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SOME BOUNDS FOR INVERSES INVOLVING MATRIX
SPARSITY PATTERN

L. Yu. Kolotilina∗ UDC 512.643

The paper considers some subclasses of the class of nonsingular H-matrices whose definitions
involve matrix sparsity pattern. For matrices A in these subclasses, upper bounds for ‖A−1‖∞
are derived and shown to be sharper than the corresponding bounds ignoring matrix sparsity.
Bibliography: 26 titles.

1. Introduction

In the last years, the problem of bounding the l∞ norm of inverse matrices from above has
been intensively studied, see, e.g., [4–7, 11–16, 18–22, 24]. To this end, different approaches
have been elaborated and applied to matrices from different classes. In this paper, the techno-
logical approach recently suggested in [20, 21] is exploited. This approach is essentially based
on the following result, see, e.g., [26, 20], whose proof is provided below for completeness.

Lemma 1.1. Let A = (aij) ∈ C
n×n, n ≥ 2, be a nonsingular matrix. Then there is a vector

x ∈ C
n such that ‖x‖∞ = 1 and

‖A−1‖−1
∞ = ‖Ax‖∞ = max

1≤i≤n
|(Ax)i|. (1.1)

Proof. Since

‖A−1‖∞ = sup
y �=0

‖A−1y‖∞
‖y‖∞ ,

we have

‖A−1‖−1
∞ = inf

z �=0

‖Az‖∞
‖z‖∞ = min

‖z‖∞=1
‖Az‖∞ = max

1≤i≤n
|(Ax)i|,

where x ∈ C
n and ‖x‖∞ = 1. �

In the present paper, specifically, we consider some known and new matrix classes that
are subclasses of the class of nonsingular H-matrices and contain the class {SDD} of Strictly
Diagonally Dominant matrices. For matrices from the classes considered, new upper bounds
for the infinity norm of their inverses are suggested. A common feature of the main results
obtained below is that they are stated with account for the sparsity patterns of the matrices
in question. It is worth mentioning that the classes obtained in this way contain the corre-
sponding subclasses that result if the sparsity pattern is ignored. Moreover, in application to
the latter subclasses the new bounds are in general sharper than the bounds ignoring sparsity
considerations.

The paper is organized as follows. Section 2 considers the so-called S-SOB and S-OB
matrices, introduced and shown to be nonsingular H-matrices in [17]. Here and in what
follows, by S a nonempty proper subset of the index set 〈n〉 = {1, . . . , n} is denoted. The main
theorem of Sec. 2 states an upper bound for ‖A−1‖∞ for an S-SOB matrix A. As a corollary, an
upper bound for an S-OB matrix A is obtained. Section 3 is devoted to the so-called S-SDDS
(S-SDD Sparse) matrices, which are obtained by combining sparsity considerations with the
known definition of S-SDD matrices. It is proved that every S-SDDS matrix A is a nonsingular
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H-matrix, and an upper bound for ‖A−1‖∞ is established. As a corollary, the known bound
for the norm of the inverse to an S-SDD matrix [22, 11] is obtained. Finally, in Sec. 4, we
derive a generalization of the upper bound on ‖A−1‖∞ for an OB (Ostrowski–Brauer) matrix
(also referred to as a DSDD (Double SDD) matrix) proposed in [24], also see [20].

It should be mentioned that all the bounds considered in the paper are applicable to SDD
matrices and improve the following classical result.

Theorem 1.1 ([1, 25]). Let A = (aij) ∈ C
n×n, n ≥ 2, be an SDD matrix. Then

‖A−1‖∞ ≤ max
i∈〈n〉

1

|aii| − ri(A)
. (1.2)

We conclude this introduction by specifying some notation used throughout the paper.
Given a matrix A = (aij) ∈ C

n×n and a subset S ⊂ 〈n〉, n ≥ 2, we denote

ri(A) =

n∑

j=1
j �=i

|aij |, i = 1, . . . , n;

rji (A) = ri(A)− |aij |, where j 	= i, i = 1, . . . , n,

and also

rSi (A) =

{ ∑
j∈S
j �=i

|aij |, i ∈ S,
∑

j∈S |aij |, i /∈ S,
i = 1, . . . , n;

S̄ = 〈n〉\S is the complement of S in 〈n〉, and |S| is the cardinality of S; M(A) = (mij), where

mij =

{
|aii|, i = j

−|aij|, i 	= j
is the comparison matrix for A.

2. S-SOB and S-OB matrices

Let S be an arbitrary nonempty proper subset of the index set. In accordance with [17], we
say that a matrix A = (aij) ∈ C

n×n, n ≥ 2, is an S-SOB (S-Sparse Ostrowski–Brauer) matrix
if the following conditions are fulfilled:

(i) |app| > rSp (A) for all p ∈ S;

(ii) |aqq| > rS̄q (A) for all q ∈ S̄;

(iii) for all p ∈ S and all q ∈ S̄ such that apq 	= 0,

[|app| − rSp (A)] |aqq| > rS̄p (A) rq(A); (2.1)

(iv) for all p ∈ S and all q ∈ S̄ such that aqp 	= 0,

[|aqq| − rS̄q (A)] |app| > rSq (A) rp(A). (2.2)

The above definition takes into account the sparsity pattern of the matrix A. If the matrix
sparsity is ignored and we require that conditions (2.1) and (2.2) be fulfilled for all p ∈ S and
all q ∈ S̄, then conditions (i) and (ii) become exuberant, and we obtain the following simplified
definition, given in [17].

Let S be an arbitrary nonempty proper subset of the index set. In accordance with [17],
we say that a matrix A = (aij) ∈ C

n×n, n ≥ 2, is an S-OB (S-Ostrowski–Brauer) matrix if
conditions (2.1) and (2.2) are fulfilled for all p ∈ S and all q ∈ S̄.

In [17], it is proved that all the S-SOB and S-OB matrices are nonsingular H-matrices;
moreover, the following inclusions hold:

{SDD} � {S-OB} � {S-SOB} � H.
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In Theorem 2.1 and Corollary 2.1 below, we establish upper bounds for the infinity norm
of inverses to S-SOB and S-OB matrices.

Theorem 2.1. Let A = (aij) ∈ C
n×n, n ≥ 2, be an S-SOB matrix, where S ⊂ 〈n〉, 1 ≤ |S| ≤

n− 1. Then

‖A−1‖∞ ≤ max

⎧
⎪⎨

⎪⎩
max
i∈S:

rS̄
i
(A)=0

1

|aii| − rSi (A)
, max

j∈S̄:

rS
j
(A)=0

1

|ajj| − rS̄j (A)
,

max
i∈S,j∈S̄:
aij �=0

fij(A,S), max
i∈S,j∈S̄:
aji �=0

fji(A, S̄)

⎫
⎬

⎭ . (2.3)

Here and in what follows, we use the notation

fij(A,S) =
|ajj|+ rS̄i (A)

[|aii| − rSi (A)]|ajj | − rS̄i (A) rj(A)
, (2.4)

where i ∈ S, j ∈ S̄.

Proof. In accordance with Lemma 1.1, choose a vector x = (xi) ∈ C
n such that

‖x‖∞ = 1 and |(Ax)i| ≤ ‖A−1‖−1
∞ for all i = 1, . . . , n. (2.5)

Assume that
|xp| = 1 = ‖x‖∞. (2.6)

First consider the case where p ∈ S.
If rS̄p (A) = 0, then we have

(Ax)p = appxp +
∑

j∈S
j �=p

apjxj ,

implying, in view of (2.6), that

|app| = |appxp| ≤ |(Ax)p|+
∑

j∈S
j �=p

|apj| |xj| ≤ |(Ax)p|+ rSp (A).

Then, by (2.5), we have

|app| − rSp (A) ≤ ‖A−1‖−1
∞ . (2.7)

Since, for the S-SOB matrix A, the left-hand side of (2.7) is positive, we obtain

‖A−1‖∞ ≤ 1

|app| − rSp (A)
≤ max

i∈S:

rS̄
i
(A)=0

1

|aii| − rSi (A)
. (2.8)

This proves the bound (2.3) in the case under consideration.

Now assume that rS̄p (A) 	= 0. In this case, there is an index q ∈ S̄ such that apq 	= 0 and

|xq| = max
j∈S̄:
apj �=0

|xj |. (2.9)

Using (2.6) and (2.9), we derive

|app| = |appxp| ≤ |(Ax)p|+ rSp (A) + rS̄p (A)|xq|,
whence

|app| − |(Ax)p| − rSp (A) ≤ rS̄p (A)|xq|. (2.10)
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If xq = 0, then from inequality (2.10), by using (2.5), we infer

|app| − rSp (A) ≤ |(Ax)p| ≤ ‖A−1‖−1
∞ .

Using the conditions aqq 	= 0 and (iii), we derive

‖A−1‖∞ ≤ 1

|app| − rSp (A)
=

|aqq|
[|app| − rSp (A)]|aqq|

≤ |aqq|+ rS̄p (A)

[|app| − rSp (A)]|aqq| − rS̄p (A) rq(A)
≤ max

i∈S,j∈S̄:
aij �=0

fij(A,S).

Thus, if xq = 0, then the desired bound is established.
Now let xq 	= 0. By considering the qth component of Ax and using (2.6), we obtain

|aqq| |xq| ≤ |(Ax)q|+ rq(A). (2.11)

Now from (2.10) and (2.11) it follows that

[|app| − rSp (A)− |(Ax)p|]|aqq| ≤ rS̄p (A)[|(Ax)q |+ rq(A)],

or

[|app| − rSp (A)]|aqq | − rS̄p (A) rq(A) ≤ |(Ax)p||aqq|+ |(Ax)q |rS̄p (A).
Therefore, in view of (2.5), we have

[|app| − rSp (A)]|aqq| − rS̄p (A) rq(A) ≤ ‖A−1‖−1
∞ [|aqq|+ rS̄p (A)].

Taking into account that for the S-SOB matrix A, the left-hand side of the latter relation is
positive, we write

‖A−1‖∞ ≤ |aqq|+ rS̄p (A)

[|app| − rSp (A)]|aqq| − rS̄p (A)rq(A)
, (2.12)

which implies that

‖A−1‖∞ ≤ max
i∈S,j∈S̄:
aij �=0

fij(A,S).

Now, in order to complete the proof, we must consider the case where p ∈ S̄.
If rSp (A) = 0, then, arguing as above, we derive

|app| = |appxp| ≤ |(Ax)p|+ rS̄p (A)

and

‖A−1‖∞ ≤ 1

|app| − rS̄p (A)
≤ max

j∈S̄:

rS
j
(A)=0

1

|ajj | − rS̄j (A)
.

If rSp (A) 	= 0, then we choose q ∈ S in such a way that apq 	= 0 and

|xq| = max
j∈S:
apj �=0

|xj |.

If |xq| = 0, then we have

|app| − rS̄p (A) ≤ |(Ax)p| ≤ ‖A−1‖−1
∞
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and

‖A−1‖∞ ≤ 1

|app| − rS̄p (A)
≤ |aqq|+ rSp (A)

[|app| − rS̄p (A)]|aqq | − rSp (A)rq(A)

≤ max
i∈S,j∈S̄:
aji �=0

|aii|+ rSj (A)

[|ajj | − rS̄j (A)]|aii| − rSj (A)ri(A)
= max

i∈S,j∈S̄:
aji �=0

fji(A, S̄).

Finally, if xq 	= 0, then, arguing as in proving (2.12), we arrive at the inequality

‖A−1‖∞ ≤ |aqq|+ rSp (A)

[|app| − rS̄p (A)]|aqq| − rSp (A)rq(A)

≤ max
i∈S,j∈S̄:
aji �=0

|aii|+ rSj (A)

[|ajj | − rS̄j (A)]|aii| − rSj (A)ri(A)
= max

i∈S,j∈S̄:
aji �=0

fji(A, S̄).

This completes the proof of the theorem. �

Now from Theorem 2.1 we derive a corollary. Observe that if rS̄i (A) = 0, i ∈ S, then for all
j ∈ S̄,

fij(A,S) =
1

|aii| − rSi (A)

and, similarly, if rSj (A) = 0, j ∈ S̄, then for all i ∈ S,

fji(A, S̄) =
1

|ajj| − rS̄j (A)
.

In view of the latter relations, we have

max

⎧
⎨

⎩ max
i∈S:

rS̄
i
(A) �=0

1

|aii| − rSi (A)
, max

i∈S,j∈S̄:
aij �=0

fij(A,S)

⎫
⎬

⎭ ≤ max
i∈S,j∈S̄

fij(A,S)

and also

max

⎧
⎪⎨

⎪⎩
max
j∈S̄

rS
j
(A) �=0

1

|ajj| − rS̄j (A)
, max

i∈S,j∈S̄:
aji �=0

fji(A, S̄)

⎫
⎪⎬

⎪⎭
≤ max

i∈S,j∈S̄
fji(A, S̄).

Thus, Theorem 2.1 implies the following somewhat simpler but also less sharp bound,
valid for S-OB matrices, for which (contrary to S-SOB matrices) the quantities fij(A,S)
and fji(A, S̄) are well defined for all i ∈ S and j ∈ S̄.

Corollary 2.1. Let A = (aij) ∈ C
n×n, n ≥ 2, be an S-OB matrix, where S ⊂ 〈n〉, 1 ≤ |S| ≤

n− 1. Then

‖A−1‖∞ ≤ max
i∈S,j∈S̄

max
{
fij(A,S), fji(A, S̄)

}
. (2.13)

It is of importance to mention that for an SDD matrix A = (aij) ∈ C
n×n, n ≥ 2, the bound

(2.13) is in general sharper than the classical bound (1.2), i.e.,

max
i∈S,j∈S̄

max
{
fij(A,S), fji(A, S̄)

} ≤ max
i∈〈n〉

1

|aii| − ri(A)
. (2.14)

Indeed, as is readily seen, for all i 	= j and an arbitrary S,

fij(A,S) ≤ 1

|aii| − ri(A)
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whenever

|aii| − ri(A) ≤ |ajj| − rj(A),

and, similarly,

fij(A,S) ≤ 1

|ajj| − rj(A)

whenever

|ajj | − rj(A) ≤ |aii| − ri(A),

and (2.14) follows.

3. S-SDDS and S-SDD matrices

In this section, we introduce into consideration a new matrix class {S-SDDS}, which takes
into account the matrix sparsity pattern. Then we show that matrices from this class are
nonsingular H-matrices and obtain an upper bound for the infinity norm of their inverses.

Recall that a matrix A = (aij) ∈ C
n×n, n ≥ 2, is said to be S-SDD (e.g., see [8, 13]) if the

following two conditions are fulfilled:

|aii| > rSi (A) for all i ∈ S (3.1)

and

[|aii| − rSi (A)] [|ajj| − rS̄j (A)] > rS̄i (A) r
S
j (A) for all i ∈ S and j ∈ S̄. (3.2)

As is well known, the class of S-SDD matrices is a subclass of the class of nonsingular
H-matrices and contains the subclass of SDD matrices.

We extend the class {S-SDD} by introducing the following definition.
A matrix A = (aij) ∈ C

n×n, n ≥ 2, is said to be S-SDDS (S-SDD Sparse) if the following
conditions are fulfilled:

|aii| > rSi (A) for all i ∈ S; (3.3)

|ajj| > rS̄j (A) for all j ∈ S̄, (3.4)

and

[|aii| − rSi (A)] [|ajj| − rS̄j (A)] > rS̄i (A) r
S
j (A)

for all i ∈ S and all j ∈ S̄ such that aij 	= 0 or aji 	= 0. (3.5)

Observe that conditions (3.3)–(3.5) being obviously fulfilled for any S-SDD matrix A, we
have

{SDD} ⊆ {S-SDD} ⊆ {S-SDDS}. (3.6)

We start the study of the S-SDDS matrices by establishing the following basic result.

Lemma 3.1. Let S ⊂ 〈n〉, where n ≥ 2 and 1 ≤ |S| ≤ n − 1, let a matrix A = (aij) ∈ C
n×n

be singular, and let

Ax = 0 (3.7)

for a nonzero vector x = (xi) ∈ C
n. Let

|xp| = max
i∈〈n〉

|xi|. (3.8)

If p ∈ S, then either

|app| − rSp (A) ≤ 0 (3.9)

or there exists an index q ∈ S̄ such that apq 	= 0 and

[|app| − rSp (A)] [|aqq| − rS̄q (A)] ≤ rS̄p (A) r
S
q (A). (3.10)
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Proof. If rS̄p (A) = 0, then we have

0 = (Ax)p = appxp +
∑

j �=p
j∈S

apjxj,

implying that

|app||xp| ≤ rSp (A)|xp|,
which proves (3.9).

If rS̄p (A) 	= 0, then we choose q ∈ S̄ such that apq 	= 0 and

|xq| = max
j∈S̄

apj �=0

|xj |. (3.11)

In this case, we have

|app||xp| ≤ rSp (A)|xp|+ rS̄p (A)|xq |
and

[|app| − rSp (A)]|xp| ≤ rS̄p (A)|xq|. (3.12)

If xq = 0, then from (3.12) it follows that

[|app| − rSp (A)] ≤ 0,

whence inequality (3.9) holds.
If xq 	= 0, then we derive

|aqq||xq| ≤ rSq (A)|xp|+ rS̄q (A)|xq|,
[|aqq| − rS̄q (A)]|xq| ≤ rSq (A)|xp|. (3.13)

From (3.12) and (3.13), taking into account that xp 	= 0 and xq 	= 0, we obtain

[|app| − rSp (A)] [|aqq| − rS̄q (A)] ≤ rS̄p (A) r
S
q (A).

This completes the proof of the lemma. �

From Lemma 3.1 we immediately obtain the following matrix nonsingularity criterion, which
involves the matrix sparsity pattern and depends on the partition 〈n〉 = S ∪ S̄.

Theorem 3.1. Let a matrix A = (aij) ∈ C
n×n, n ≥ 2, be an S-SDDS matrix for a certain

subset S ⊂ 〈n〉, where 1 ≤ |S| ≤ n− 1. Then A is nonsingular.

Proof. Suppose A is singular and Ax = 0 for a nonzero vector x = (xi). Let p be defined in
accordance with (3.8).

If p ∈ S, then, by Lemma 3.1, either (3.9) holds or apq 	= 0, q ∈ S̄, and (3.10) is valid. If

p ∈ S̄, then, by Lemma 3.1, where S is replaced by S̄, either |app|− rS̄p (A) ≤ 0 or, for a certain
q ∈ S, we have apq 	= 0 and

[|aqq| − rSq (A)] [|app| − rS̄p (A)] ≤ rS̄q (A) r
S
p (A).

But, under the assumptions of the theorem, both cases are impossible, whenceA is nonsingular.
�

The next theorem claims that any S-SDDS matrix actually is a nonsingular H-matrix.

Theorem 3.2. Let, for a certain subset S ⊂ 〈n〉, where n ≥ 2 and 1 ≤ |S| ≤ n− 1, a matrix
A ∈ Cn×n be an S-SDDS matrix. Then it is a nonsingular H-matrix.
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Proof. Note that conditions (3.3)–(3.5) are fulfilled for A if and only if they are fulfilled for
the comparison matrix M(A). Therefore, by Theorem 3.1, M(A) is nonsingular, and it
remains to show that M(A) is an M-matrix. To this end, by virtue of [2, Condition D15 of
Theorem 6.2.3], it is sufficient to prove that the shifted matrix M(A) + εIn is nonsingular
for every ε ≥ 0. However, conditions (3.3)–(3.5), which hold for M(A), hold for M(A) + εIn
a fortiori. Thus, by Theorem 3.1, M(A) + εIn is nonsingular for all ε ≥ 0, whence A is a
nonsingular H-matrix. �

In view of (3.6) and Theorem 3.2, we have

{SDD} ⊆ {S-SDD} ⊆ {S-SDDS} ⊆ {H},
which yields a new proof of the fact that any S-SDD matrix is a nonsingular H-matrix.

Now we are ready to present an upper bound for ‖A−1‖∞ for an S-SDDS matrix A.

Theorem 3.3. Let, given a subset S ⊂ 〈n〉, where n ≥ 2 and 1 ≤ |S| ≤ n−1, A = (aij) ∈ C
n×n

be an S-SDDS matrix. Then

‖A−1‖∞ ≤ max

⎧
⎪⎨

⎪⎩
max
i∈S:

rS̄
i
(A)=0

1

|aii| − rSi (A)
, max

j∈S̄:

rS
j
(A)=0

1

|ajj| − rS̄j (A)
,

max
p∈S,q∈S̄:
apq �=0

fS
pq(A), max

p∈S,q∈S̄:
aqp �=0

f S̄
qp(A)

⎫
⎬

⎭ . (3.14)

Here, for i ∈ S and j ∈ S̄ such that aij 	= 0, we set

fS
ij(A) :=

|ajj| − rS̄j (A) + rS̄i (A)

[|aii| − rSi (A)] [|ajj| − rS̄j (A)]− rS̄i (A) r
S
j (A)

. (3.15)

Proof. In accordance with Lemma 1.1, assume that a vector x = (xi) is such that

|(Ax)i| ≤ ‖A−1‖−1
∞ , i = 1, . . . , n, (3.16)

and
1 = |xp| = max

i∈〈n〉
|xi|.

First consider the case where p ∈ S.

If rS̄p (A) = 0, then we have

|app| − rSp (A) ≤ |(Ax)p| ≤ ‖A−1‖−1
∞ . (3.17)

Since A is an S-SDDS matrix, the leftmost expression in (3.17) is positive, and we derive

‖A−1‖∞ ≤ 1

|app| − rSp (A)
≤ max

i∈S:

rS̄
i
(A)=0

1

|aii| − rSi (A)
. (3.18)

If rS̄p (A) 	= 0, then we choose q ∈ S̄ in such a way that apq 	= 0 and

|xq| = max
j∈S̄:
apj �=0

|xj |.

Then, as is readily seen, we have

|app| − rSp (A)− |(Ax)p| ≤ rS̄p (A)|xq| (3.19)

and
[|aqq| − rS̄q (A)]|xq | ≤ |(Ax)q|+ rSq (A). (3.20)
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If xq 	= 0, then from (3.19) and (3.20) it follows that

[|app| − rSp (A)− |(Ax)p|] [|aqq| − rS̄q (A)] ≤ rS̄p (A) [|(Ax)q|+ rSq (A)],

or

[|app| − rSp (A)] [|aqq| − rS̄q (A)]− rS̄p (A) r
S
q (A) ≤ |(Ax)p|[|aqq| − rS̄q (A)] + |(Ax)q|rS̄p (A)

≤ ‖A−1‖−1
∞ [|aqq| − rS̄q (A) + rS̄p (A)],

where we have used (3.16). Since the first expression in the latter string of inequalities is
positive, we obtain

‖A−1‖∞ ≤ |aqq| − rS̄q (A) + rS̄p (A)

[|app| − rSp (A)] [|aqq| − rS̄q (A)] − rS̄p (A) r
S
q (A)

= fS
pq(A). (3.21)

In the case where xq = 0, by (3.19) and (3.16), we have

|app| − rSp (A) ≤ |(Ax)p| ≤ ‖A−1‖−1
∞ ,

whence

‖A−1‖∞ ≤ 1

|app| − rSp (A)
. (3.22)

Show that for every q ∈ S̄ and, in particular, for q chosen above,

1

|app| − rSp (A)
≤ fS

pq(A). (3.23)

Indeed,

1

|app| − rSp (A)
=

|aqq| − rS̄q (A)

[|app| − rSp (A)] [|aqq| − rS̄q (A)]

≤ |aqq| − rS̄q (A) + rS̄p (A)

[|app| − rSp (A)] [|aqq| − rS̄q (A)]− rS̄p (A) r
S
q (A)

= fS
pq(A).

Thus, in the case where p ∈ S, by (3.18), (3.21), and (3.22)–(3.23), we have

‖A−1‖∞ ≤ max

⎧
⎨

⎩ max
i∈S:

rS̄
i
(A)=0

1

|aii| − rSi (A)
, max

p∈S,q∈S̄:
apq �=0

fS
pq(A)

⎫
⎬

⎭ . (3.24)

In the case where p ∈ S̄, the desired result is obtained from (3.24) by interchanging S with
S̄ and p with q. This completes the proof. �

As is trivial to see, if rS̄i (A) = 0, where i ∈ S, then, for every j ∈ S̄, we have

fS
ij(A) =

1

|aii| − rSi (A)
. (3.25)

Similarly, if rSj (A) = 0, where j ∈ S̄, then, for every i ∈ S, we have

f S̄
ji(A) =

1

|ajj| − rS̄j (A)
. (3.26)

By applying Theorem 3.3 to an S-SDD matrix A, taking into account that for such a

matrix A the quantities fS
ij(A) and f S̄

ji(A) are well defined for all i ∈ S and all j ∈ S̄, and

using (3.25)–(3.26), we obtain the following known bound, originally established in [22] (also
see [11]).
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Corollary 3.1. Let S ⊂ 〈n〉, 1 ≤ |S| ≤ n− 1, n ≥ 2 and let A ∈ C
n×n be an S-SDD matrix.

Then

‖A−1‖∞ ≤ max
i∈S,j∈S̄

max
{
fS
ij(A), f

S̄
ji(A)

}
, (3.27)

where fS
ij(A) is defined in (3.15).

As is well known (see, e.g., [11]), for an SDD matrix A the bound (3.27) generally improves
the classical bound (1.2), whence the bound (3.14) improves (1.2) a fortiori.

4. OBS and OB matrices

In this section, we consider matrices A ∈ C
n×n, n ≥ 2, that satisfy the following condition:

|aii| |ajj| > ri(A) rj(A) for all i 	= j. (4.1)

As is known since 1937, see [23] and [3], such matrices are nonsingular. Moreover, as is nondif-
ficult to ascertain (applying, e.g., the argument used in the proof of Theorem 3.2), the matrices
satisfying (4.1) are nonsingular H-matrices. We call them OB (Ostrowski–Brauer) matrices,
and some authors say that such matrices are DSDD (doubly SDD). Relatively recently, in
2008, Pan and Cheng [24] (also see [9]) established the following upper bound for the inverse
of a DSDD matrix. (One can guess that in [20] the same bound is obtained.)

Theorem 4.1 ([24]). Let A = (aij) ∈ C
n×n, n ≥ 2, be an OB matrix. Then

‖A−1‖∞ ≤ max
i �=j

|ajj|+ ri(A)

|aii| |ajj| − ri(A) rj(A)
. (4.2)

In this section, we show that the bound (4.2) can be sharpened and, simultaneously, ex-
tended to a larger matrix class. Recall the following result, established in [10].

Theorem 4.2. Let a matrix A = (aij) ∈ C
n×n, n ≥ 2, be irreducible, satisfy the condition

|aii| |ajj| ≥ ri(A) rj(A) for all i 	= j such that aij 	= 0, (4.3)

and let at least one of the inequalities in (4.3) be strict. Then A is nonsingular.

Theorem 4.2 implies the following result.

Corollary 4.1. Let a matrix A = (aij) ∈ C
n×n, n ≥ 2, be free of zero rows and satisfy the

condition

|aii| |ajj| > ri(A) rj(A) for all i 	= j such that aij 	= 0. (4.4)

Then A is nonsingular.

Proof. If A is an irreducible matrix, then it is nonsingular by Theorem 4.2.
If A is reducible, then each of its irreducible components A[S], where S ⊂ 〈n〉, 2 ≤ |S| ≤

n− 1, a fortiori satisfies conditions of the type (4.4), whence all of them are nonsingular.
Finally, if A[i], i ∈ 〈n〉, is an irreducible component of order 1, then it is nonsingular by

virtue of the assumption that A is free of zero rows. �

Arguing as in the proof of Theorem 3.2, one can readily strengthen the above result as
follows.

Theorem 4.3. Let a matrix A = (aij) ∈ C
n×n, n ≥ 2, be free of zero rows and satisfy

condition (4.4). Then A is a nonsingular H-matrix.
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Note that the class of matrices satisfying the assumptions of Theorem 4.1, i.e., the class
of OB (DSDD) matrices is a subclass of the class of matrices satisfying the hypotheses of
Theorem 4.3 because from (4.1) it immediately follows that all the diagonal entries of A are
nonzero, whence A is free of zero rows.

Observe that in Corollary 4.1 and Theorem 4.3, the condition that A is free of zero rows is
equivalent to the condition that all the diagonal entries of A are nonzero.

Matrices A ∈ C
n×n, n ≥ 2, that satisfy the hypotheses of Theorem 4.3 will be referred to

as OBS (OB Sparse) matrices.
Obviously,

{SDD} ⊂ {OB} ⊂ {OBS}.
The main result of this section is the following theorem.

Theorem 4.4. Let A = (aij) ∈ C
n×n, n ≥ 2, be an OBS matrix. Then

||A−1‖∞ ≤ max

⎧
⎨

⎩ max
i∈〈n〉:

ri(A)=0

|aii|−1, max
i: ri(A)�=0

max
j �=i:

aij �=0

|ajj|+ ri(A)

|aii| |ajj| − ri(A) rj(A)

⎫
⎬

⎭ . (4.5)

Proof. As in the proof of Theorem 3.3, choose a vector x 	= 0 with ‖x‖∞ = 1 such that

‖Ax‖∞ ≤ ‖A−1‖−1
∞ (4.6)

and assume that
|xp| = ‖x‖∞ = 1. (4.7)

If rp(A) = 0, then we have
|(Ax)p| = |app||xp| = |app|,

implying, in view of (4.6), that
‖A−1‖∞ ≤ |app|−1.

Thus, in this case,
‖A−1‖∞ ≤ max

i∈〈n〉:
ri(A)=0

|aii|−1,

and the bound (4.5) is established.
Now let rp(A) 	= 0 and let q 	= p be such that apq 	= 0 and

|xq| = max
j �=p:

apj �=0

|xj |. (4.8)

By using (4.7) and (4.8), we readily obtain

|app| ≤ |(Ax)p|+ rp(A)|xq| (4.9)

and
|aqq||xq| ≤ |(Ax)q |+ rq(A). (4.10)

If xq = 0, then, by (4.9) and (4.6), we have

|app| ≤ |(Ax)p| ≤ ‖A−1‖−1
∞ ,

whence, for any j 	= p,

‖A−1‖∞ ≤ 1

|app| =
|ajj|

|app| |ajj| <
|ajj|+ rp(A)

|app| |ajj| − rp(A) rj(A)
(4.11)

and

‖A−1‖∞ ≤ min
j �=p

|ajj |+ rp(A)

|app| |ajj| − rp(A) rj(A)
.

Thus, in the case considered, the bound (4.5) is obviously valid.
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It remains to consider the situation where rp(A) 	= 0 and xq 	= 0. In this case, from (4.9)
and (4.10) we obtain

[|app| − |(Ax)p|]|aqq| ≤ rp(A)[|(Ax)q |+ rq(A)],

or

|app| |aqq| − rp(A) rq(A) ≤ |(Ax)p||aqq|+ |(Ax)q| rp(A).
In view of (4.6), it follows that

|app| |aqq| − rp(A) rq(A) ≤ ‖A−1‖−1
∞ [|aqq|+ rp(A)],

whence

‖A−1‖∞ ≤ max
j �=p:

apj �=0

|ajj|+ rp(A)

|app| |ajj| − rp(A) rj(A)
≤ max

i: ri(A)�=0
max
j �=i:

aij �=0

|ajj |+ ri(A)

|aii| |ajj| − ri(A) rj(A)
.

This completes the proof of the theorem. �

As it follows from (4.11), under the assumption that

|aii| |ajj| > ri(A) rj(A) for all i 	= j,

the bound (4.5) obviously does not exceed the bound (4.2). Furthermore, the bound (4.5)
holds for a wider class of matrices than the bound (4.2).

We conclude this section by showing that for an SDD matrix A = (aij) ∈ C
n×n, n ≥ 2, the

bound (4.2) is at least as good as the classical bound (1.2).
Indeed, assume that A is an SDD matrix. If ri(A) 	= 0, then the inequality

|ajj|+ ri(A)

|aii| |ajj | − ri(A) rj(A)
≤ 1

|aii| − ri(A)
(4.12)

is equivalent to

|aii| − ri(A) ≤ |ajj| − rj(A),

and if ri(A) = 0, then (4.12) is an equality. On the other hand, the inequality

|ajj|+ ri(A)

|aii| |ajj| − ri(A) rj(A)
≤ 1

|ajj | − rj(A)

amounts to

|ajj | − rj(A) ≤ |aii| − ri(A).

Thus, we always have

|ajj |+ ri(A)

|aii| |ajj| − ri(A) rj(A)
≤ max

{
1

|aii| − ri(A)
,

1

|ajj| − rj(A)

}
. (4.13)

This shows that for an SDD matrix A the bound (4.2) and, consequently, (4.5) as well generally
improve the classical bound (1.2).

Translated by L. Yu. Kolotilina.
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4. L. Cvetković, P.-F. Dai, K. Doroslovac̆ki, and Y.-T. Li, “Infinity norm bounds for the
inverse of Nekrasov matrices,” Appl. Math. Comput., 219, 5020–5024 (2013).
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