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±1-MATRICES WITH VANISHING PERMANENT

K. A. Taranin∗ UDC 512.643, 512.643.2

The problem of finding (−1, 1)-matrices with vanishing permanent was posed by Edward Wang in
1974. This paper states and proves bounds on the number of negative entries in a matrix with zero
permanent and minimal number of negative entries among all matrices of the same equivalence
class. Then representatives of every equivalence class of matrices with zero permanent are found
for n ≤ 5. Bibliography: 20 titles.

1. Introduction

Definition 1.1. Let A be a matrix of order n over the field of reals. The function that maps
the matrix into the number per (A) =

∑

σ∈Sn

a1σ(1)a2σ(2) · · · anσ(n), where Sn is the symmetric

group over the set {1, 2, . . . , n}, is called the permanent function, and the value of the function
is called the permanent of the matrix.

The permanent function has applications in some areas of mathematics, such as graph
theory, combinatorics, discrete mathematics, as well as in other sciences, such as genetics,
economics, and physics, see [19] and [9]. However, in contrast with the determinant function,
for the permanent function no numerical algorithm with polynomial complexity is known.
Moreover, the problem of computing the permanent has proved to be �P -complete, see [14]
and [16]. This has given rise to many questions concerning the values of the function; the
most widely known list of problems and conjectures in this area is due to H. Minc [14]. Here,
the (0, 1)-matrices and (−1, 1)-matrices are of particular interest. Information on applications
and problems concerning (0, 1)-matrices can be found in [2], also see [8] and the bibliography
therein. The set of (−1, 1)-matrices is also widely used (for example, in economics, see [3])
and studied (for example, in connection with the problem of conversion, see [13], and in the
theory of Hadamard matrices, see [7]). Also some estimates for the number of matrices with
prescribed order and value of the permanent were obtained in [10].

In this paper, we investigate the vanishing problem for the permanents of (−1, 1)-matrices.
The problem of the existence of a (−1, 1)-matrix of order n with zero permanent was proposed
and partly solved in [17]. For the complete solution, see [18]. The present paper aims at
computing the number of such matrices and describing their structure, which still remains an
open question. Yet another related problem, stated in [17], namely, the problem of bounding
from above the value of the permanent of a matrix in terms of its rank has recently been
solved in [4] by the proof of Kräuter’s conjecture [11]. For details concerning other problems
from [17], see [12] and [15]. Information on the current state of research in the area can be
found in [1, 7, 18] and [20].

Here, we prove bounds on the number of −1’s in the minimal with respect to the number
of −1’s representatives of the equivalence classes of matrices with zero permanent. Also we
classify, up to equivalence, all the matrices of order less than or equal to 5 with zero permanent.
We use the terminology and notation introduced in the preceding papers [5] and [6] on the
same topic, as well as those from [12]. Since matrix transposition and line permutation do not
change the permanent and the matrix structure, we do not distinguish between matrices that
can be transformed to the same matrix by a sequence of such operations. We say that matrices
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are equivalent if they can be transformed to the same form by some line permutations, line
negations (i.e., multiplication of some lines by −1) and, if necessary, matrix transposition. Fix
the order n ∈ N and consider the set Ωn of (−1, 1)-matrices of order n. A negative partial
generalized diagonal of length m is any set of the form {ai1σ(i1), . . . , aimσ(im)} consisting of m
negative entries of a matrix A ∈ Ωn, where {i1, . . . , im} ⊂ {1, . . . , n}, with each ij occurring
only once, m < n, and σ ∈ Sn. If m = n, then such a set is called negative generalized diagonal.
By km, 0 ≤ m ≤ n, we denote the number of negative (partial) generalized diagonals of length
m. The value of k0 is always set to be 1. Note that k1 is exactly the number of negative entries
in the matrix.

The paper is organized as follows. In Sec. 2, we prove bounds for the number of −1’s in
the minimal with respect to the number of −1’s representatives of the equivalence classes of
matrices with zero permanent. In Sec. 3, we find representatives of all such classes for n ≤ 4.
In Sec. 4, we find representatives of all such classes for n = 5.

We conclude this section by recalling some known results.

Lemma 1.2 ([5, Lemma 2.3]). Let A ∈ Ωn. Then

per (A) =
n∑

j=0

(−2)j · kj · (n − j)!.

Proposition 1.3 ([12, Lemma 5]). Let A ∈ Ωn and let n = 2t − 1 for a positive integer t.
Then

per (A)
.../ 2n−�log2 n�.

Corollary 1.4 ([12, Lemma 4]). For any n = 2t − 1, where t ∈ N, no matrix A ∈ Ωn has
zero permanent.

The following proposition is the converse of Corollary 1.4.

Proposition 1.5 ([18, Theorem 1]). For every n except for n = 2t − 1, t ∈ N, there exists
a matrix A ∈ Ωn with zero permanent.

Proposition 1.6 ([6, Lemma 3.1]). Fix n, t ∈ N, 2t−1 ≤ n < 2t − 1, and let M = M(n) be
the set of nonnegative integers m ≤ n such that in the binary representation of n − m there
are exactly t− 1 units. Then, for any matrix A ∈ Ωn,

per (A)
... 2n−t+2 if and only if

∑

m∈M
km

... 2.

2. The general case

In this section, we state and prove several results, which allow us to reduce the number of
matrices to be considered in searching for matrices with the smallest number of −1’s among
those with zero permanent.

Lemma 2.1. An arbitrary matrix from Ωn can be transformed into a matrix with no more
than �n2 � negative entries in every line by multiplying some of its rows and columns by −1.

Proof. Indeed, by multiplying a row or a column with strictly more than �n2 � negative entries
by −1, we decrease the number of such entries in the matrix. Thus, since the number of entries
is finite, we will ultimately obtain a matrix of the desired form. �
Lemma 2.2. For n = 2t, t ∈ N, and A ∈ Ωn, per (A) can vanish only if the number of
negative entries of A is even.
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Proof. By applying Proposition 1.6, we obtain that for n = 2t the permanent of a (−1, 1)-
matrix is divisible by 2n−t+1 if and only if k1 is divisible by 2. Thus, in the case of an odd k1,
the permanent cannot vanish. �

Lemma 2.3. For n = 2t + 1, 3 ≤ t ∈ N, the permanent of a matrix A ∈ Ωn can vanish only
if the number k2 of negative partial generalized diagonals of length 2 is even.

Proof. This assertion follows from Proposition 1.6 in the same way as Lemma 2.2. �

Lemma 2.4. If, in a (−1, 1)-matrix of order 2k, there are at least k rows Ri1 , . . . , Rik with at
least k negative entries aiqj1 , . . . , aiqjk and at least one negative entry (i, j) distinct from (iq, jm)
for all q,m = 1, . . . , k, then the number of negative entries in the matrix can be decreased by
line negation.

Proof. If a matrix row contains k + 1 or more negative entries, then we negate this row, and
the number of negative entries decreases. Now assume that there are no such rows. Consider
the rows Ri1 , . . . , Rik and column j. By l denote the number of rows among the chosen k rows
with which column j intersects by a negative entry. Negate column j.

1. If k = l, then originally column j has contained at least k + 1 negative entries, whence
the number of such entries in the entire matrix is decreased by its negation.

2. If l < k, then, upon negation of column j, no more than 2k − 2l − 2 negative entries
appear. The total number can even decrease if sufficiently many among the other k rows
intersect with column j by negative entries. Then consider the k − l rows among Ri1 , . . . , Rik
that originally have intersected with column j by unity. As a result of the negation of column
j, each of them contains k+1 negative entries. Negate these k− l rows. Then the total number
of negative entries will decrease by 2(k − l) = 2k − 2l > 2k − 2l− 1, i.e., after the sequence of
negations considered the total number of negative entries will decrease at least by 2. �

Corollary 2.5. If n > 2 is even and a matrix A ∈ Ωn with zero permanent has more than
n2

2 − n
2 −1 negative entries, then it can be transformed into a matrix with fewer negative entries

by line negation.

Proof. If A contains a row with more than n
2 negative entries, then, by negating the row, we

obtain the desired matrix. If there are no such rows, then there are at least n
2 rows with n

2
negative entries, and one extra negative entry in some other row; otherwise the total number
of negative entries does not exceed the value indicated in the assumption of the corollary.
Therefore, the assumptions of Lemma 2.4 are satisfied, and the result of Corollary 2.5 follows
from Lemma 2.4. �

3. Matrices of order n ≤ 4

It is clear that for n = 1 there are no (−1, 1)-matrices with permanent 0, and for n = 2 half
of all (−1, 1)-matrices have zero permanent; those are the matrices with odd number of −1’s.
For n = 3, by Proposition 1.4, no such matrices exist.

Lemma 3.1. Any matrix A ∈ Ω4 with zero permanent can be transformed by line negation
into a matrix with two or four −1’s.

Proof. By virtue of Lemma 2.1, we may only consider matrices with no more than eight −1’s
in total and no more than two of them in a line. By Proposition 1.6, the permanent of a
(−1, 1)-matrix of order 4 is divisible by 8 if and only if the number k1 of negative entries
is even. Consequently, if the number of negative entries is odd, then the permanent cannot
vanish. Thus, it remains to consider the cases k1 = 6 and k1 = 8.
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1. If the matrix under consideration has eight negative entries, then exactly two of them
occur in every line. Thus, by multiplying an arbitrary row by −1, we obtain a matrix with
eight negative entries that has two columns each of which contains three negative entries. The
negation of these two columns yields a matrix with four negative entries.

2. Let the matrix contain six −1’s. If there exist a row and a column with two −1’s in each
of them that intersect by 1, then we can negate these row and column, which will decrease the
number of −1’s by two. If there are no such rows and columns, then we have a matrix of the
form ⎛

⎜
⎜
⎝

−1 −1 1 1
−1 −1 1 1
1 1 −1 1
1 1 1 −1

⎞

⎟
⎟
⎠ .

In this case, we can obtain a matrix with four −1’s by negating a row with one −1 and then
negating two columns with three −1’s. Note, in addition, that the matrix obtained has a row
with three −1’s, whence actually one can obtain a matrix with two −1’s. This completes the
proof of the lemma. �
Proposition 3.2. For n = 4, any given (−1, 1)-matrix with vanishing permanent is equivalent
to one of the following matrices:

⎛

⎜
⎜
⎝

−1 −1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

−1 −1 1 1
1 1 −1 1
1 1 1 −1
1 1 1 1

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

−1 −1 1 1
−1 1 1 1
1 1 −1 1
1 1 1 1

⎞

⎟
⎟
⎠ .

Proof. By Lemma 3.1, it is sufficient to consider matrices with two or four −1’s. By Lemma 2.1,
we may assume that no three of the −1’s occur in the same line. Thus, up to line permutation
and matrix transposition, there are the following eight cases to consider:

A1 =

⎛

⎜
⎜
⎝

−1 −1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎞

⎟
⎟
⎠ , A2 =

⎛

⎜
⎜
⎝

−1 1 1 1
1 −1 1 1
1 1 1 1
1 1 1 1

⎞

⎟
⎟
⎠ , B1 =

⎛

⎜
⎜
⎝

−1 −1 1 1
−1 −1 1 1
1 1 1 1
1 1 1 1

⎞

⎟
⎟
⎠ ,

B2 =

⎛

⎜
⎜
⎝

−1 −1 1 1
1 −1 −1 1
1 1 1 1
1 1 1 1

⎞

⎟
⎟
⎠ , B3 =

⎛

⎜
⎜
⎝

−1 −1 1 1
1 1 −1 −1
1 1 1 1
1 1 1 1

⎞

⎟
⎟
⎠ , B4 =

⎛

⎜
⎜
⎝

−1 1 1 1
−1 1 1 1
1 −1 −1 1
1 1 1 1

⎞

⎟
⎟
⎠ ,

B5 =

⎛

⎜
⎜
⎝

−1 −1 1 1
1 1 −1 1
1 1 1 −1
1 1 1 1

⎞

⎟
⎟
⎠ , B6 =

⎛

⎜
⎜
⎝

−1 −1 1 1
−1 1 1 1
1 1 −1 1
1 1 1 1

⎞

⎟
⎟
⎠ .

Observe that A2 is equivalent to B4, B1 is equivalent to B3, and B2 is equivalent to B5. Now,
applying Lemma 1.2 in the case n = 4, we see that for k1 = 4 the permanent is divisible by
16 if and only if the difference k2 − k3 is odd, i.e., the permanent cannot vanish if the latter
difference is even, which is the case for B1. Then, computing the permanents of A1, A2, B5,
and B6, we conclude that only per (A2) is nonzero. This completes the proof. �

4. Matrices of order 5

Lemma 4.1. Any matrix from Ω5 with vanishing permanent is equivalent to a matrix with no
more than seven −1’s.
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Proof. By Lemma 2.1, it is unnecessary to consider matrices with more than ten −1’s in total,
as well as matrices with more than two −1’s in a line. If the matrix under consideration
contains ten or nine −1’s, then there exist two columns with two −1’s in each of them and a
row with two −1’s that intersects the latter columns by a unity. The negation of these row and
columns yields us a matrix with the desired number of negative entries. In the case of eight
−1’s, there exist matrices without such intersections. Namely, those are the matrices with two
−1’s that are unique negative entries in some rows and columns. Up to line permutation and
matrix transposition, such matrices are of the following form:

⎛

⎜
⎜
⎜
⎜
⎝

−1 −1 1 1 1
1 −1 −1 1 1
−1 1 −1 1 1
1 1 1 −1 1
1 1 1 1 −1

⎞

⎟
⎟
⎟
⎟
⎠

.

By computing the permanent, we obtain that it is equal to −8, i.e., is nonzero. This completes
the proof. �

Proposition 4.2. Any (−1, 1)-matrix of order 5 with zero permanent is equivalent to one of
the following 11 matrices:

⎛

⎜
⎜
⎜
⎜
⎝

−1 −1 1 1 1
−1 1 −1 1 1
1 −1 −1 1 1
1 1 1 −1 1
1 1 1 1 1

⎞

⎟
⎟
⎟
⎟
⎠

,

⎛

⎜
⎜
⎜
⎜
⎝

−1 1 1 1 1
1 −1 1 1 1
1 1 −1 −1 1
1 1 1 −1 −1
1 1 1 1 −1

⎞

⎟
⎟
⎟
⎟
⎠

,

⎛

⎜
⎜
⎜
⎜
⎝

−1 1 1 1 1
1 −1 −1 1 1
1 1 −1 1 1
1 1 1 −1 −1
1 1 1 1 −1

⎞

⎟
⎟
⎟
⎟
⎠

,

⎛

⎜
⎜
⎜
⎜
⎝

−1 −1 1 1 1
1 −1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

⎞

⎟
⎟
⎟
⎟
⎠

,

⎛

⎜
⎜
⎜
⎜
⎝

−1 −1 1 1 1
1 −1 −1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

⎞

⎟
⎟
⎟
⎟
⎠

,

⎛

⎜
⎜
⎜
⎜
⎝

−1 −1 1 1 1
1 −1 −1 1 1
1 1 1 −1 1
1 1 1 1 1
1 1 1 1 1

⎞

⎟
⎟
⎟
⎟
⎠

,

⎛

⎜
⎜
⎜
⎜
⎝

−1 −1 1 1 1
1 −1 −1 1 1
1 1 1 −1 −1
1 1 1 1 1
1 1 1 1 1

⎞

⎟
⎟
⎟
⎟
⎠

,

⎛

⎜
⎜
⎜
⎜
⎝

−1 −1 1 1 1
−1 −1 1 1 1
1 1 −1 1 1
1 1 1 −1 1
1 1 1 1 1

⎞

⎟
⎟
⎟
⎟
⎠

,

⎛

⎜
⎜
⎜
⎜
⎝

−1 −1 1 1 1
1 −1 −1 1 1
1 1 −1 1 1
1 1 1 −1 1
1 1 1 1 1

⎞

⎟
⎟
⎟
⎟
⎠

,

⎛

⎜
⎜
⎜
⎜
⎝

−1 −1 1 1 1
1 1 −1 −1 1
−1 1 1 1 1
1 −1 1 1 1
1 1 1 1 1

⎞

⎟
⎟
⎟
⎟
⎠

,

⎛

⎜
⎜
⎜
⎜
⎝

−1 −1 1 1 1
1 1 −1 1 1
1 1 1 −1 1
1 1 1 1 −1
−1 1 1 1 1

⎞

⎟
⎟
⎟
⎟
⎠

.

Proof. By Lemma 4.1, it is sufficient to consider the matrices containing no more than seven
−1’s with no more than two of them in every line. As is straightforwardly verified, the
permanents of matrices with no more than two −1’s do not vanish. Thus, we are left with five
options k1 = 3, 4, 5, 6, 7.

0. Note that, by Proposition 1.6, the permanent of a (−1, 1)-matrix of order 5 can vanish
only if k0 + k2 is even, i.e., only if k2 is odd.

1. k1 = 7. If there exists a 4 × 4 submatrix containing all the −1’s, then there are three
rows and three columns with two −1’s, one row and one column with one −1, and one row
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and one column free of negative entries. Therefore, either there is a row with two −1’s that
intersects a column with one −1 by this −1 or the matrix is as follows:

⎛

⎜
⎜
⎜
⎜
⎝

−1 −1 1 1 1
−1 1 −1 1 1
1 −1 −1 1 1
1 1 1 −1 1
1 1 1 1 1

⎞

⎟
⎟
⎟
⎟
⎠

.

In the former case, we first negate that row, which results in that one extra −1 and two columns
containing three −1’s each appear. Then we negate the latter two columns and obtain a matrix
with six −1’s. In the latter case, the permanent vanishes.

Now assume that all the seven −1’s occur in exactly four rows and five columns. As above,
if the row with one −1 intersects a column with two −1’s by −1, then we first negate the
column and then the two rows that now have three −1’s. In this way, the number of −1’s is
decreased. If there is no such intersection, then there is a 3 × 4 submatrix with six −1’s. If
it contains a 2× 2 negative block, then we negate a row that is not involved in the block and
then negate the two columns from the block. This results in a matrix with six −1’s. If the
3× 4 submatrix contains no 2× 2 negative block, then the matrix is as follows:

⎛

⎜
⎜
⎜
⎜
⎝

1 −1 1 −1 1
1 1 1 −1 −1
1 −1 −1 1 1
−1 1 1 1 1
1 1 1 1 1

⎞

⎟
⎟
⎟
⎟
⎠

.

Its permanent equals 8.
Finally, if the seven −1’s are distributed among all of the rows and columns, then there

are the following three cases, which are not equivalent with respect to line permutation and
matrix transposition and to which the above-described procedures of decreasing the number
of negative entries are inapplicable:

⎛

⎜
⎜
⎜
⎜
⎝

−1 1 1 1 1
1 −1 1 1 1
1 1 −1 1 1
1 1 1 −1 −1
1 1 1 −1 −1

⎞

⎟
⎟
⎟
⎟
⎠

,

⎛

⎜
⎜
⎜
⎜
⎝

−1 1 1 1 1
1 −1 1 1 1
1 1 −1 −1 1
1 1 1 −1 −1
1 1 1 1 −1

⎞

⎟
⎟
⎟
⎟
⎠

,

⎛

⎜
⎜
⎜
⎜
⎝

−1 1 1 1 1
1 −1 −1 1 1
1 1 −1 1 1
1 1 1 −1 −1
1 1 1 1 −1

⎞

⎟
⎟
⎟
⎟
⎠

.

The permanent of the first matrix equals −16, whereas the permanents of the second and third
ones vanish.

2. k1 = 3. From item 0 and Lemma 2.1 it follows that we must compute the permanents of
the following two matrices:

⎛

⎜
⎜
⎜
⎜
⎝

−1 1 1 1 1
1 −1 1 1 1
1 1 −1 1 1
1 1 1 1 1
1 1 1 1 1

⎞

⎟
⎟
⎟
⎟
⎠

,

⎛

⎜
⎜
⎜
⎜
⎝

−1 −1 1 1 1
1 −1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

⎞

⎟
⎟
⎟
⎟
⎠

.

The first one equals 32, and the second one vanishes.
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3. k1 = 4. By Lemma 2.1 and item 0, it is sufficient to compute the permanents of the
following two matrices:

⎛

⎜
⎜
⎜
⎜
⎝

−1 −1 1 1 1
1 −1 −1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

⎞

⎟
⎟
⎟
⎟
⎠

,

⎛

⎜
⎜
⎜
⎜
⎝

−1 −1 1 1 1
1 1 −1 1 1
1 1 1 −1 1
1 1 1 1 1
1 1 1 1 1

⎞

⎟
⎟
⎟
⎟
⎠

.

Indeed, for all the other matrices with four −1’s, either three of them lie in a line or k2 is even.
The permanent of the first matrix is zero, and the permanent of the second one equals 16.

4. k1 = 5. If the negative entries occur in all of the five rows and five columns, then they
form a diagonal of length 5, whence k2 = 10, and the permanent cannot vanish by item 0.

If the negative entries occur in four rows and five columns, then the matrix is of the form

⎛

⎜
⎜
⎜
⎜
⎝

−1 −1 1 1 1
1 1 −1 1 1
1 1 1 −1 1
1 1 1 1 −1
1 1 1 1 1

⎞

⎟
⎟
⎟
⎟
⎠

.

Its permanent equals 16.
If the negative entries occur in four rows and four columns, then there are two matrices

⎛

⎜
⎜
⎜
⎜
⎝

−1 −1 1 1 1
1 −1 1 1 1
1 1 −1 1 1
1 1 1 −1 1
1 1 1 1 1

⎞

⎟
⎟
⎟
⎟
⎠

,

⎛

⎜
⎜
⎜
⎜
⎝

−1 −1 1 1 1
1 1 −1 1 1
1 1 1 −1 1
1 1 1 −1 1
1 1 1 1 1

⎞

⎟
⎟
⎟
⎟
⎠

,

which are not equivalent with respect to line permutation and matrix transposition. The
permanents of both matrices equal 8.

If the negative entries occur in three rows and five columns, then the entire matrix has the
form

⎛

⎜
⎜
⎜
⎜
⎝

−1 −1 1 1 1
1 1 −1 −1 1
1 1 1 1 −1
1 1 1 1 1
1 1 1 1 1

⎞

⎟
⎟
⎟
⎟
⎠

.

Its permanent equals 8.
If the negative entries occur in three rows and four columns, then there are the following

two cases:
⎛

⎜
⎜
⎜
⎜
⎝

−1 −1 1 1 1
1 −1 −1 1 1
1 1 1 −1 1
1 1 1 1 1
1 1 1 1 1

⎞

⎟
⎟
⎟
⎟
⎠

,

⎛

⎜
⎜
⎜
⎜
⎝

−1 −1 1 1 1
1 1 −1 −1 1
1 1 1 −1 1
1 1 1 1 1
1 1 1 1 1

⎞

⎟
⎟
⎟
⎟
⎠

.

In the first case, the permanent vanishes; in the second case, it equals 16.
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Finally, assume that all of the negative entries are located in a 3× 3 submatrix. Again, we
have two cases, ⎛

⎜
⎜
⎜
⎜
⎝

−1 −1 1 1 1
1 −1 −1 1 1
1 1 −1 1 1
1 1 1 1 1
1 1 1 1 1

⎞

⎟
⎟
⎟
⎟
⎠

,

⎛

⎜
⎜
⎜
⎜
⎝

−1 −1 1 1 1
−1 −1 1 1 1
1 1 −1 1 1
1 1 1 1 1
1 1 1 1 1

⎞

⎟
⎟
⎟
⎟
⎠

.

In the first case, the permanent equals 8; in the second case, it equals −8.
5. k1 = 6. If the six negative entries occur in a 3 × 3 submatrix, then the entire matrix is

of the form ⎛

⎜
⎜
⎜
⎜
⎝

−1 −1 1 1 1
1 −1 −1 1 1
−1 1 −1 1 1
1 1 1 1 1
1 1 1 1 1

⎞

⎟
⎟
⎟
⎟
⎠

.

Its permanent equals 16.
If the six negative entries occur in three rows and four columns, then the matrix has one of

the following two forms:
⎛

⎜
⎜
⎜
⎜
⎝

−1 −1 1 1 1
−1 −1 1 1 1
1 1 −1 −1 1
1 1 1 1 1
1 1 1 1 1

⎞

⎟
⎟
⎟
⎟
⎠

,

⎛

⎜
⎜
⎜
⎜
⎝

−1 −1 1 1 1
1 −1 −1 1 1
1 1 −1 −1 1
1 1 1 1 1
1 1 1 1 1

⎞

⎟
⎟
⎟
⎟
⎠

.

In both cases, the permanent equals 8.
If the six negative entries occur in three rows and five columns, then the entire matrix is as

follows: ⎛

⎜
⎜
⎜
⎜
⎝

−1 −1 1 1 1
1 −1 −1 1 1
1 1 1 −1 −1
1 1 1 1 1
1 1 1 1 1

⎞

⎟
⎟
⎟
⎟
⎠

.

Its permanent vanishes.
If the six negative entries are located in four rows and four columns, then the entire matrix

has one of the following five forms:
⎛

⎜
⎜
⎜
⎜
⎝

−1 −1 1 1 1
−1 −1 1 1 1
1 1 −1 1 1
1 1 1 −1 1
1 1 1 1 1

⎞

⎟
⎟
⎟
⎟
⎠

,

⎛

⎜
⎜
⎜
⎜
⎝

−1 −1 1 1 1
1 −1 −1 1 1
1 1 −1 1 1
1 1 1 −1 1
1 1 1 1 1

⎞

⎟
⎟
⎟
⎟
⎠

,

⎛

⎜
⎜
⎜
⎜
⎝

−1 −1 1 1 1
1 −1 −1 1 1
1 1 1 −1 1
1 1 1 −1 1
1 1 1 1 1

⎞

⎟
⎟
⎟
⎟
⎠

,

⎛

⎜
⎜
⎜
⎜
⎝

−1 −1 1 1 1
1 1 −1 −1 1
−1 1 1 1 1
1 −1 1 1 1
1 1 1 1 1

⎞

⎟
⎟
⎟
⎟
⎠

,

⎛

⎜
⎜
⎜
⎜
⎝

−1 −1 1 1 1
1 1 −1 −1 1
1 −1 1 1 1
1 1 −1 1 1
1 1 1 1 1

⎞

⎟
⎟
⎟
⎟
⎠

.

The third matrix is equivalent, with respect to line negation, to a matrix with five −1’s. The
permanents of the first, second, and fourth matrices vanish, and the permanent of the fifth
one equals 16.
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If the six negative entries occur in five rows and four columns, then the matrix has one of
the following three forms:

⎛

⎜
⎜
⎜
⎜
⎝

−1 −1 1 1 1
1 1 −1 1 1
1 1 1 −1 1
1 1 −1 1 1
1 1 1 −1 1

⎞

⎟
⎟
⎟
⎟
⎠

,

⎛

⎜
⎜
⎜
⎜
⎝

−1 −1 1 1 1
1 1 −1 1 1
1 1 1 −1 1
1 −1 1 1 1
1 1 −1 1 1

⎞

⎟
⎟
⎟
⎟
⎠

,

⎛

⎜
⎜
⎜
⎜
⎝

−1 −1 1 1 1
1 1 −1 1 1
1 1 1 −1 1
−1 1 1 1 1
1 −1 1 1 1

⎞

⎟
⎟
⎟
⎟
⎠

.

The first matrix is equivalent, with respect to line negation, to a matrix with five −1’s. The
permanents of the second and third matrices are equal to 8.

Finally, if the six negative entries are distributed among all the five rows and five columns,
then the matrix has one of the following two forms:

⎛

⎜
⎜
⎜
⎜
⎝

−1 −1 1 1 1
1 1 −1 1 1
1 1 1 −1 1
1 1 1 1 −1
1 1 1 1 −1

⎞

⎟
⎟
⎟
⎟
⎠

,

⎛

⎜
⎜
⎜
⎜
⎝

−1 −1 1 1 1
1 1 −1 1 1
1 1 1 −1 1
1 1 1 1 −1
−1 1 1 1 1

⎞

⎟
⎟
⎟
⎟
⎠

.

In the first case, the permanent equals 16; in the second one, it vanishes.
This completes the proof of the proposition. �
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11. A. R. Kräuter, “Recent results on permanents of (1,−1)-matrices,” Ber. Math.-Statist.
Sekt. Forschungsgesellschaft Joanneum Graz, 249, 1–25 (1985).

279
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