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REFINED MODEL OF THERMOELASTOPLASTIC BENDING OF LAYERED PLATES  
WITH REGULAR STRUCTURES.  I. STATEMENT OF THE PROBLEM 

А. P. Yankovskii  UDC 539.4 

We formulate the problem of quasistatic thermoelastoplastic bending of layered plates with regular 
structures in the geometrically linear statement.  The mechanical behavior of isotropic layers is de-
scribed by the deformation-type relations of thermoelastoplasticity with regard for their different tensile 
and compression resistances.  The linearized governing relations of layered media are deduced with the 
help of the method of variable parameters of elasticity.  The obtained equations enable us to describe, 
with different degrees of accuracy, the stress-strain state of these plates by taking into account their 
weakened resistance to transverse shears.  Note that the relations of traditional nonclassical Reissner and 
Reddy theories follow from these equations as particular cases.  Within the framework of the proposed 
refined theories and Reddy theory, the force boundary conditions for tangential stresses are satisfied  
on the front surfaces.  The boundary conditions for normal stresses are not satisfied on these surfaces.  
The variations of deflections across the thickness of the structures are not taken into account.  The three-
dimensional equilibrium equations and the boundary conditions imposed on the end surface of the plate 
are reduced to two-dimensional relations by the method of weighted residuals.  As weight functions,  
we use homogeneous polynomials in the transverse coordinate. 

Keywords: layered composite plate, regular structure, deformation-type thermoelastoplasticity, bent 
plate, Reissner theory, Reddy theory, refined theory of bending. 

At present, thin-walled elements, such as plates and shells, made of composite materials (CM) [16, 25, 30], 
including materials with layered structures [24, 26, 36, 37], are used in the engineering practice more and more 
extensively.  In the case where the anisotropy of CM is strongly pronounced, the analysis of bending behavior of 
linearly elastic plates should be carried out by taking into account their weakened resistance to transverse shear 
[2, 3, 7, 13, 33, 38].  However, as shown in [20, 21], under the conditions of elastoplastic bending deformation 
of layered plates with regular structures, it is also necessary to take into account their weakened resistance to 
transverse shears even if the analyzed CM exhibits weakly pronounced anisotropy under the conditions of line-
arly elastic behavior (e.g., if it is a metal-composite substance).  This problem is complicated, in particular,  
by the fact that some materials of the phases of compositions (e.g., certain grades of steels) have weak heat sen-
sitivities in sufficiently wide temperature ranges [5], whereas the other materials (polymers or alloys of light 
metals) are highly heat-sensitive and, moreover, the strength and stiffness characteristics of these materials,  
as a rule, rapidly worsen as temperature increases [5, 18].  The indicated specific character of the behaviors of 
materials of the layers of compositions at high temperatures may lead to the situations in which the analyzed 
composite products subjected to intense thermal and force loads behave in a quite different way than it is usually 
expected at moderate temperatures. 

The investigations of the problems of bending deformation of layered plates within the framework of the 
classical theory that does not take into account transverse shears in these plates,  were carried out,  e.g.,  in  [11, 39].   
                                                        
Khristianovich Institute of Theoretical and Applied Mechanics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Rus-
sia; e-mail: lab4nemir@rambler.ru. 

 
Translated from Matematychni Metody ta Fizyko-Mekhanichni Polya, Vol. 61, No. 1, pp. 116–129, January–March, 2018.  Original arti-
cle submitted January 9, 2018. 

446  1072-3374/20/2493–0446      ©  2020    Springer Science+Business Media, LLC  

DOI 10.1007/s10958-020-04952-5



REFINED MODEL OF THERMOELASTOPLASTIC BENDING OF LAYERED PLATES WITH REGULAR STRUCTURES.  I. STATEMENT  447 

 

Fig. 1 

The weakened resistance of CM plates to transverse shear is usually taken into account either within the frame-
work of the Reissner–Mindlin theory [7, 29, 34, 35], or in the second version of the Timoshenko theory [2, 3, 
13, 21] (or in the Reddy theory [31, 33], as it is called in the English-language literature), or within the frame-
work of the Kulikov theory based on the hypothesis of broken line [10, 15].  The asymptotic methods of numeri-
cal analyses are used less frequently [14, 17].  In the case of bending of linearly elastic CM plates and shells,  
it was shown [2, 3] that the solutions obtained on the basis of the Reddy theory do not require additional refine-
ment, i.e., it is not necessary to apply the theories of higher orders of accuracy [1, 27, 28, 31, 32, 36].  However, 
it remains unclear whether the solutions obtained within the framework of the Reddy theory in the cases of elas-
toplastic or nonlinear elastic bending of layered plates with regular structures, especially at high temperatures, 
are sufficiently accurate for the engineering purpose or it is necessary to refine these solutions and, in particular, 
whether the solutions obtained in [21] are sufficiently accurate.  In addition, it is of interest to determine the ac-
curacy of the Reissner theory in the indicated cases of bending of CM plates because, among all nonclassical 
theories, this theory is most extensively used for the practical purposes [1, 7, 13].  By analyzing an example of 
layered beam-wall with regular structure, it was shown [22] that the refinement of the corresponding nonclassi-
cal theories is indeed necessary if the analyzed beam has a sufficiently large relative height (of about 1/7 or 
greater).  It is also necessary to take into account the fact that beams-walls are characterized by the realization of 
generalized plane stressed states, whereas bent plates are characterized by the presence of complex stress-strain 
states (SSS).  The last may result in the appearance of certain specific features of deformation of thin-walled 
structural elements of this kind that are not observed in beams-walls.  Furthermore, the influence of thermal ac-
tion was not taken into account in [22]. 

Thus, the present work is devoted to the construction of a refined model of bending of layered plates with 
regular structures, which has the classical theory, Reissner theory, and Reddy theory as particular cases.   
We also perform the comparative analysis of solutions obtained on the basis of these theories and more accurate 
relations in the cases of both thermoelastic and thermoelastoplastic deformation of bent plates.  These investiga-
tions are required, in particular, to clarify the question whether the contemporary finite elements constructed on 
the basis of the Reissner [1, 4] and Reddy [23] theories enable one to give adequate description of the mechani-
cal behavior of the layered elements of thin-walled products with regular structures. 

1.  Refined Model of Bending Deformation of a Layered Plate with Regular Structure 

In a Cartesian coordinate system  xi,  we consider a plate of thickness  2h  formed by  regularly arranged 
layers of small thickness parallel to the reference plane  Ox1x2.  This plane coincides with the median plane of 
the thin-walled element and the Ox3-axis is oriented in the transverse direction (see Fig. 1). 
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To describe the weakened resistance of this plate to transverse shears, we represent the strains  εi3  in the 
form of finite sums of power series in the variable  x3: 

 εi3(r) = β x3 + h
2h

εi3
(+)(x)− x3 − h

2h
εi3
(−)(x)⎡

⎣⎢
⎤
⎦⎥
+ h2 −βx3

2

h2
x3
k

k=0

K

∑ εi3
(k )(x) , 

 x∈G,    x3 ≤ h,       x = {x1, x2},       r = {x1, x2, x3},     (1) 

 i = 1, 2, 

where  εi3
(±)  and  εi3

(k )  are functions of two variables  x1  and  x2  (the problem is considered in the quasistatic 

statement) that should be determined and have the following sense:  εi3
(±)  are the transverse shear strains on the 

top and bottom  ( x3 = ±h)  front surfaces of the plate.  For  εi3
(±) ≡ 0,  the functions  εi3

(0)  determine the trans-

verse shear strains in the median plane  x3 = 0;  εi3
(k ),  1≤ k ≤ K ,  are unknown expansion coefficients with di-

mensions 1/mk;  K  is the number of terms preserved in the partial sums of the power series;  G  is the domain 
occupied by the plate (in plan), and  β  is the switching parameter.  

Note that, for  β = 0  and  εi3
(k )(x) ≡ 0,  0 ≤ k ≤ K ,  i = 1, 2,  we get the relations based on the hypotheses  

of the classical theory [11, 39].  For  K = 0  and  β = 1,  expression (1) yields the relations of the Reddy theory 
[2, 3, 13, 21, 33].  Moreover, for  K ≥1  and  β = 1,  we get the refinement of the Reddy theory and, for  K = 0  
and  β = 0,  expression (1) gives the relations of the Reissner theory [1, 7, 34, 35].  

In view of the kinematic assumption traditionally used for thin-walled structural elements, the variations of 
deflection  u3  in the transverse direction  x3  can be neglected [2, 3, 7, 11, 13, 21, 29, 34, 35, 39]: 

 u3(r) = u3
0(x),      x∈G,    x3 ≤ h. (2) 

By using the differential Cauchy relations [2, 7, 21], in view of (1) and (2), we obtain 

 ui (r) = ui
0(x) − x3 ∂i u3

0(x)  

  + 2 x3
k+1

h2k=0

K

∑ h2

k +1
− βx3

2

k + 3
⎛
⎝⎜

⎞
⎠⎟
εi3
(k )(x)  

  + βx3
h

x3
2
+ h⎛

⎝
⎞
⎠ εi3

(+)(x)  

  + − βx3
h

x3
2
− h⎛

⎝
⎞
⎠ εi3

(−)(x) , (3) 

 x∈G,      x3 ≤ h,    i = 1, 2, 
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ε12(r) = 1

2
(∂1u2 + ∂2u1) = 1

2
(∂1u2

0 + ∂2u1
0) − x3 ∂1∂2u3

0 

  + 
 

x3
k+1

h2k=0

K

∑ h2

k +1
− βx3

2

k + 3
⎛
⎝⎜

⎞
⎠⎟
(∂1ε23

(k ) + ∂2ε13
(k ))  

  + 
 

βx3
2h

x3
2
+ h⎛

⎝
⎞
⎠ (∂1ε23

(+) + ∂2ε13
(+))  

  
 
− βx3

2h
x3
2
− h⎛

⎝
⎞
⎠ (∂1ε23

(−) + ∂2ε13
(−)), 

   (4) 
 εii (r) = ∂i ui = ∂i ui

0 − x3 ∂i
2u3

0  

  + 2 x3
k+1

h2k=0

K

∑ h2

k +1
− βx3

2

k + 3
⎛
⎝⎜

⎞
⎠⎟
∂i εi3

(k ) 

  + βx3
h

x3
2
+ h⎛

⎝
⎞
⎠ ∂i εi3

(+)  

  − βx3
h

x3
2
− h⎛

⎝
⎞
⎠ ∂i εi3

(−) , 

 x∈G,    x3 ≤ h, 

where  ui  are the displacements of points of the analyzed plate in the tangential directions  xi,  i = 1, 2,  ui
0  are 

the displacements of points of the median plane  x3 = 0,  and  ∂i  is the operator of differentiation with respect to 
the variable  xi.  

Hence, in relations (1)–(4), the functions  ui
0,  u3

0,  εi3
(±),  εi3

(k ),  i = 1, 2,  0 ≤ k ≤ K ,  depending only on two 
variables  x1  and  x2,  are unknown.  

As in [20], we can assume that the materials of all layers are isotropic and homogeneous and that their 
thermoelastoplastic behavior is described by the following generalized deformation-type quasilinear equa-
tions [8, 9]:  

  σii
(n) −σ0

(n) = 2gn(ε0
(n),Γn ,Θ)(εii

(n) − ε0
(n)), 

 
 
σij
(n) = 2gn(ε0

(n),Γn ,Θ) εij
(n),      j ≠ i,    i, j = 1, 2, 3, 

   (5) 
  σ0

(n) = Kn(ε0
(n),Γn ,Θ)(ε0

(n) −αn (Θ−Θ0 )), 

  Tn = gn(ε0
(n),Γn ,Θ)Γn ,    1≤ n ≤ N . 
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Here,  σ0
(n)  and  ε0

(n)  are, respectively, the mean normal stress and mean linear strain in the material of the nth 
phase of layered composition;  Tn  and  Γn   are, respectively, the intensity of tangential stresses and the intensi-

ty of shear strains in the nth component of the composition {see (4) in [20]};   gn(ε0
(n),Γn ,Θ)  is a function 

known from the experiments and playing the role the proportionality coefficient between  Tn   and  Γn ;  

 Kn(ε0
(n),Γn ,Θ)  is the tripled modulus of volumetric expansion of the material of the nth phase of composition 

also known from the experiments;  αn = αn (Θ)  is the coefficient of linear thermal expansion of the material of 
the nth component of composition;  Θ  is the temperature of the layered composition;  Θ0   is the temperature of 
its natural state, and  N   is the number of families of regularly arranged layers.  The dependence of the functions  
gn  and  Kn  in (5) on the argument  ε0

(n)  makes it possible, in the general case, to take into account the effect of 
different resistances of the material of the nth phase of composition [9], whereas the dependence on  Θ  reflects 
the heat sensitivity of the material. 

It is reasonable to represent relations (5) in the matrix form 

 σσn = Anεεn + pn,     n = 1, 2,…, N , (6) 

where 

 σσn = σ11
(n),σ22

(n),σ33
(n),σ23

(n),σ31
(n),σ12

(n){ }∗, 

 εεn = ε11
(n), ε22

(n), ε33
(n), ε23

(n), ε31
(n), ε12

(n){ }∗, 
   (7) 

  pn = p(n){1,1,1, 0, 0, 0}∗, 

  p
(n) = −Kn(ε0

(n),Γn ,Θ)αn (Θ−Θ0 ),    1≤ n ≤ N , 

 
An = (aij

(n))  are symmetric 6 × 6-matrices whose nonzero components according to (5) are determined by rela-
tions (7) from [20].  The operation of transposition is denoted by the asterisk. 

We assume that relations (5) [and, hence, relations (6) together with (7)] satisfy sufficient conditions for the 
convergence of the method of successive approximations (see [9, p. 199]) similar to the method of variable elas-
ticity parameters [12].  In what follows, according to this assumption, relations (5) and (6) are regarded as line-
arized and, therefore, the components of the vector  pn  [see (7)] in each iteration can be treated as known initial 
(or, more precisely, temperature) stresses.  Formally, the linearized matrix equalities (6) completely coincide 
with relations (8) from [19] and, therefore, by repeating the arguments from [19, 20] in each iteration, we deduce 
effective linear governing equations for the layered composite medium with regular structure, which can be rep-
resented in the matrix form as follows:  

 σσ = Aεε + p, (8) 

where  σσ  and  εε   are the six-component vector columns of mean stresses and strains whose structures are similar 
to (7);  A = (aij )  is a known 6 × 6-matrix, which can be interpreted (in each iteration) as the matrix of effective 
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stiffnesses of the layered composition;   p = {pi}  is a known, in the current iteration, six-component vector col-
umn of mean thermal stresses whose components are as follows:   

 p1 = p2 ≠ 0,      p3 ≠ 0,      and      pj ≡ 0,    j = 4, 5, 6. 

The components of the matrix  A  and the vector  p  in (8) are determined by the matrix equalities (10) 
from [19].  If the mean strains  εε   are known from the solution of the corresponding boundary-value problem for 
a composite layered body (in particular, for a plate) whose mechanical behavior is described by the governing 
equation (8), then, by using matrix relations (13) and (14) from [19], we can also find the strains  εεn  in nth 
component of the layered composition [see (6) and (7)].  Thus, by the method of successive approximations, we 
can refine the values of the coefficients  gn  and  Kn  in (5) [or, equivalently, the values of components of the 
matrices  An   and vectors  pn  in (6) with regard for (7)] and, by using the scheme described above (and in [19, 
20]), construct the next approximation to the solution.  Then the outlined iterative process is continued until we 
guarantee its convergence with the required accuracy. 

We use the following static hypothesis traditional for thin-walled structural elements:  σ33(r) ≈ 0  [1–3, 7, 
11, 13, 21, 29, 34, 35, 39].  Thus, we can transform the system of six algebraic equalities (8) to the following 
form (by eliminating the strain  ε33):  

 σii = bi1ε11 + bi2ε22 + pii,      σ12 = b33ε12,      σi3 = bjjεi3, 

   (9) 
 j = i + 3,    i = 1, 2, 

where 

 bij ≡ aij −
ai3a3 j
a33

,      pii ≡ pi −
ai3p3
a33

,    i, j = 1, 2, 

 ε33 = − 1
a33

(a31ε11 + a32ε22 + p3), 

 b11 = b22,      b21 = b12,      b44 = b55, (10) 

 b33 ≡ a66,      b44 ≡ a55 ,      b55 ≡ a44 , 

aij  are the components of the matrix A in (8), which has the same block-diagonal structure as the matrices An  
in (6) [see (5)];  pi  are the nonzero components of the vector  p  in (8);  σij   and  εij  are the components of 
mean stresses and strains in the composition [the components of the vectors  σσ  and  εε   in (8)].  According 
to (10), the quantities  bij   and  pii  in (9) are assumed to be known from the solution of the analyzed problem in 
the previous iteration of the method of successive approximations.  

By using relations (9), in view of (1), (4), and (10), we can find all internal force factors acting in the plate 
for the current iteration: 
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M jj

(ℓ)(x) = aji
(ℓ) ∂i ui

0 − bji
(ℓ) ∂i

2u3
0 + 2 cji

(ℓ,k )

k=0

K

∑ ∂i εi3
(k )⎛

⎝⎜i=1

2

∑  

  + 
 
2d ji

(ℓ) ∂i εi3
(+) − 2eji

(ℓ) ∂i εi3
(−)⎞

⎠⎟
+ Pjj

(ℓ)(x), 

 
  
M12

(ℓ)(x) = a33
(ℓ)

2
(∂1u20 + ∂2u10)− b33

(ℓ) ∂1∂2u3
0 + c33

(ℓ,k )

k=0

K

∑ (∂1ε23
(k ) + ∂2ε13

(k )) 

  +   d33
(ℓ)(∂1ε23

(+) + ∂2ε13
(+)) − e33

(ℓ)(∂1ε23
(−) + ∂2ε13

(−)), 
   (11) 

 
 
M j3

(ℓ)(x) = gj+3, j+3
(ℓ,k )

k=0

K

∑ ε j3
(k ) + hj+3, j+3

(ℓ) ε j3
(+) − f j+3, j+3

(ℓ) ε j3
(−), 

 j = 1, 2,    
  
ℓ = 0,1,…, 2

3
K +1,    x∈G, 

where 

 
 

Pjj
(ℓ)(x) = pjj (r)x3

ℓ dx3
−h

h

∫ ,      
 

M ji
(ℓ)(x) ≡ σ ji (r)x3

ℓ dx3
−h

h

∫ , 

 
 

aji
(ℓ)(x) = bji (r)x3

ℓ dx3
−h

h

∫ ,      
 

bji
(ℓ)(x) = bji (r)x3

ℓ+1 dx3
−h

h

∫ , 

 
 

d ji
(ℓ)(x) = β bji (r)

x3
ℓ+1

2h
x3
2
+ h⎛

⎝
⎞
⎠ dx3

− h

h

∫ , 

 
 

eji
(ℓ)(x) = β bji (r)

x3
ℓ+1

2h
x3
2
− h⎛

⎝
⎞
⎠ dx3

− h

h

∫ , 

 
 

cji
(ℓ,k )(x) = bji (r)

x3
ℓ+k+1

h2
h2

k +1
− βx3

2

k + 3
⎛
⎝⎜

⎞
⎠⎟
dx3

− h

h

∫ , 

 
  

gii
(ℓ,k )(x) = bii (r)

x3
ℓ+k

h2
(h2 −βx32)dx3

− h

h

∫ , (12) 

 
 

hii
(ℓ)(x) = β bii (r)

x3
ℓ

2h
(x3 + h) dx3

− h

h

∫ , 
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fii
(ℓ)(x) = β bii (r)

x3
ℓ

2h
(x3 − h) dx3

− h

h

∫ , 

 
 
cji
(ℓ,k ) = cji

(k,ℓ) = cij
(ℓ,k ) = cij

(k,ℓ),       gii
(ℓ,k ) = gii

(k,ℓ), 

 
 
aji
(ℓ) = aij

(ℓ),      
 
bji
(ℓ) = bij

(ℓ),      
 
d ji
(ℓ) = dij

(ℓ),      
 
eji
(ℓ) = eij

(ℓ),      
 
bji
(ℓ) = aji

(ℓ+1), 

 
 
0 ≤ ℓ ≤ 2

3
K +1,      0 ≤ k ≤ K . 

Here and in what follows, we assume that the number  K  is a multiple of three.  According to (12),  Mij
(0) ≡ Fij  

and  Mij
(1) ≡ Mij   are, respectively, the membrane forces and bending and torsional moments acting in the plate;  

Mi3
(0) ≡ Fi3,  i, j = 1, 2,  are the transverse forces, and the other force factors are mathematical moments of higher 

orders.  The quantities  
 
Pjj
(ℓ)  in (11) can be regarded as initial (more precisely, temperature) force factors. 

By using the differential balance equations for an element of continuum [2, 7, 8, 12] 

 ∂1σi1 + ∂2σi2 + ∂3σi3 = −Xi (r),      i = 1, 2, 3,    x∈G,    x3 ≤ h, (13) 

where  Xi  are components of the bulk load acting upon the material of the layered composition, we can write all 
necessary balance equations for the plate satisfied by the force factors (11).  For this purpose, we multiply (13) 
by   x3

ℓ  and integrate the result over the thickness of the plate.  Thus, in view of (12), we find 

 
 
∂1Mi1

(ℓ) + ∂2Mi2
(ℓ) − ℓMi3

(ℓ−1) = −Xi
(ℓ) − hℓ σi3

(+) − (−1)ℓσi3
(−)⎡⎣ ⎤⎦, 

 
 
0 ≤ ℓ ≤ 2

3
K +1,    i = 1, 2, 

   (14) 

 
 

∂1M13
(ℓ) + ∂2M23

(ℓ) = −X3
(ℓ) + ℓ x3

ℓ−1σ33 dx3
− h

h

∫ − hℓ σ33
(+) − (−1)ℓσ33

(−)⎡⎣ ⎤⎦, 

 
 
0 ≤ ℓ ≤ 2

3
K , 

where 

 
 

Xi
(ℓ)(x) = Xi (r)x3

ℓ dx3
−h

h

∫ ,      σi3
(±)(x) = σi3(x, ± h),    i = 1, 2, 3. (15) 

In deducing relations (14), we have used the formulas of integration by parts. 
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Equations (14) do not contain the moments of the highest orders   M13
(ℓ)  and   M23

(ℓ)  with  
 
ℓ = 2

3
K +1,  and, 

therefore, it is not necessary to compute them by using relations (11).  The stresses  σi3
(±)  [see (15)] are known 

from the static boundary conditions imposed on the front surfaces of the plate  x3 = ±h.  Further, the stress  
σ33(r)  in the last relation in (14) is regarded as known from the solution obtained in the previous iteration  

of the method of successive approximations, just as  
 
Pjj
(ℓ)  and all coefficients on the right-hand sides of rela-

tions (11).  Therefore, the integral in this relation can be transferred to the right.  
In view of the fact that the thickness of the plate is much smaller than its characteristic size in plan, we can 

approximate the stress  σ33  by Hermitian polynomials in the variable  x3.  As the initial approximation, we can 

take a cubic polynomial constructed according to the known values of  σ33
(±)(x)  and 

 ∂3σ33 x3=± h = −X3(x, ± h) − ∂1σ13
(±)(x) − ∂2σ23

(±)(x); 

see equality (13) for  i = 3.  In particular, for   

 X3 ≡ 0      and      σi3
(±) ≡ 0,      i = 1, 2,   

we obtain 

 σ33(r) = −σ33
(+)(x)−σ33

(−)(x)
4h3

x3(x3
2 − 3h2 )  

  + σ33
(+)(x)+σ33

(−)(x)
2

, (16) 

 x∈G,      x3 ≤ h. 

The subsequent refinement of the stress  σ33(r)  is possible on the basis of Hermitian polynomials of higher 
orders, by using not only the values of   

 σ33
(±)(x)      and      ∂3σ33 x3=±h

,   

as in (16), but also the additional values of  ∂3σ33  known from the solution obtained in the previous iteration  
at the inner points of the plate  x3 ∈(−h, h).  These additional values are also obtained from relation (13)  ( i = 3)  
if we replace the stresses  σ13  and  σ23  by their previous approximations computed according to formulas (9) 
with regard for (10).  The greater the number of the applied intermediate values of  ∂3σ33  across the thick-
ness of the plate, the more accurate the approximation of the stress  σ33(r)  by Hermitian polynomials of high 
orders.  

Substituting the obtained approximation of the function  σ33(r)  in equality (14) and, in particular, substi-
tuting relation (16) in (14), for the current iteration, we obtain, in view of (15), the required system of differen-
tial equations that should be satisfied by the force factors (11).  Note that the right-hand sides of these equations 
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are known.  This system should be also supplemented with the following four static boundary conditions on the 
front surfaces of the plate [see (9) with regard for (1)]: 

 bj+3, j+3
h2 −βx3

2

h2
x3
k

k=0

K

∑ ε j3
(k ) +β x3 + h

2h
ε j3
(+) −β x3 − h

2h
ε j3
(−)⎛

⎝⎜
⎞
⎠⎟ x3=± h

 

  =  σ j3
(±)(x),      x∈G, v   j = 1, 2, (17) 

where right-hand sides and coefficients  bii,  i = j + 3,  are known for the current iteration. 
In the case of application of the Reddy theory or its refinements  (β = 1,  K ≥ 0),  we can unambiguously de-

termine the approximations to the functions  ε j3
(±)(x),  j = 1, 2,  in the current iteration from Eqs. (17).  However, 

if we use the Reissner  (β = 0,  K = 0)  or classical  (β = 0,  ε j3
(k ) ≡ 0)  theories, then it is impossible to satisfy the 

static boundary conditions (17) in the general case.  
Recall that the temperature stresses  pii  in (9) with (10) were obtained under the assumption that  σ33 ≈ 0.  

It is possible to refine the quantities  pii  in relations (9) by using the following expressions instead of (10): 

 pii ≡ pi −
ai3(p3 −σ33)

a33
,    i = 1, 2, 

where  σ33  is already known as a result of approximation by Hermitian polynomials [e.g., from (16)].  In the 
first iteration, as earlier, it is necessary to use the condition  σ33 ≈ 0.  

Substituting (11) in equalities (14), we arrive at the balance equations written in the resolving form: 

 
 

∂ j a ji
(ℓ) ∂i ui

0 − bji
(ℓ) ∂i

2u3
0 + 2 cji

(ℓ,k )

k=0

K

∑ ∂i εi3
(k ) + 2d ji

(ℓ) ∂i εi3
(+) − 2eji

(ℓ) ∂i εi3
(−)⎛

⎝⎜
⎞
⎠⎟i=1

2

∑  

   + 
  
∂3− j

a33
(ℓ)

2
(∂1u20 + ∂2u10)

⎡

⎣
⎢ − b33

(ℓ) ∂1∂2u3
0 

   + 
  

c33
(ℓ,k )

k=0

K

∑ (∂1ε23
(k ) + ∂2ε13

(k )) 

   + 
  
d33
(ℓ)(∂1ε23

(+) + ∂2ε13
(+))− e33

(ℓ)(∂1ε23
(−) + ∂2ε13

(−))
⎤

⎦
⎥ 

   – 
 
ℓ gj+3, j+3

(ℓ−1,k )

k=0

K

∑ ε j3
(k ) + hj+3, j+3

(ℓ−1) ε j3
(+) − f j+3, j+3

(ℓ−1) ε j3
(−)⎛

⎝⎜
⎞
⎠⎟
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  =  
 
−X j

(ℓ) − hℓ σ j3
(+) − (−1)ℓσ j3

(−)⎡⎣ ⎤⎦ − ∂ j Pjj
(ℓ), 

 j = 1, 2,    
 
0 ≤ ℓ ≤ 2

3
K +1, 

   (18) 

 
 

∂ j g j+3, j+3
(ℓ,k ) ε j3

(k )

k=0

K

∑ + hj+3, j+3
(ℓ) ε j3

(+) − f j+3, j+3
(ℓ) ε j3

(−)⎛
⎝⎜

⎞
⎠⎟j=1

2

∑  

  =  
 

−X3
(ℓ) + ℓ x3

ℓ−1σ33 dx3
− h

h

∫ − hℓ σ33
(+) − (−1)ℓσ33

(−)⎡⎣ ⎤⎦, 

 
 
0 ≤ ℓ ≤ 2

3
K ,    x∈G. 

Here, it is necessary to take into account relations (15).  If  K  is a multiple of three, then we arrive at  
a closed system of  2K + 9  equations (17) and (18) containing  2K + 9  unknown kinematic variables   

 ui
0,  u3

0,  εi3
(±),  εi3

(k ),  i = 1, 2,  0 ≤ k ≤ K,   

that depend only on two coordinates  x1  and  x2. 
For the unambiguous integration of this system of equations, it is necessary to formulate the corresponding 

boundary conditions.  On one part of the end surface of plate (denoted by  Gσ),  we impose the following static 
boundary conditions: 

 σ11n1
2 +σ22n2

2 + 2σ12n1n2 = σnn, 

  (σ22 −σ11)n1n2 +σ12(n12 − n22) = σnτ, 

   (19) 
 σ13n1 +σ23n2 = σn3, 

 n1 = cos γ ,      n2 = sin γ ,      r ∈Gσ. 

On the other part of the end surface (denoted by  Gu),  we impose the following kinematic boundary conditions 
[see (2) and (3)]:  

 u3
0(x) = u30(x),    x∈Γu , (20) 

 ui (r) = ui0(r),      r ∈Gu ,    i = 1, 2, (21) 

where  σnn,  σnτ,  and  σn3  are, respectively, the normal, tangential (in the plane  x3 = const),  and transverse 
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(in the direction  x3)  external surface loads specified on  Gσ ;  Γu   is the projection of the part of end sur-
face  Gu  onto the reference plane  x3 = 0  (i.e.,  Γu   is a part of the contour  Γ  bounding the domain  G  occu-
pied by the plate in plan);  u30(x)  is the deflection given on  Γu ;  ui0  are the displacements in the tangen-
tial directions  xi,  i = 1, 2,  specified on the end surface  Gu,  and  γ   is the angle specifying the direction of the 
outer normal to the contour  Γ  (or, equivalently, to the end surface   Gσ ∪Gu)  and measured from the direc-
tion  x1. 

To get static boundary conditions represented in terms of the force factors [see (11)], we multiply (19) 
by   x3

ℓ  with subsequent integration of the result over the thickness of the plate.  Thus, by using (12), we find  

  M11
(ℓ)n1

2 +M22
(ℓ)n2

2 + 2M12
(ℓ)n1n2 = Mnn

(ℓ), 

   (M22
(ℓ) −M11

(ℓ))n1n2 +M12
(ℓ)(n12 − n22) = Mnτ

(ℓ),      
 
0 ≤ ℓ ≤ 2

3
K +1, (22) 

  M13
(ℓ)n1 +M23

(ℓ)n2 = Mn3
(ℓ),      

 
0 ≤ ℓ ≤ 2

3
K ,    x∈Γσ, 

where 

 
 

Mnn
(ℓ) ≡ σnnx3

ℓ dx3
− h

h

∫ , 

 
 

Mnτ
(ℓ) ≡ σnτx3

ℓ dx3
− h

h

∫ , (23) 

 
 

Mn3
(ℓ) ≡ σn3x3

ℓ dx3
−h

h

∫ , 

Γσ  is the projection of the part of end surface  Gσ   onto the reference plane  x3 = 0,   

  Γ = Γσ ∪Γu ;   

 Mnn
(ℓ),   Mnτ

(ℓ),  and   Mn3
(ℓ)  are force factors given on the contour  Γσ,  and, according to (23),  Mnn

(0)  and  Mnτ
(0)  

are given normal and tangential (to  Γσ)  membrane forces,  Mn3
(0)  is a given transverse force, and  Mnn

(1)  and  

Mnτ
(1)  are, respectively, bending and torsional moments given on  Γσ  [the other quantities on the right-hand 

sides of equalities (22) are given mathematical moments of higher orders].  
Since we use only partial sums of the power series in (3)  K < ∞( ),  it is impossible to satisfy the kinemat-

ic boundary conditions (21) at any point  r  of the end surface of the plate  Gu  for any dependence of the func-
tions  ui0  on the transverse coordinate  x3.  Therefore, by analogy with the static boundary conditions [see (19), 
(22), and (23)], we satisfy the kinematic conditions (21) in the integral sense on the corresponding end face 



458 А. P. YANKOVSKII 

of the plate, i.e., integrate (21) over the thickness of the plate with weights   x3
ℓ.  Hence, by virtue of (3), we ob-

tain 

 
  

hℓ+1

ℓ +1
(1− (−1)ℓ+1)ui0 −

hℓ+2

ℓ + 2
(1− (−1)ℓ+2)∂i u30  

   
  
+ 2 hk+ℓ+2(1− (−1)ℓ+k+2)

k=0

K

∑  

   × 
 

1
(k +1)(ℓ + k + 2)

− β
(k + 3)(ℓ + k + 4)

⎛
⎝⎜

⎞
⎠⎟
εi3
(k ) 

   + 
  
βhℓ+2 1

2(ℓ + 3)
(1− (−1)ℓ+3)+ 1

ℓ + 2
(1− −1( )ℓ+2)⎡

⎣⎢
⎤
⎦⎥
εi3
(+) 

   – 
  
βhℓ+2 1

2(ℓ + 3)
(1− (−1)ℓ+3)− 1

ℓ + 2
(1− −1( )ℓ+2)⎡

⎣⎢
⎤
⎦⎥
εi3
(−) 

  =   ui0
(ℓ)(x),      x∈Γu ,    i = 1, 2,     0 ≤ ℓ ≤ K +1, (24) 

where 

 
 

ui0
(ℓ)(x) ≡ ui0(r)x3

ℓ dx3
−h

h

∫ , 

   (25) 
 x∈Γu ,    r ∈Gu ,    i = 1, 2,     0 ≤ ℓ ≤ K +1. 

Substituting relations (11) in Eqs. (22), we obtain static boundary conditions at the end face of the plate in 
the resolving form: 

 
 

nj
2 aji

(ℓ) ∂i ui
0 − bji

(ℓ) ∂i
2u3

0⎛
⎝⎜i=1

2

∑
j=1

2

∑  

   + 
 
2 cji

(ℓ,k )

k=0

K

∑ ∂i εi3
(k ) + 2d ji

(ℓ) ∂i εi3
(+) − 2eji

(ℓ) ∂i εi3
(−)⎞

⎠⎟
 

   + 
  
n1n2 a33

(ℓ)(∂1u20 + ∂2u10)− 2b33
(ℓ) ∂1∂2u3

0⎡⎣  

   + 
  
2 c33

(ℓ,k )

k=0

K

∑ (∂1ε23
(k ) + ∂2ε13

(k )) 
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   + 
  
2d33

(ℓ)(∂1ε23
(+) + ∂2ε13

(+))− 2e33
(ℓ)(∂1ε23

(−) + ∂2ε13
(−))⎤⎦ 

  =  
 

Mnn
(ℓ) − nj

2

j=1

2

∑ Pjj
(ℓ), 

 
 

n1n2 (−1) j a ji
(ℓ) ∂i ui

0 − bji
(ℓ) ∂i

2u3
0⎛

⎝⎜i=1

2

∑
j=1

2

∑  

   + 
 
2 cji

(ℓ,k ) ∂i εi3
(k ) + 2d ji

(ℓ) ∂i εi3
(+) − 2eji

(ℓ) ∂i εi3
(−)

k=0

K

∑ ⎞
⎠⎟
 

   + 
  

1
2
(n12 − n22) a33

(ℓ)(∂1u20 + ∂2u10)⎡⎣ − 2b33
(ℓ) ∂1∂2u3

0 

   + 
  
2 c33

(ℓ,k )

k=0

K

∑ (∂1ε23
(k ) + ∂2ε13

(k ))+ 2d33
(ℓ) 

   × 
  
(∂1ε23

(+) + ∂2ε13
(+))− 2e33

(ℓ)(∂1ε23
(−) + ∂2ε13

(−))⎤⎦ 

  =  
 

Mnτ
(ℓ) − n1n2 (−1) j

j=1

2

∑ Pjj
(ℓ),      

 
0 ≤ ℓ ≤ 2

3
K +1, (26) 

 
 

nj g j+3, j+3
(ℓ,k ) ε j3

(k )

k=0

K

∑ + hj+3, j+3
(ℓ) ε j3

(+) − f j+3, j+3
(ℓ) ε j3

(−)⎛
⎝⎜

⎞
⎠⎟j=1

2

∑   =   Mn3
(ℓ),      

 
0 ≤ ℓ ≤ 2

3
K ,    x∈Γσ, 

where it is necessary to take into account equalities (23).  
Thus, for the unambiguous integration of the system of resolving equations (17), (18) at any point of the 

contour  Γ,  it is necessary to impose either the static boundary conditions (26) or the kinematic boundary condi-
tions (20) and (24) with (25).  It is also possible to use mixed boundary conditions [a combination of (20), (24), 
and (26)], e.g., in the case of free support of the end face.  

Within the framework of the Reddy theory and its refinements (at  β = 1),  in the current iteration of the 

method  of successive approximations, it is possible to assume that the functions  ε j3
(±),  j = 1, 2,  in Eqs. (18) and 

equalities (26) are known from the preliminary solution of the system of equations (17).  At the same time, in the 
Reissner and classical theories  (β = 0),  there are no functions of this kind in relations (18) and (26) [see (12) 
for  β = 0]. 

On the basis of the well-known formulas of transition from a Cartesian coordinate system to a cylindrical 
system [6], by using relations presented above, we can deduce a system of resolving equations and the corre-
sponding boundary conditions in a polar coordinate system, which is convenient when the domain  G   occupied 
by the plate in plan is either a circle, or a ring, or a sector of circle (or ring).  
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  CONCLUSIONS 

The expansions of transverse shear strains formed in layered plates with regular structures in the polynomi-
als of different orders in the transverse coordinate make it possible to construct refined theories of the thermoe-
lastoplastic bending of these structures, which take into account their weakened resistance to transverse shears 
with different degrees of accuracy and make it possible to satisfy the force boundary conditions for tangential 
stresses on the front surfaces.  In the first approximation, the obtained relations yield the equations of traditional 
nonclassical Reddy theory whose complexity of realization is the same as for the Reissner theory.  However, 
within the framework of this theory, it is impossible to satisfy boundary conditions for the tangential stresses on 
the front surfaces of the plate.  The application of kinematic relations more accurate than the equations of the 
Reddy theory leads to a significant complication of the boundary-value problems as compared with the equa-
tions of the Reissner and Reddy theories.  
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