots,4, T_2 =$ $\min\{1/(25C_{\varphi}l), 1/(10l)\}.$

Proof. The zeroth approximation to the solution to the system (1.16) – (1.19) is given by

 $w_{10}(s, t, x) = \varphi_1(x), \quad w_{20}(s, t, x) = \varphi_2(x), \quad w_{30}(s, t, x) = \varphi_2(x), \quad w_{40}(s, t, x) = \varphi_1(x).$

The next approximations are defined by the recurrent sequence of systems of equations ($n =$ $1, 2, \ldots$

$$
w_{1n}(s,t,x) = \varphi_1 \left(x - \int_0^t (a_1(\tau)w_{1n} + b_1(\tau)w_{3n}) d\tau \right) \exp(a_2s)
$$

+
$$
\int_0^s b_2(\tau)w_{3n} \exp(a_2(s-\tau)) d\tau,
$$
 (2.1)

$$
w_{2n}(s,t,x) = \varphi_2 \left(x - \int_0^t (c_1(\tau)w_{4n}(\tau,t,x) + g_1(\tau)w_{2n}(\tau,t,x))d\tau \right) \exp(g_2s), \tag{2.2}
$$

$$
w_{3n}(s,t,x) = w_{2(n-1)} \left(s, s, x - \int_{s}^{t} (a_1(\tau)w_{1n} + b_1(\tau)w_{3n}) d\tau \right),
$$
\n(2.3)

$$
w_{4n}(s,t,x) = w_{1(n-1)}\Big(s,s,x-\int\limits_s^t (c_1(\tau)w_{4n} + g_1(\tau)w_{2n})d\tau\Big).
$$
 (2.4)

For the system (2.1) – (2.4) we define the zeroth approximation by $w_{jn}^0 = w_{j(n-1)}$, $j = 1, ..., 4$, and the next approximations by

$$
w_{1n}^{k+1}(s,t,x) = \varphi_1 \left(x - \int_0^t (a_1(\tau)w_{1n}^k + b_1(\tau)w_{3n}^k) d\tau \right) \exp(a_2s)
$$

+
$$
\int_0^s b_2(\tau)w_{3n}^k \exp(a_2(s-\tau)) d\tau,
$$
 (2.5)

$$
w_{2n}^{k+1}(s,t,x) = \varphi_2\left(x - \int_0^t (c_1(\tau)w_{4n}^k(\tau,t,x) + g_1(\tau)w_{2n}^k(\tau,t,x))d\tau\right) \exp(g_2s),\tag{2.6}
$$

$$
w_{3n}^{k+1}(s,t,x) = w_{2(n-1)} \left(s, s, x - \int\limits_s^t (a_1(\tau)w_{1n}^k + b_1(\tau)w_{3n}^k) d\tau\right),
$$
\n(2.7)

$$
w_{4n}^{k+1}(s,t,x) = w_{1(n-1)} \left(s, s, x - \int\limits_s^t (c_1(\tau)w_{4n}^k + g_1(\tau)w_{2n}^k) d\tau\right).
$$
 (2.8)

By the assumptions on coefficients, for all $0 \leq t \leq T_1$, where $T_1 = \min\{1/(20C_{\varphi}l), 1/(4l)\}\)$, we have $||w_{jn}^k|| \leq 2C_\varphi$, $j = 1, ..., 4$. Further, the successive approximations (2.5) – (2.8) are bounded, continuous and converge to the solution to the system (2.1) – (2.4) . Furthermore, $||w_{jn}|| \leq 2C_{\varphi}$, $j = 1, \ldots, 4$. Differentiating (2.5) – (2.8) with respect to x, we get

$$
w_{1nx}^{k+1}(s,t,x) = \varphi_1' \left(x - \int_0^t (a_1(\tau)w_{1n}^k + b_1(\tau)w_{3n}^k) d\tau \right) \left(1 - \int_0^t (a_1(\tau)w_{1nx}^k + b_1(\tau)w_{3nx}^k) d\tau \right)
$$

× $\exp(a_2s) + \int_0^s b_2(\tau)w_{3nx}^k \exp(a_2(s-\tau)) d\tau,$ (2.9)

$$
w_{2n}^{k+1}(s,t,x) = \varphi_2' \left(x - \int_0^t (c_1(\tau)w_{4n}^k + g_1(\tau)w_{2n}^k) d\tau \right)
$$

$$
\times \left(1 - \int_0^t (c_1(\tau)w_{4nx}^k + g_1(\tau)w_{2nx}^k) d\tau \right) \exp(g_2s), \tag{2.10}
$$

$$
w_{3nx}^{k+1}(s,t,x) = w_{2(n-1)x} \left(1 - \int_s^t (a_1(\tau)w_{1nx}^k + b_1(\tau)w_{3nx}^k) d\tau \right),
$$
\n(2.11)

$$
w_{4nx}^{k+1}(s,t,x) = w_{1(n-1)x} \left(1 - \int_{s}^{t} (c_1(\tau)w_{4nx}^k + g_1(\tau)w_{2nx}^k) d\tau \right).
$$
 (2.12)

By the assumptions on coefficients, for all $0 \leq t \leq T_1$, where $T_1 = \min\{1/(20C_\varphi l), 1/(4l)\},\$

$$
||w_{1nx}^k|| \leqslant 4C_{\varphi}, \quad ||w_{2nx}^k|| \leqslant 4C_{\varphi}, \quad ||w_{3nx}^k|| \leqslant 6C_{\varphi}, \quad ||w_{4nx}^k|| \leqslant 6C_{\varphi}.
$$

Differentiating (2.1) – (2.4) with respect to x, we get

$$
w_{1nx} = \varphi_1' \left(x - \int_0^t (a_1(\tau)w_{1n} + b_1(\tau)w_{3n}) d\tau \right) \left(1 - \int_0^t (a_1(\tau)w_{1nx} + b_1(\tau)w_{3nx}) d\tau \right)
$$

$$
\times \exp(a_2s) + \int_0^s b_2(\tau)w_{3nx} \exp(a_2(s-\tau)) d\tau,
$$
 (2.13)

$$
w_{2nx} = \varphi_2' \left(x - \int_0^t (c_1(\tau)w_{4n} + g_1(\tau)w_{2n}) d\tau \right)
$$

$$
\times \left(1 - \int_0^t (c_1(\tau)w_{4nx} + g_1(\tau)w_{2nx}) d\tau \right) \exp(g_2s), \tag{2.14}
$$

$$
w_{3nx} = w_{2(n-1)x} \left(1 - \int_{s}^{t} (a_1(\tau)w_{1nx} + b_1(\tau)w_{3nx}) d\tau \right),
$$
\n(2.15)

$$
w_{4nx} = w_{1(n-1)x} \left(1 - \int_{s}^{t} (c_1(\tau)w_{4nx} + g_1(\tau)w_{2nx}) d\tau \right).
$$
 (2.16)

The successive approximations w_{1nx}^k , w_{2nx}^k , w_{3nx}^k , w_{4nx}^k converge to w_{1nx} , w_{2nx} , w_{3nx} , w_{4nx} as $k \to \infty$, and

$$
\|\partial_x w_{1n}\| \leq 4C_{\varphi}, \quad \|\partial_x w_{2n}\| \leq 4C_{\varphi}, \quad \|\partial_x w_{3n}\| \leq 6C_{\varphi}, \quad \|\partial_x w_{4n}\| \leq 6C_{\varphi}.
$$

The successive approximations (2.1) – (2.4) converge to the solution to the system (1.16) – (1.19) , and $||w_j|| \leq 2C_\varphi$, $j = 1, ..., 4$. Differentiating twice the system (2.1) – (2.4) with respect to x and setting $\omega_j^n = w_{jnxx}, j = 1, \ldots, 4$, we obtain the system of equations

$$
\omega_1^n = -\varphi_1' \int_0^t (a_1(\tau)\omega_1^n + b_1(\tau)\omega_3^n) d\tau \exp(a_2s) + \int_0^s b_2(\tau)\omega_3^n \exp(a_2(s-\tau)) d\tau + \varphi_1'' \left(1 - \int_0^t (a_1(\tau)w_{1nx} + b_1(\tau)w_{3nx}) d\tau\right)^2 \exp(a_2s),
$$
\n(2.17)

$$
\omega_2^n = -\varphi_2' \int_0^t (c_1(\tau)\omega_4^n + g_1(\tau)\omega_2^n) d\tau \exp(g_2 s) \n+ \varphi_2'' \left(1 - \int_0^t (c_1(\tau)w_{4nx} + g_1(\tau)w_{2nx}) d\tau\right)^2 \exp(g_2 s),
$$
\n(2.18)

$$
\omega_3^n = \omega_2^{n-1} \left(1 - \int_s^t (a_1(\tau)w_{1nx} + b_1(\tau)w_{3nx}) d\tau \right)^2 - w_{2(n-1)x} \int_s^t (a_1(\tau)\omega_1^n + b_1(\tau)\omega_3^n) d\tau, \quad (2.19)
$$

$$
\omega_4^n = \omega_1^{n-1} \left(1 - \int_s^t (c_1(\tau) w_{4nx} + g_1(\tau) w_{2nx}) d\tau \right)^2 - w_{1(n-1)x} \int_s^t (c_1(\tau) \omega_4^n + g_1(\tau) \omega_2^n) d\tau. \tag{2.20}
$$

For all $0 \leq t \leq T_2$, where $T_2 = \min\{1/(25C_\varphi l), 1/(10l)\}\text{, the following estimates hold:}$

$$
\|\omega_i^n\| \leqslant 25C_{\varphi}, \quad i = 1, 2, \quad \|\omega_3^n\| \leqslant 124C_{\varphi}, \quad \|\omega_4^n\| \leqslant 124C_{\varphi}.
$$

Denote $q_n = \begin{pmatrix} w_{1nx} \\ w_{2nx} \end{pmatrix}$, $p_n = \sum_{j=1}^4$ $\sum_{j=1} \|w_{j(n+1)} - w_{jn}\|$ and introduce the norm $||q_n|| = \|w_{1nx}\| + \|w_{2nx}\|$. Using induction, for all $0 \le t \le T_2$, where $T_2 = \min\{1/(25C_\varphi l), 1/(10l)\}\)$, we find

$$
\sum_{n=0}^{N} ||q_{n+1} - q_n|| \leq 2||q_1 - q_0|| + 0.9 \sum_{n=1}^{N} p_n,
$$

where $\sum_{n=1}^{N} p_n$ are bounded for any N. Consequently, the partial sums $\sum_{n=1}^{N} ||q_{n+1} - q_n||$ are $n=1$ and $n=0$ bounded for any N and the series $\sum_{n=1}^{\infty}$ $\sum_{n=0}$ $||q_{n+1} - q_n||$ converges. Therefore, $w_{inx} \to w_{ix} = \partial_x w_i$, $i = 1, 2$. Further, $w_{3nx} \rightarrow w_{3x} = \partial_x w_3$ and $w_{4nx} \rightarrow w_{4x} = \partial_x w_4$. Consequently, $w_{inx} \rightarrow w_{jx} = \partial_x w_3$ $\partial_x w_j$, $j = 1, \ldots, 4$, where the functions $\partial_x w_j$ are continuous with respect to all its arguments on $\Gamma_{T_2}, T_2 = \min\{1/(25C_{\varphi}l), 1/(10l)\}\.$ The following estimates hold:

$$
\|\partial_x w_i\| \leqslant 4C_\varphi, \quad i=1,2, \quad \|\partial_x w_3\| \leqslant 6C_\varphi, \ \|\partial_x w_4\| \leqslant 6C_\varphi.
$$

Similarly, w_j , $j = 1, \ldots, 4$, have continuous bounded t-derivatives on Γ_{T_2} . The uniqueness of a solution is proved in the same way as in [3]. \Box

Lemma 2.2. *Assume that* $\varphi_1(x), \varphi_2(x) \in \overline{C}^2(R)$, $a_1(t), b_1(t), b_2(t), c_1(t), g_1(t) \in C([0, T]),$ $a_1(t) < 0, b_1(t) < 0, b_2(t) \geq 0, c_1(t) < 0, g_1(t) < 0, t \in [0, T], \varphi'_1(x) \leq 0, \varphi'_2(x) \leq 0, x \in R.$ *Then the functions* $\{w_j\}$, $j = 1, \ldots, 4$, *solving the system* (1.16) – (1.19) *have the continuous bounded derivatives* $\frac{\partial^2 w_j}{\partial x^2}$, $\frac{\partial^2 w_j}{\partial x \partial t}$, $j = 1, ..., 4$ *on* Γ_{T_2} , *where* $T_2 = \min\{1/(25C_\varphi l), 1/(10l)\}.$

Proof. As proved in [1], the following inequalities hold on Γ_{T_2} :

$$
\left| \int_{s}^{t} (a_1(\tau)w_{1n} + b_1(\tau)w_{3n})d\tau \right| \leq 0.16,
$$

$$
\left| \int_{s}^{t} (c_1(\tau)w_{4n} + g_1(\tau)w_{2n})d\tau \right| \leq 0.16,
$$

where $T_2 = \min\{(1/(25C_\varphi l), 1/(10l)\}\)$. We fix $x_0 \in R$ and consider the set $\Omega_{x_0} = \{x \mid$ $x_0 - 0.16 \le x \le x_0 + 0.16$. Let $x_1, x_2 \in \Omega_{x_0}$. We prove that

$$
|\eta_{1n}(s,t,x_1) - \eta_{1n}(s,t,x_2)| \leq |x_1 - x_2|,\tag{2.21}
$$

$$
|\eta_{2n}(s,t,x_1) - \eta_{2n}(s,t,x_2)| \leq |x_1 - x_2|,\tag{2.22}
$$

where

$$
\eta_{1n}(s,t,x) = x - \int_{s}^{t} (a_1(\tau)w_{1n}(\tau,t,x) + b_1(\tau)w_{3n}(\tau,t,x))d\tau,
$$

$$
\eta_{2n}(s,t,x) = x - \int_{s}^{t} (c_1(\tau)w_{4n}(\tau,t,x) + g_1(\tau)w_{2n}(\tau,t,x))d\tau.
$$

We assume that

$$
w_{1(n-1)x} \leq 0, \quad w_{2(n-1)x} \leq 0. \tag{2.23}
$$

For all $n \in N$ on Γ_{T_2} , where $T_2 = \min\{1/(25C_{\varphi}l), 1/(10l)\}\)$, we have

$$
1 - \int_{s}^{t} (a_1(\tau)w_{1nx} + b_1(\tau)w_{3nx})d\tau > 0, \quad 1 - \int_{s}^{t} (c_1(\tau)w_{4nx} + g_1(\tau)w_{2nx})d\tau > 0.
$$
 (2.24)

From (2.15) , (2.23) , (2.24) it follows that $w_{3nx} \leq 0$. From (2.16) , (2.23) , (2.24) it follows that $w_{4nx} \leq 0$. Since $w_{3nx} \leq 0$, from (2.13), (2.24), and the conditions $b_2(t) \geq 0$, $t \in [0, T]$, $\varphi'_1(x) \leq 0$, $x \in R$, we find $w_{1nx} \leqslant 0$.

From (2.14), (2.24), and the conditions $\varphi'_2(x) \leq 0, x \in R$, we find $w_{2nx} \leq 0$. Since $w_{1nx} \leq 0$, $w_{2nx} \leq 0$, $w_{3nx} \leq 0$, $w_{4nx} \leq 0$, we have

$$
1 - \int_{s}^{t} (a_1(\tau)w_{1nx} + b_1(\tau)w_{3nx})d\tau \leq 1, \ 1 - \int_{s}^{t} (c_1(\tau)w_{4nx} + g_1(\tau)w_{2nx})d\tau \leq 1. \tag{2.25}
$$

By (2.24) , (2.25) and the finite increment formula, we obtain (2.21) and (2.22) .

Arguing in the same way as in [4], we can prove the x-equicontinuity of ω_1^n and ω_2^n for $x \in \Omega_{x_0}$, which implies the x-equicontinuity of ω_1^n and ω_2^n at any point $x_0 \in R$.

We consider the system of equations

$$
\widetilde{\omega}_1^n = -\varphi_1'(\eta_1(0, t, x)) \int_0^t (a_1(\tau)\widetilde{\omega}_1^n + b_1(\tau)\widetilde{\omega}_3^n) d\tau \exp(a_2s) + \int_0^s b_2(\tau)\widetilde{\omega}_3^n \exp(a_2(s - \tau)) d\tau \n+ \varphi_1'' \left(1 - \int_0^t (a_1(\tau)w_{1x} + b_1(\tau)w_{3x}) d\tau\right)^2 \exp(a_2s),
$$
\n
$$
\widetilde{\omega}_2^n = -\varphi_2'(\eta_2(0, t, x)) \int_0^t (c_1(\tau)\widetilde{\omega}_4^n + g_1(\tau)\widetilde{\omega}_2^n) d\tau \exp(g_2s) \n+ \varphi_2'' \left(1 - \int_0^t (c_1(\tau)w_{4x} + g_1(\tau)w_{2x}) d\tau\right)^2 \exp(g_2s),
$$

$$
\widetilde{\omega}_3^n = \widetilde{\omega}_2^{n-1} \left(1 - \int_s^t (a_1(\tau)w_{1x} + b_1(\tau)w_{3x}) d\tau \right)^2 - w_{2x}(s, s, \eta_1(s, t, x)) \int_s^t (a_1(\tau)\widetilde{\omega}_1^n + b_1(\tau)\widetilde{\omega}_3^n) d\tau,
$$

$$
\widetilde{\omega}_4^n = \widetilde{\omega}_1^{n-1} \left(1 - \int_s^t (c_1(\tau)w_{4x} + g_1(\tau)w_{2x}) d\tau \right)^2 - w_{1x}(s, s, \eta_2(s, t, x)) \int_s^t (c_1(\tau)\widetilde{\omega}_4^n + g_1(\tau)\widetilde{\omega}_2^n) d\tau.
$$

On Γ_{T_2} , the following estimates hold:

 $\|\widetilde{\omega}_1^n\| \leq 2C_{\varphi}, \|\widetilde{\omega}_2^n\| \leq 2C_{\varphi}, \quad \|\widetilde{\omega}_3^n\| \leq 3C_{\varphi}, \quad \|\widetilde{\omega}_4^n\| \leq 3C_{\varphi}.$

Further, $\widetilde{\omega}_{j}^{n} \rightarrow \widetilde{\omega}_{j}$, $j = 1, ..., 4$, on Γ_{T_2} and

$$
\|\widetilde{\omega}_1\| \leq 2C_{\varphi}, \quad \|\widetilde{\omega}_2\| \leq 2C_{\varphi}, \quad \|\widetilde{\omega}_3\| \leq 3C_{\varphi}, \quad \|\widetilde{\omega}_4\| \leq 3C_{\varphi}.
$$

We show that ω_j^n converge to $\tilde{\omega}_j$, $j = 1, \ldots, 4$, as $n \to \infty$ on Γ_{T_2} . On Γ_{T_2} , we have

$$
\begin{aligned} |\omega_1^n - \widetilde{\omega}_1| &\leq |R_1^n| + 0.14(\|\omega_1^n - \widetilde{\omega}_1\| + \|\omega_3^n - \widetilde{\omega}_3\|), \\ |\omega_3^n - \widetilde{\omega}_3\| &\leq |R_2^n| + |\omega_2^{n-1} - \widetilde{\omega}_2| + 0.16(\|\omega_1^n - \widetilde{\omega}_1\| + \|\omega_3^n - \widetilde{\omega}_3\|), \end{aligned}
$$

where

$$
R_1^n = \left| (\varphi_1''(\eta_{1n}(0, t, x) - \varphi_1''(\eta_1(0, t, x))) \eta_{1nx}^2(s, t, x) + \varphi_1''(\eta_1(0, t, x)) [\eta_{1nx}^2(0, t, x) - \eta_{1x}^2(0, t, x)] - (\varphi_1'(\eta_{1n}(0, t, x)) - \varphi_1'(\eta_1(0, t, x))) \int_0^t (a_1(\tau) \omega_1^n(\tau, t, x) + b_1(\tau) \omega_3^n(\tau, t, x)) d\tau \right| \exp(a_2 s),
$$

\n
$$
R_2^n = \left| \omega_2^{n-1}(s, s, \eta_{1n}(s, t, x)) [\eta_{1nx}^2(s, t, x) - \eta_{1x}^2(s, t, x)] - \int_s^t (a_1(\tau) \omega_1^n(\tau, t, x) + b_1(\tau) \omega_3^n(\tau, t, x)) d\tau \right|
$$

\n
$$
\times \left[w_{2(n-1)x}(s, s, \eta_{1n}(s, t, x)) - w_{2x}(s, s, \eta_1(s, t, x)) \right],
$$

\n
$$
\eta_{1n}(s, t, x) = x - \int_s^t (a_1(\tau) w_{1n}(\tau, t, x) + b_1(\tau) w_{3n}(\tau, t, x)) d\tau,
$$

\n
$$
\eta_{2n}(s, t, x) = x - \int_s^t (c_1(\tau) w_{4n}(\tau, t, x) + g_1(\tau) w_{2n}(\tau, t, x)) d\tau.
$$

Since all functions in R_1^n and R_2^n are uniformly continuous, equicontinuous, and bounded, for any ε there exists N such that $|R_1^n| < \varepsilon$ and $|R_2^n| < \varepsilon$ for $n \ge N$. Consequently, for $n \ge N$

$$
\|\omega_1^n - \widetilde{\omega}_1\| \leq 1.2\varepsilon + 0.2\|\omega_3^n - \widetilde{\omega}_3\|,
$$

$$
\|\omega_3^n - \widetilde{\omega}_3\| \leq 1.2\varepsilon + 1.2\|\omega_2^{n-1} - \widetilde{\omega}_2\| + 0.2\|\omega_1^n - \widetilde{\omega}_1\|.
$$
 (2.26)

Hence for $n \geqslant N$

$$
\|\omega_1^n - \widetilde{\omega}_1\| \leq \frac{4}{3}\varepsilon + \frac{1}{3}\|\omega_2^{n-1} - \widetilde{\omega}_2\|.
$$
\n(2.27)

Similarly, for $n \geq N$

$$
\|\omega_2^n - \widetilde{\omega}_2\| \leq \frac{4}{3}\varepsilon + \frac{1}{3}\|\omega_1^{n-1} - \widetilde{\omega}_1\|.\tag{2.28}
$$

Adding (2.27) and (2.28) , we get

$$
\|\omega_1^n-\widetilde{\omega}_1\|+\|\omega_2^n-\widetilde{\omega}_2\|\leqslant \frac{8}{3}\varepsilon+\frac{1}{3}(\|\omega_2^{n-1}-\widetilde{\omega}_2\|+\|\omega_1^{n-1}-\widetilde{\omega}_1\|).
$$

The following inequality can be proved by induction:

$$
\|\omega_1^{N+k} - \widetilde{\omega}_1\| + \|\omega_2^{N+k} - \widetilde{\omega}_2\| \leqslant \left(\frac{1}{3}\right)^k (\|\omega_1^N - \widetilde{\omega}_1\| + \|\omega_2^N - \widetilde{\omega}_2\|) + 4\varepsilon
$$

for $n \geq N$. Consequently, $\omega_1^{N+k} \to \tilde{\omega}_1$, $\omega_2^{N+k} \to \tilde{\omega}_2$ as $N \to \infty$, $k \to \infty$. From (2.26) it follows that $\omega_3^n \to \tilde{\omega}_3$ as $n \to \infty$. Similarly, $\omega_4^n \to \tilde{\omega}_4$ as $n \to \infty$ and

$$
\|\widetilde{\omega}_1\| \leq 2C_{\varphi}, \quad \|\widetilde{\omega}_2\| \leq 2C_{\varphi}, \quad \|\widetilde{\omega}_3\| \leq 3C_{\varphi}, \quad \|\widetilde{\omega}_4\| \leq 3C_{\varphi}.
$$

Thus, $w_{jnxx} \to w_{jxx} = \tilde{\omega}_j$, where the functions $\frac{\partial^2 w_j}{\partial x^2}$, $j = 1, ..., 4$, are continuous and bounded on Γ_{T_2} . Furthermore, they have continuous bounded derivatives $\frac{\partial^2 w_j}{\partial x \partial t}$, j = 1,..., 4 on Γ_{T_2} .

3 Existence of Global Solution

Theorem 3.1. *Assume that* $\varphi_1(x), \varphi_2(x) \in \overline{C}^2(R)$, $a_1(t), b_1(t), b_2(t), c_1(t), g_1(t) \in C([0, T]),$ $a_1(t) < 0, b_1(t) < 0, b_2(t) \geq 0, c_1(t) < 0, g_1(t) < 0, t \in [0, T]; \varphi'_1(x) \leq 0, \varphi'_2(x) \leq 0, x \in R.$ *Then for any* $T > 0$ *the Cauchy problem* (1.1)*,* (1.2) *has a unique solution* $u(t, x), v(t, x) \in$ $\overline{C}^{1,2,2}(\Omega_T)$ that can be found from (1.16) – (1.19) .

Proof. Differentiating (1.1) with respect to x and denoting $p(t,x) = u_x(t,x)$, $q(t,x) =$ $v_x(t, x)$, we obtain the system of equations

$$
\partial_t p + (a_1(t)u(t, x) + b_1(t)v(t, x))\partial_x p = -a_1(t)p^2 - b_1(t)pq + a_2p + b_2(t)q,
$$

\n
$$
\partial_t q + (c_1(t)u(t, x) + g_1(t)v(t, x))\partial_x q = -g_1(t)q^2 - c_1(t)pq + g_2q,
$$

\n
$$
p(0, x) = \varphi'_1(x), \quad q(0, x) = \varphi'_2(x).
$$
\n(3.1)

We add (1.10) – (1.15) and the equations

$$
\frac{d\gamma_1(s,t,x)}{ds} = -a_1(s)\gamma_1^2 - b_1(s)\gamma_1\gamma_2(s,s,\eta_1) + a_2\gamma_1 + b_2(s)\gamma_2(s,s,\eta_1),
$$

\n
$$
\frac{d\gamma_2(s,t,x)}{ds} = -g_1(s)\gamma_2^2 - c_1(s)\gamma_1(s,s,\eta_2)\gamma_2 + g_2\gamma_2
$$
\n(3.2)

with the conditions $\gamma_1(0, t, x) = \varphi'_1(\eta_1)$ and $\gamma_2(0, t, x) = \varphi'_2(\eta_2)$. We write (3.2) in the form

$$
\gamma_1(s,t,x) = \varphi_1'(\eta_1) \exp\left(-\int_0^s (a_1(\tau)\gamma_1 + b_1(\tau)\gamma_2(\tau,\tau,\eta_1) - a_2)d\tau\right) + \int_0^s b_2(\tau)\gamma_2(\tau,\tau,\eta_1) \exp\left(-\int_\tau^s (a_1(\tau)\gamma_1 + b_1(\tau)\gamma_2(\nu,\nu,\eta_1) - a_2)d\nu\right)d\tau, \qquad (3.3)
$$

$$
\gamma_2(s,t,x) = \varphi_2'(\eta_2) \exp\left(-\int_0^s (g_1(\tau)\gamma_2 + c_1(\tau)\gamma_1(\tau,\tau,\eta_2) - g_2)d\tau\right).
$$

Using the method of successive approximations, we establish the existence of continuous solution to the system (3.3) on Γ_{T_2} , where $T_2 = \min\{1/(25C_{\varphi}l), 1/(10l)\}\.$ We define the successive approximations

$$
\gamma_1^{n+1} = \varphi_1'(\eta_1) \exp\left(-\int_0^s (a_1(\tau)\gamma_1^n + b_1(\tau)\gamma_2^n(\tau,\tau,\eta_1) - a_2)d\tau\right) + \int_0^s b_2(\tau)\gamma_2^n(\tau,\tau,\eta_1) \exp\left(-\int_\tau^s (a_1(\tau)\gamma_1^n + b_1(\tau)\gamma_2^n(\nu,\nu,\eta_1) - a_2)d\nu\right)d\tau, \qquad (3.4)
$$

$$
\gamma_2^{n+1} = \varphi_2'(\eta_2) \exp\left(-\int_0^s (g_1(\tau)\gamma_2^n + c_1(\tau)\gamma_1^n(\tau,\tau,\eta_2) - g_2)d\tau\right);
$$

moreover, $\gamma_1^0 = \varphi_1'(\eta_1)$, $\gamma_2^0 = \varphi_2'(\eta_2)$. On Γ_{T_2} , we have

$$
|\gamma_i^{n+1}| \leq 2C_{\varphi}, \quad |\eta_{ix}| \leq 1, \quad |\gamma_{ix}^{n+1}| \leq 5C_{\varphi}, \quad i = 1, 2.
$$

The successive approximations $\{\gamma_i^n\}, i = 1, 2$, converge to a continuous solution to the system (3.3) on Γ_{T_2} since

$$
\|\gamma_1^{n+1} - \gamma_1^n\| + \|\gamma_2^{n+1} - \gamma_2^n\| \leq 0.6(\|\gamma_1^n - \gamma_1^{n-1}\| + \|\gamma_2^n - \gamma_2^{n-1}\|).
$$

On Γ_{T_2} , we have $|\gamma_i| \leq 2C_\varphi$, $i = 1, 2$. As in [1], we can prove the existence of a continuously differentiable solution to the problem (3.3). Consequently,

$$
\gamma_1(t, t, x) = p(t, x) = \frac{\partial u}{\partial x}, \quad \gamma_2(t, t, x) = q(t, x) = \frac{\partial v}{\partial x}.
$$

As in [4], we can prove that for all t and x on Ω_T

$$
||v|| \leq C_{\varphi} \exp(|g_2|T), \quad ||u|| \leq C_{\varphi} \exp(|a_2|T)(1+Tl\exp(|g_2|T)). \tag{3.5}
$$

From (3.3) it follows that $\gamma_1 \leq 0$ and $\gamma_2 \leq 0$ on Γ_T . Consequently,

$$
\|\gamma_2\| \leqslant C_{\varphi} \exp(|g_2|T), \quad \|\gamma_1\| \leqslant C_{\varphi} \exp(|a_2|T)(1+Tl\exp(|g_2|T)).
$$

Since

$$
\gamma_1(t, t, x) = \frac{\partial u}{\partial x}, \quad \gamma_2(t, t, x) = \frac{\partial v}{\partial x},
$$

for all t and x on Ω_T the following estimates hold:

$$
\|\partial_x v\| \leqslant C_\varphi \exp(|g_2|T),
$$

$$
\|\partial_x u\| \leqslant C_\varphi \exp(|a_2|T)(1+Tl\exp(|g_2|T)).
$$
 (3.6)

As in [4], for all t and x we obtain the estimates

$$
|\partial_{x^2}^2 u| \le E_{11} \operatorname{ch} \left(T \sqrt{C_{12} C_{21}} \right) + E_{21} \sqrt{\frac{C_{12}}{C_{21}}} \operatorname{sh} \left(T \sqrt{C_{12} C_{21}} \right),\tag{3.7}
$$

$$
|\partial_{x^2}^2 v| \le E_{21} \operatorname{ch} \left(T \sqrt{C_{12} C_{21}} \right) + E_{11} \sqrt{\frac{C_{21}}{C_{12}}} \operatorname{sh} \left(T \sqrt{C_{12} C_{21}} \right),\tag{3.8}
$$

where E_{11} , E_{21} , C_{12} , C_{21} are constants. Owing to the global estimates (3.5), (3.6)–(3.8), we can extend the solution to any given interval [0, T]. We take $u(T_0, x)$ and $v(T_0, x)$ for the initial values. Using Theorem 2.1, we extend the solution to the interval $[T_0, T_1]$. Then for the initial values we take $u(T_1, x)$, $v(T_1, x)$. Using Theorem 2.1, we extend the solution to the interval [T₁, T₂]. In particular, $u(T_k, x), v(T_k, x) \in \overline{C}^2(R)$ satisfy the estimate

$$
|u(T_k, x)| \leqslant C_{\varphi} \exp(|a_2|T)(1 + Tl \exp(|g_2|T)), \quad |v(T_k, x)| \leqslant C_{\varphi} \exp(|g_2|T),
$$

$$
|\partial_x u(T_k, x)| \leqslant C_{\varphi} \exp(|a_2|T)(1 + Tl \exp(|g_2|T)), \quad |\partial_x v(T_k, x)| \leqslant C_{\varphi} \exp(|g_2|T).
$$

The second order derivatives satisfy the estimates (3.7) and (3.8) , where T can be taken for t. As a result, we can extend the solution to any given interval $[0, T]$ in finitely many steps.

The uniqueness of a solution to the Cauchy problem (1.1) , (1.2) is proved with the help of estimates similar to those used in the proof of the convergence of successive approximations. \Box

Acknowledgments

The work is partially supported by the Russian Foundation for Basic Research (project No. 18-31-00125 mol a.

References

- 1. M. V. Dontsova, "Solvability of Cauchy problem for a system of first order quasilinear equations with right-hand sides $f_1 = a_2u(t, x) + b_2(t)v(t, x), f_2 = g_2v(t, x)$," Ufa Math. J. **11**, No. 1, 27–39 (2019).
- 2. S. N. Alekseenko, M. V. Dontsova, and P. E. Pelinovsky, "Global solutions to the shallow water system with a method of an additional argument," *Appl. Anal.* **96**, No. 9, 1444–1465 (2017).
- 3. M. I. Imanaliev and S. N. Alekseenko, "On the existence of a smooth bounded solution for a system of two first-order nonlinear partial differential equations," *Dokl. Math.* **64**, No. 1, $10-15$ (2001) .
- 4. M. V. Dontsova, "Nonlocal solvability conditions for Cauchy rpoblem for a system of first order partial differential equations with special right-hand sides," *Ufa Math. J.* **6**, No. 4, 66–80 (2014).

Submitted on November 7, 2019