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RELATION GRAPHS OF THE SPLIT-SEDENION
ALGEBRA

S. A. Zhilina∗ UDC 512.643, 512.552

The paper introduces the Cayley–Dickson split-sedenion algebra. Exact expressions for the an-
nihilators and orthogonalizers of its zero divisors are obtained, and these results are applied in
describing relation graphs of the split-sedenions in terms of their diameters and cliques. Bibliog-
raphy: 10 titles.

1. Introduction

Let F be an arbitrary field and let (A,+, ·) be an algebra with identity 1A over the field F.
A is assumed to be neither commutative nor associative. Given a, b ∈ A, we say that

• a and b commute if ab = ba;
• a and b anticommute if ab+ ba = 0;
• a and b are orthogonal if ab = ba = 0;
• a is a left zero divisor if a �= 0 and there exists a nonzero x ∈ A such that ax = 0;
• a is a right zero divisor if a �= 0 and there exists a nonzero x ∈ A such that xa = 0;
• a is a two-sided zero divisor if it is both a left and a right zero divisor;
• a is a zero divisor if it is a left or a right zero divisor.

Definition 1.1.

• The center of an algebra A is the set CA =
{
a ∈ A | ab = ba for all b ∈ A}

.
• Z(A) is the set of zero divisors of A.
• ZLR(A) is the set of two-sided zero divisors of A.

Definition 1.2. Let a be an arbitrary element of an algebra A.

• The centralizer of a is CA(a) =
{
b ∈ A | ab = ba

}
, i.e., the set of all elements in A

that commute with a.
• The anticentralizer of a is AncA(a) =

{
b ∈ A|ab+ba = 0

}
, i.e., the set of all elements

in A that anticommute with a.
• The left annihilator of a is the set l.AnnA(a) =

{
b ∈ A | ba = 0

}
.

• Similarly, the right annihilator of a is r.AnnA(a) =
{
b ∈ A | ab = 0

}
.

• The orthogonalizer of a is OA(a) =
{
b ∈ A | ab = ba = 0

}
, i.e., the set of all elements

in A that are orthogonal to a.

Remark 1.3. Let a ∈ A. It can readily be seen that CA, CA(a), AncA(a), l.AnnA(a),
r.AnnA(a), and OA(a) are vector spaces over F.

Now we introduce some relation graphs that will be studied in this paper.

Definition 1.4. Given an algebra A, we define the following structures:

• the commutativity graph ΓC(A) is a graph with vertex set A\CA, and distinct vertices
a and b of ΓC(A) are adjacent if and only if ab = ba;

• the orthogonality graph ΓO(A) is a graph with vertex set ZLR(A), and distinct vertices
a and b of ΓO(A) are adjacent if and only if ab = ba = 0;
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• the directed zero divisor graph ΓZ(A) is a graph with vertex set Z(A), and distinct
vertices a and b of ΓZ(A) are connected with an edge directed from a to b if and only
if ab = 0.

We will need the following graph theory definitions.

Definition 1.5. Let Γ be a directed or an undirected graph.

• Γ is said to be connected if for any ordered pair of vertices (x, y) there exists a path
leading from x to y.

• The distance d(x, y) = dΓ(x, y) between two vertices x and y in Γ is the number of
edges in a shortest path from x to y. If no path from x to y exists, then d(x, y) = ∞.

• The diameter d(Γ) of Γ is defined as sup
x,y∈Γ

d(x, y).

An undirected graph Γ also has the following invariants:

• A connected component of Γ is a maximal connected subgraph of Γ.
• A clique Q in Γ is a subset of vertices of Γ such that every two distinct vertices in Q
are adjacent.

• A clique Q is said to be maximal if for any clique Q̃ such that Q ⊂ Q̃ we have Q = Q̃.

The study of relation graphs of real Cayley–Dickson algebras was initiated in [7] with
anticommutativity graphs. Then in [6] relation graphs of the split-complex numbers, split-
quaternions, and split-octonions were described. For convenience, in Theorem 3.6 we recall
previous results in order to compare them with those obtained in the present paper for the
split-sedenions.

Theorem 4.30 in [6] establishes a relationship between the commutativity and orthogonality
graphs of real low-dimensional Cayley–Dickson split-algebras. It uses the notion of doubly
alternative elements, which was introduced by Moreno in [9] for the algebras of the main
sequence and then extended in [6] to the split-algebras.

In this paper, we study zero divisors of the Cayley–Dickson split-sedenion algebra and
classify them in terms of the dimensions of their annihilators and orthogonalizers. Then,
based on the results obtained, we describe the orthogonality graph and the zero divisor graph
of the split-sedenions in terms of their diameters and cliques.

The split-sedenions follow the split-complex numbers, split-quaternions, and split-octonions
in the sequence of real Cayley–Dickson split-algebras. For this reason, the next logical step
is to study their relation graphs. Moreover, all elements of the split-sedenions are doubly
alternative, and they form the last algebra of the sequence possessing this property. Hence
they have a convenient criterion for an element to be a zero divisor and a simple description
of annihilators and orthogonalizers, see Corollary 3.3 and Lemma 3.5, respectively.

The, paper is organized as follows: Section 2 is devoted to real Cayley–Dickson algebras.
Particularly, we describe the Cayley–Dickson process in detail in Sec. 2.1 and recall some
properties of the real Cayley–Dickson algebras in Sec. 2.2. Then we introduce the split-
sedenions in Sec. 2.3. In Sec. 3, we survey some properties of doubly alternative zero divisors
in real Cayley–Dickson split-algebras. Also this section contains some facts concerning relation
graphs of real low-dimensional Cayley–Dickson split-algebras. Section 4 completely describes
the orthogonality and zero divisor graphs of the split-sedenions.

2. An overview of real Cayley–Dickson algebras

2.1. Construction of Cayley–Dickson algebras. In this section, based on [8,10], we recall
the classical method for constructing nonassociative algebras, the so-called Cayley–Dickson
algebras.
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Definition 2.1.

• Let (A,+, ·) be an algebra over a field F. An involution a �→ ā on A is an endomorphism
of the vector space A such that for all a, b ∈ A we have ¯̄a = a and ab = b̄ā.

• Now let A have an identity 1A. The involution a �→ ā on A is said to be regular if for
any a ∈ A, a+ ā = t(a)1A and aā = āa = n(a)1A, where t(a), n(a) ∈ F. Here, t(a) is
called the trace of a, and n(a) is called the norm of a.

Henceforth, we assume that A is an algebra over a field F with a regular involution a �→ ā.

Definition 2.2 ([10]). The algebra A{γ} produced by the Cayley–Dickson process applied to
A with a parameter γ ∈ F, γ �= 0, is defined as the set of ordered pairs of elements of A with
operations

α(a, b) = (αa, αb);

(a, b) + (c, d) = (a+ c, b+ d);

(a, b)(c, d) = (ac+ γd̄b, da+ bc̄)

and the involution

(a, b) = (ā,−b), a, b, c, d ∈ A, α ∈ F.

Proposition 2.3 ([10, p. 435]). Properties of A and A{γ} are interrelated as follows:

• A{γ} is an algebra over F with the identity 1A{γ} = (1A, 0) and a regular involution.

• Let A be an n-dimensional algebra and let
{
em

}
m=1,...,n

be a basis in A. Then A{γ}
is a 2n-dimensional algebra, and

{
(em, 0), (0, em)

}
m=1,...,n

is a basis in A{γ}.
• Let a, b ∈ A, (a, b) ∈ A{γ}. Then

t((a, b)) = t(a),

n((a, b)) = n(a)− γn(b).

Henceforth, we assume that F = R and identify R1A with R. Consider the following
definitions, which are analogous to those for complex numbers.

Definition 2.4.

• The real part of an element a ∈ A is Re(a) = a+ā
2 ; the imaginary part of a is Im(a) =

a−ā
2 , and the norm of a is n(a) = aā = āa.

• An element a ∈ A is said to be pure if Re(a) = 0.
• An element (a, b) ∈ A{γ} is said to be doubly pure if Re(a) = Re(b) = 0.

Observe that Re(a), n(a) ∈ R1A = R because the involution on A is regular. Clearly, the
notion of norm introduced above agrees with Definition 2.1.

Definition 2.5. For every integer n ≥ 0 and nonzero real numbers γ0, . . . , γn−1, the real
Cayley–Dickson algebra An = An{γ0, . . . , γn−1} is inductively defined as follows:

(1) A0 = R, and e
(0)
0 = 1 is its only basis element;

(2) if An{γ0, . . . , γn−1} has already been constructed, then

An+1{γ0, . . . , γn} = (An{γ0, . . . , γn−1}){γn}.
Its basis elements are e

(n+1)
0 , . . . , e

(n+1)
2n+1−1

, where

e(n+1)
m =

{
(e

(n)
m , 0), 0 ≤ m ≤ 2n − 1,

(0, e
(n)
m−2n ), 2n ≤ m ≤ 2n+1 − 1.
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For every integer n ≥ 0, the structure An in Definition 2.5 is a 2n-dimensional algebra over

R with the identity e
(n)
0 and a regular involution, see [6, Lemma 3.14]. We will denote 1 = e

(n)
0

and r = re
(n)
0 for r ∈ R.

2.2. Some properties of real Cayley–Dickson algebras. In the sequel, we assume that
A is an arbitrary algebra over a field F and An = An{γ0, . . . , γn−1} is an arbitrary real
Cayley–Dickson algebra. By [8, Exercise 2.5.1], the algebra An{γ0, . . . , γn−1} is isomorphic to

An{sgn(γ0), . . . , sgn(γn−1)},
whence it is sufficient to consider γk ∈ {±1}, k = 0, . . . , n − 1, only.

Notation 2.6. For m = 0, . . . , 2n − 1, we define

δ(n)m =
n−1∏

l=0

(−γl)
cm,l ,

where the exponents cm,l ∈ {0, 1} are the uniquely-defined coefficients of the binary represen-
tation

m =

n−1∑

l=0

cm,l2
l,

see [7, Proposition 3.18].

Lemma 2.7 ([6, Lemma 3.16]). Let a = a0 + a1e
(n)
1 + · · · + a2n−1e

(n)
2n−1 ∈ An. Then

ā = a0 − a1e
(n)
1 − · · · − a2n−1e

(n)
2n−1;

Re(a) = a0;

Im(a) = a1e
(n)
1 + · · ·+ a2n−1e

(n)
2n−1;

n(a) =

2n−1∑

m=0

δ(n)m a2m.

Here, we consider conjugation in the sense of Definition 2.2, whereas the norm and real and
imaginary parts are understood in the sense of Definition 2.4.

Notation 2.8. Given a =
2n−1∑

m=0
ame

(n)
m and b =

2n−1∑

m=0
bme

(n)
m ∈ An, define

〈a, b〉 =
2n−1∑

m=0

δ(n)m ambm.

Proposition 2.9 ([6, Propositions 3.18 and 3.19]). The form 〈a, b〉 is a real-valued symmetric
bilinear form, which is associated with the quadratic form n(a). Thus, 〈a, a〉 = n(a) and
2〈a, b〉 = ab̄+ bā = āb+ b̄a for all a, b ∈ An.

The following lemma describes the anticentralizer of an arbitrary nonzero pure element
of An.

Lemma 2.10 ([7, Lemma 5.8]). Let a ∈ An, Re(a) = 0, a �= 0. Then

AncAn(a) = {b ∈ An | Re(b) = 0 and 〈a, b〉 = 0} .
Now we proceed to some concepts related to associativity. The associator of a, b, c ∈ A is

defined as the element [a, b, c] = (ab)c− a(bc). From the definition of an algebra over a field it
follows that the associator is a trilinear function of its arguments.
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Definition 2.11 ([8, Definition 2.1.1]).

• An algebra A is said to be flexible if the equality (ab)a = a(ba) holds for all a, b ∈ A.
• An element a ∈ A is said to be alternative if the equalities a(ax) = a2x and (xa)a = xa2

hold for all x ∈ A.
• An algebra A is said to be alternative if all its elements are alternative.
• Let A have a regular involution. Then A is called a composition algebra if the equality
n(ab) = n(a)n(b) holds for all a, b ∈ A.

Proposition 2.12 ([8, Exercise 2.1.1]). If A is alternative, then the associator in A is skew-
symmetric, that is, it changes sign if an argument transposition is performed.

Lemma 2.13 ([1, p. 9]). Let A be an alternative algebra with a regular involution. Then A is
a composition algebra.

Lemma 2.14 ([10, p. 436, p. 438, Theorem 1]).

• An is commutative if and only if n ≤ 1.
• An is associative if and only if n ≤ 2.
• An is alternative if and only if n ≤ 3.
• An is flexible for all n ∈ N ∪ {0} and all γ0, . . . , γn−1 ∈ R \ {0}.

Notation 2.15. Let m ∈ N, a1, . . . , am ∈ An. Denote

Lin(a1, . . . , am) = Ra1 + · · ·+ Ran,

Lin∗(a1, . . . , am) = Lin(a1, . . . , am) \ {0}.
2.3. Examples of real Cayley–Dickson algebras

Definition 2.16.

• An algebra An{γ0, . . . , γn−1} is said to be an algebra of the main sequence if γk = −1
for all k = 0, . . . , n − 1. We denote this algebra by Mn.

• An algebra An{γ0, . . . , γn−1} is called a Cayley–Dickson split-algebra if γk = −1 for
all k = 0, . . . , n − 2 and γn−1 = 1. We denote it by Hn because the norm on Hn is
hyperbolic.

Proposition 2.17 ([6, Proposition 3.31]).

• Let a =
2n−1∑

m=0
ame

(n)
m , b =

2n−1∑

m=0
bme

(n)
m ∈ Mn. Then 〈a, b〉 =

2n−1∑

m=0
ambm is the Euclidean

inner product. Particularly, n(a) =
2n−1∑

m=0
a2m, whence n(a) = 0 if and only if a = 0.

• Let a =
2n−1∑

m=0
ame

(n)
m , b =

2n−1∑

m=0
bme

(n)
m ∈ Hn. Then

〈a, b〉 =
2n−1−1∑

m=0

ambm −
2n−1∑

m=2n−1

ambm.

Example 2.18.

• The complex numbers (C), quaternions (H), octonions (O), and sedenions (S) are
algebras of the main sequence for n = 1, 2, 3, and 4, respectively. We refer the reader
to [1] for the definitions of H and O and to [4] for that of S.

• The split-complex numbers (Ĉ), split-quaternions (coquaternions; Ĥ), and split-octo-

nions (hyperbolic octonions; Ô) are examples of real low-dimensional split-algebras, all
of them being defined in [2]. Yet another example is provided by the split-sedenions

(Ŝ), which have the same dimension as the sedenions.
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Exact definitions and some basic properties of the algebras mentioned above are given below.

Definition 2.19.

• The algebra of the split-complex numbers is Ĉ = H1;

• the algebra of the split-quaternions is Ĥ = H2;

• the algebra of the split-octonions is Ô = H3;

• the algebra of the split-sedenions is Ŝ = H4.

Proposition 2.20.

• Ĉ is both commutative and associative;

• Ĥ is noncommutative and associative;

• Ô is noncommutative, nonassociative, but alternative;

• Ŝ is noncommutative, nonassociative, and nonalternative.

Proof. The assertions immediately follow from Lemma 2.14. �
Definition 2.21 ( [1, p. 6]). The algebra of octonions O is an eight-dimensional algebra
over R, and its basis elements are 1, e1, . . . , e7. The involution in O is given by the formula
a0 + a1e1 + · · ·+ a7e7 = a0 − a1e1 − · · · − a7e7, and multiplication is defined in Table 1.

× 1 e1 e2 e3 e4 e5 e6 e7
1 1 e1 e2 e3 e4 e5 e6 e7
e1 e1 −1 e3 −e2 e5 −e4 −e7 e6
e2 e2 −e3 −1 e1 e6 e7 −e4 −e5
e3 e3 e2 −e1 −1 e7 −e6 e5 −e4
e4 e4 −e5 −e6 −e7 −1 e1 e2 e3
e5 e5 e4 −e7 e6 −e1 −1 −e3 e2
e6 e6 e7 e4 −e5 −e2 e3 −1 −e1
e7 e7 −e6 e5 e4 −e3 −e2 e1 −1

Table 1. Multiplication table of the unit octonions.

Proposition 2.22 ([9, p. 1]). The algebras O and M3 are isomorphic, O ∼= M3.

This proposition implies thatO is a noncommutative, nonassociative, but alternative algebra
over R with the identity 1 and without zero divisors. The corollary below provides a convenient
representation for the split-sedenions.

Corollary 2.23. The algebras Ŝ and O{1} are isomorphic, Ŝ ∼= O{1}.
Proof. Indeed, by the definition of Ŝ and Proposition 2.22, we have

Ŝ = H4 = M3{1} ∼= O{1}. �

3. Doubly alternative zero divisors and low-dimensional split-algebras

By [6, Corollary 4.6], in the case of real Cayley–Dickson algebras, all zero divisors prove to
be two-sided, that is, Z(An) = ZLR(An). Now consider the zero divisors (a, b) ∈ An such that
both a and b are alternative elements in An−1.

Definition 3.1. The set of doubly alternative elements of An is defined as

DA(An) = {(a, b) ∈ An | both a and b are alternative elements in An−1}.
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Clearly, this definition makes sense for n ≥ 1 only, which is a natural constraint. All elements
of An are doubly alternative if and only if n ≤ 4, see [6, Proposition 4.10]. Particularly, all
elements of the split-complex numbers, split-quaternions, split-octonions, and split-sedenions
are doubly alternative. Note that doubly alternative elements are not necessarily alternative,
see [6, Lemma 4.16].

Lemma 3.2 ([6, Lemma 4.11]). Let (a, b) ∈ DA(Hn) \ {0}. Then (a, b) ∈ Z(Hn) if and only
if n((a, b)) = n(a)− n(b) = 0.

Corollary 3.3 ([6, Corollary 4.12]). If 1 ≤ n ≤ 4, then Z(Hn) = {x ∈ Hn \ {0} | n(x) = 0}.
However, in general, the set of elements with zero norm is strictly smaller than the set of

zero divisors, see [6, Proposition 4.13].
Consider an element x ∈ Z(An) such that Re(x) �= 0 and x is not an isolated vertex in

ΓO(An). By [6, Proposition 4.19], we have n(x) = 0, and the connected component of ΓO(An)
that contains x is the complete bipartite graph, its parts being Lin∗(x) and Lin∗(x̄). Hence it
is natural to introduce the following definition.

Definition 3.4.
• ZIm(An) = {x ∈ Z(An) | Re(x) = 0} is the set of all zero divisors with zero real part.
• ΓIm

O (An) is the subgraph of ΓO(An) on the vertex set ZIm(An).

Lemma 3.5 ([6, Lemma 4.18, Lemma 4.21]).

• Let (a, b) ∈ DA(Hn) ∩ Z(Hn). Then

l.AnnHn((a, b)) =

{(
c,−(bc)a

n(a)

) ∣
∣∣
∣ [a, c, b] = 0

}
,

r.AnnHn((a, b)) =

{(
c,−(bc̄)ā

n(a)

) ∣∣
∣∣ [a, c, b] = 0

}
.

• Let (a, b) ∈ DA(Hn) ∩ ZIm(Hn). Then

OHn((a, b)) =

{(
c,−(bc)a

n(a)

) ∣
∣∣
∣ Re(c) = 0, [a, c, b] = 0

}
.

The next theorem describes relation graphs of the split-quaternions and split-octonions in
terms of their connected components and diameters. The counterparts for the split-sedenions
are provided by Theorems 4.20 and 4.32.

Theorem 3.6 ( [6, Theorems 5.6, 5.9, 5.30, and 5.32]). The relation graphs of the split-
quaternions can be characterized as follows:

• Every connected component of ΓIm
O (Ĥ) is a complete graph on the vertex set Lin∗(a),

where n(a) = 0, Re(a) = 0;

• ΓZ(Ĥ) is connected, and its diameter equals 2.

As to the split-octonions, their relation graphs have the following properties:

• ΓIm
O (Ô) is connected, and its diameter equals 3;

• ΓZ(Ô) is connected, and its diameter equals 2.

Note also that Theorem 4.30 in [6] establishes a relationship between ΓO(Hn) and ΓC(Hn)

for 2 ≤ n ≤ 4; for this reason, in the present paper, we focus on ΓO(Ŝ) and ΓZ(Ŝ).
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4. Split-sedenions

4.1. Main properties

Lemma 4.1 ([6, Lemma 5.13]). Let n ≤ 3, a, b ∈ An. Then the set Lin(1, a, b, ab) is closed
under multiplication and conjugation.

Lemma 4.2 ([3, Remark 4.7]). Let {1, a, b} ⊂ O be an orthonormal system with respect to
the inner product 〈·, ·〉. Then there exists an isomorphism φ : Lin(1, a, b, ab) → H such that
φ(a) = i, φ(b) = j, and φ(ab) = k. Particularly, {1, a, b, ab} is an orthonormal system as well.
We denote H〈a, b〉 = Lin(1, a, b, ab).

The next proposition establishes the associativity condition for an arbitrary triple of octo-
nions.

Proposition 4.3. Let a, b ∈ O. Then the equation [a, c, b] = 0 for c ∈ O has the following
solutions:

(1) if 1, a, b are linearly independent, then [a, c, b] = 0 if and only if c ∈ Lin(1, a, b, ab);
(2) otherwise the equality [a, c, b] = 0 holds for all c ∈ O.

Proof. Let a′ = Im(a). By b′ we denote the orthogonal projection of b on Lin(1, a)⊥ with
respect to the Euclidean inner product 〈·, ·〉. Since 1 is the identity of O and O is flexible, we
have [a, c, b] = [a′, c, b′]. Now consider two cases:

(1) If 1, a, b are linearly independent, then a′ �= 0 and b′ �= 0. By Lemma 8.5 in [3], [a′, c, b′] = 0
if and only if c ∈ Lin(1, a′, b′, a′b′) = Lin(1, a, b, ab). Moreover, Lemma 4.2 implies that
dim (Lin(1, a, b, ab)) = dim (Lin(1, a′, b′, a′b′)) = 4.

(2) Otherwise we have a′ = 0 or b′ = 0, whence the equality [a′, c, b′] = 0 holds trivially for all
c ∈ O. �

In view of Proposition 4.3, it is natural to introduce the following subset of Ŝ.

Notation 4.4. LD(Ŝ) = {(a, b) ∈ Ŝ | 1, a, b are linearly dependent}.
Corollary 4.5. Let (a, b) ∈ Z(Ŝ).

(1) If (a, b) /∈ LD(Ŝ), then dim(l.Ann
̂S
((a, b))) = dim(r.Ann

̂S
((a, b))) = 4;

(2) If (a, b) ∈ LD(Ŝ), then dim(l.Ann
̂S
((a, b))) = dim(r.Ann

̂S
((a, b))) = 8.

Proof. The assertions immediately follow from Lemma 3.5 and Proposition 4.3. �

Corollary 4.6. Let (a, b) ∈ ZIm(Ŝ).

(1) If (a, b) /∈ LD(Ŝ), then dim(O
̂S
((a, b))) = 3;

(2) If (a, b) ∈ LD(Ŝ), then dim(O
̂S
((a, b))) = 7.

Proof. Both assertions immediately follow from Lemma 3.5 and Proposition 4.3. �

4.2. Lower bounds for the diameters of ΓIm
O (Ŝ) and ΓZ(Ŝ). In this section, we construct

pairs of elements that are the most distant from each other in ΓIm
O (Ŝ) and ΓZ(Ŝ).

Lemma 4.7. Let (a, b) ∈ Z(Ŝ), (a, b) /∈ LD(Ŝ). Also let P be a path in ΓZ(Ŝ) that starts or

ends at (a, b) and contains no inner elements from LD(Ŝ). Then all vertices of P belong to
Lin(1, a, b, ab) × Lin(1, a, b, ab), that is, the Cartesian square of Lin(1, a, b, ab).

Proof. Assume, without loss of generality, that P starts at (a, b). Then P is of the form

Pn : (a0, b0) −→ (a1, b1) −→ · · · −→ (an, bn),
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where (a0, b0) = (a, b), and n is the length of P . We give a proof by induction on n.
• If n = 0, then the only element of P is (a, b) ∈ Lin(1, a, b, ab) × Lin(1, a, b, ab).
• Assume that the assertion has already been proved for n = k. Show that it also holds for n =
k + 1. Indeed, let P = Pk+1 and assume that its inner elements satisfy (a1, b1), . . . , (ak, bk) /∈
LD(Ŝ). Then Pk also starts at (a, b) and contains no inner elements from LD(Ŝ). Therefore,
by the induction hypothesis, (a0, b0), . . . , (ak, bk) ∈ Lin(1, a, b, ab) × Lin(1, a, b, ab). Hence it
remains to show that (ak+1, bk+1) ∈ Lin(1, a, b, ab) × Lin(1, a, b, ab).

We have (ak, bk) ∈ Lin(1, a, b, ab)×Lin(1, a, b, ab) and (ak, bk) /∈ LD(Ŝ). By Lemma 3.5 and
Proposition 4.3, from (ak+1, bk+1) ∈ r.Ann

̂S
((ak, bk)) it follows that ak+1 ∈ Lin(1, ak, bk, akbk)

and bk+1 = − (bkak+1)ak
n(ak)

. Then, by Lemma 4.1, bk+1 ∈ Lin(1, ak, bk, akbk). By using Lemma 4.1

once again, we obtain that Lin(1, ak, bk, akbk) ⊆ Lin(1, a, b, ab), implying that (ak+1, bk+1) ∈
Lin(1, a, b, ab) × Lin(1, a, b, ab). �

Below, we will use the following notation. Its properties are described in Propositions 4.9,
4.11, and 4.12.

Notation 4.8. Let {1, a, b} ⊂ O be an orthonormal system with respect to the inner product

〈·, ·〉. Then Ea,b = (
√
2a, 1 + b).

Proposition 4.9. Ea,b ∈ Z(Ŝ), and we have

O
̂S
(Ea,b) = Lin

(
(
√
2a, 1 + b), (

√
2b, a+ ab), (

√
2ab, 1 − b)

)
;

l.Ann
̂S
(Ea,b) = O

̂S
(Ea,b)⊕ Lin

(
(−

√
2, a− ab)

)
;

r.Ann
̂S
(Ea,b) = O

̂S
(Ea,b)⊕ Lin

(
(
√
2, a− ab)

)
.

Proof. Corollary 3.3 implies that Ea,b ∈ Z(Ŝ) because n(Ea,b) = n(
√
2a)− n(1 + b) = 2n(a)−

(n(1) + n(b)) = 2 − (1 + 1) = 0. By Lemma 4.2, a and b form a quaternionic subalgebra
H〈a, b〉 ⊂ O. Then the exact expressions for the orthogonalizer and annihilators of Ea,b can

be obtained from Lemma 3.5 by taking into account the fact that Ea,b /∈ LD(Ŝ). �

Notation 4.10. Denote

Fa,b = (a+ ab,
√
2);

Gα,β
a,b =

(
−

√
2β3 + α(α2 + β2)a+

√
2α2βb+ α(α2 − β2)ab,

√
2α3 + β(α2 + β2)a+

√
2αβ2b+ β(α2 − β2)ab

)
;

Hα,β
a,b =

(√
2β3 + α(α2 + β2)a+

√
2α2βb+ α(α2 − β2)ab,

√
2α3 + β(α2 + β2)a+

√
2αβ2b+ β(α2 − β2)ab

)
.

Proposition 4.11. The following equalities hold:

O
̂S
(Ea,b) ∩ LD(Ŝ) = Lin(Fa,b);

l.Ann
̂S
(Ea,b) ∩ LD(Ŝ) =

{
Gα,β

a,b

∣
∣ (α, β) ∈ R

2
}
;

r.Ann
̂S
(Ea,b) ∩ LD(Ŝ) =

{
Hα,β

a,b

∣
∣ (α, β) ∈ R

2
}
.
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Proof. We will only prove the equality for r.Ann
̂S
(Ea,b) because the proof for l.Ann

̂S
(Ea,b) is

entirely similar, whereas the equality for O
̂S
(Ea,b) can be obtained from the previous two by

setting β = 0 and α = 1.
By Proposition 4.9, an arbitrary element of r.Ann

̂S
(Ea,b) is of the form

A = κ1(
√
2, a− ab) + κ2(

√
2a, 1 + b) + κ3(

√
2b, a+ ab) + κ4(

√
2ab, 1 − b)

=
(√

2(κ1 + κ2a+ κ3b+ κ4ab), (κ2 + κ4) + (κ3 + κ1)a+ (κ2 − κ4)b+ (κ3 − κ1)ab
)
.

From Lemma 4.2 it follows that 1, a, b, ab are linearly independent. Then, by the definition of

LD(Ŝ), A ∈ LD(Ŝ) if and only if

rank

(
κ2 κ3 κ4

κ3 + κ1 κ2 − κ4 κ3 − κ1

)
≤ 1.

This inequality is equivalent to the system
⎧
⎪⎨

⎪⎩

Δ1,2 = κ2(κ2 − κ4)− κ3(κ3 + κ1) = 0;

Δ3,2 = κ4(κ2 − κ4)− κ3(κ3 − κ1) = 0;

Δ1,3 = κ2(κ3 − κ1)− κ4(κ3 + κ1) = 0

to be solved.
Let κ1 = β3 and let κ2 + κ4 =

√
2α3. We have Δ1,2 − Δ3,2 = (κ2 − κ4)

2 − 2κ1κ3 = 0.
Consider the following two cases:

• If κ1 = 0, that is, β = 0, then κ2 = κ4 = α3√
2
. Thus, Δ1,2 = 0 implies κ3 = 0, whence

A = α3(a+ ab,
√
2) = Hα,0

a,b .

• Otherwise κ1 �= 0, whence κ3 = (κ2−κ4)2

2κ1
. We also have Δ1,2 +Δ3,2 = (κ2 + κ4)(κ2 −

κ4) − 2κ23 = 0. Denote x = κ2 − κ4. Then κ3 = x2

2κ1
, implying that Δ1,2 + Δ3,2 =

(κ2 + κ4)x− x4

2κ2
1
= 0. Here, two cases are possible.

� If x = 0, then κ3 = 0, whence Δ1,3 = −(κ2 + κ4)κ1 = 0. Since κ1 �= 0, we infer

that κ2+κ4 = 0, that is, α = 0 and κ2 = κ4 = 0. Then A = β3(
√
2, a−ab) = H0,β

a,b .

� If x �= 0, then x3 = 2κ21(κ2 + κ4) = (
√
2αβ2)3, implying that x =

√
2αβ2. Then

κ3 = x2

2κ1
= α2β. Moreover, κ2 =

√
2α3+x
2 = α(α2+β2)√

2
and κ4 =

√
2α3−x
2 =

α(α2−β2)√
2

. Thus, A = Hα,β
a,b . �

Proposition 4.12. The following equality holds:

O
̂S
(Fa,b) =

{(
c,−c(a+ ab)√

2

) ∣
∣∣
∣ Re(c) = 0

}
.

Proof. This follows from Lemma 3.5 because Fa,b ∈ LD(Ŝ). �

Now we use this construction in Lemma 4.14 in order to obtain a lower bound for the
diameter of ΓZ(Ŝ).

Proposition 4.13. Let a = a′ = e1, b = e2, b′ = e4. Then a, b satisfy the assumptions
of Lemma 4.2 and H〈a, b〉 = Lin(1, e1, e2, e3). Similarly, a′, b′ satisfy the assumptions of
Lemma 4.2 and H〈a′, b′〉 = Lin(1, e1, e4, e5). Finally, H〈a, b〉 ∩H〈a′, b′〉 = Lin(1, e1).

Proof. The assertions are verified straightforwardly because ab = e3 and a′b′ = e5. �

Lemma 4.14. Let a, b, a′, b′ be as defined in Proposition 4.13. Then d
ΓZ(̂S)

(Ea,b, Ea′,b′) ≥ 4.
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Proof. Since b′ /∈ H〈a, b〉, from Lemma 4.7 it follows that any path connecting Ea,b and Ea′,b′

contains at least one element A ∈ (H〈a, b〉 ×H〈a, b〉) ∩LD(Ŝ). Similarly, b /∈ H〈a′, b′〉, whence
any path connecting Ea,b and Ea′,b′ contains at least one element A′ ∈ (H〈a′, b′〉 ×H〈a′, b′〉) ∩
LD(Ŝ).

Assume that dΓZ (̂S)(Ea,b, Ea′,b′) ≤ 3. By Proposition 4.13, H〈a, b〉 ∩ H〈a′, b′〉 = Lin(1, e1),

implying that

(H〈a, b〉 ×H〈a, b〉) ∩ (H〈a′, b′〉 ×H〈a′, b′〉) = Lin(1, e1)× Lin(1, e1) = X.

However, from Proposition 4.9 it follows that r.Ann
̂S
(Ea,b) ∩X = l.Ann

̂S
(Ea′,b′) ∩X = {0}.

Thus, A �= A′, and the path is of the form Ea,b −→ A −→ A′ −→ Ea′,b′ . By Proposition 4.11,

we have A = Hα,β
a,b and A′ = Gγ,δ

a′,b′ for some α, β, γ, δ ∈ R. Now consider AA′ as a pair of

octonions. Then the condition AA′ = 0 implies that the first component of AA′ vanishes:
(√

2β3 + α(α2 + β2)e1 +
√
2α2βe2 + α(α2 − β2)e3

)

×
(
−

√
2δ3 + γ(γ2 + δ2)e1 +

√
2γ2δe4 + γ(γ2 − δ2)e5

)

+
(√

2γ3 − δ(γ2 + δ2)e1 −
√
2γδ2e4 − δ(γ2 − δ2)e5

)

×
(√

2α3 + β(α2 + β2)e1 +
√
2αβ2e2 + β(α2 − β2)e3

)
= 0.

If α = 0, then we may set β = 1 because A �= 0. Hence this equation reads as

√
2
(
−
√
2δ3 + γ(γ2 + δ2)e1 +

√
2γ2δe4 + γ(γ2 − δ2)e5

)

+
(√

2γ3 − δ(γ2 + δ2)e1 −
√
2γδ2e4 − δ(γ2 − δ2)e5

)
(e1 − e3) = 0,

where the coefficient at e7 = e3e4 equals −√
2γδ2. Thus, either γ = 0 or δ = 0.

(1) If γ = 0, then we may set δ = 1, but −2− (e1 − e5)(e1 − e3) �= 0.
(2) If δ = 0, then we may set γ = 1, but

√
2(e1 + e5) +

√
2(e1 − e3) �= 0.

In both cases, we have obtained contradictions. Thus, α �= 0.
Similarly, β �= 0, γ �= 0, and δ �= 0. Consequently, we may divide our equation by α3δ3 and

write it in the new variables κ =
β

α
and λ =

γ

δ
as

(√
2κ3 + (1 + κ2)e1 +

√
2κe2 + (1− κ2)e3

)

×
(
−

√
2 + λ(λ2 + 1)e1 +

√
2λ2e4 + λ(λ2 − 1)e5

)

+
(√

2λ3 − (λ2 + 1)e1 −
√
2λe4 − (λ2 − 1)e5

)

×
(√

2 + κ(1 + κ2)e1 +
√
2κ2e2 + κ(1− κ2)e3

)
= 0.

The coefficient at 1 = 12 = −e21 equals K0 = (κ − λ)((κ2 − 1)(λ2 − 1) − 2κλ), whereas the
coefficient at e6 = e2e4 = e5e3 equals K6 = (κ+λ)((κ2−1)(λ2−1)+2κλ). Since K0 = K6 = 0,
one of the following conditions is fulfilled:

(1) If κ = λ, then K6 = 2λ((λ2 − 1)2 + 2λ2) = 0, implying that κ = λ = 0.
(2) If κ = −λ, then K0 = −2λ((λ2 − 1)2 + 2λ2) = 0, implying that κ = λ = 0.
(3) Otherwise we have (κ2 − 1)(λ2 − 1) − 2κλ = (κ2 − 1)(λ2 − 1) + 2κλ = 0, implying that

κλ = 0, whence either κ = 0 or λ = 0.
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However, κ = 0 implies β = 0, and λ = 0 implies γ = 0. Then, as has been shown above, we
obtain a contradiction.

Thus, d
ΓZ (̂S)

((a, b), (a′, b′)) ≥ 4. �

The same argument applies to the lower bound of the diameter of ΓIm
O (Ŝ) in Lemma 4.17.

Proposition 4.15. Let a = e1, b = e2, a′ = e1+e4√
2

, b′ = e2+e5√
2

. Then a, b satisfy the as-

sumptions of Lemma 4.2, and H〈a, b〉 = Lin(1, e1, e2, e3). Similarly, a′, b′ satisfy the as-
sumption of Lemma 4.2, and H〈a′, b′〉 = Lin(1, e1 + e4, e2 + e5, e1 + e3 − e4 − e6). Finally,
H〈a, b〉 ∩H〈a′, b′〉 = R.

Proof. The assertions are verified straightforwardly using the relations ab = e3 and a′b′ =
e1+e3−e4−e6

2 . �

Proposition 4.16. Let a, b, a′, b′ be as defined in Proposition 4.15. Then O
̂S
(Fa,b)∩(H〈a′, b′〉×

H〈a′, b′〉) = {0}.
Proof. By Proposition 4.12,

O
̂S
(Fa,b) =

{(
c,−c(a+ ab)√

2

) ∣∣
∣∣ Re(c) = 0

}
.

Suppose there exists a certain c ∈ H〈a′, b′〉, c �= 0, such that d = − c(a+ab)√
2

∈ H〈a′, b′〉. Since O

is alternative, we have a+ ab = −
√
2

n(c) c̄d. Then from Lemma 4.1 it follows that c̄d ∈ H〈a′, b′〉,
whence a+ ab ∈ H〈a′, b′〉, a contradiction. �

Lemma 4.17. Let a, b, a′, b′ be as defined in Proposition 4.15. Then

dΓIm
O (̂S)(Ea,b, Ea′,b′) ≥ 5.

Proof. Any path in ΓIm
O (Ŝ) is a path in ΓZ(Ŝ) as well, whence Lemma 4.7 is applicable. Since

b′ /∈ H〈a, b〉, any path connecting Ea,b and Ea′,b′ at least contains one element A ∈ (H〈a, b〉 ×
H〈a, b〉)∩LD(Ŝ). Similarly, b /∈ H〈a′, b′〉, implying that any path connecting Ea,b and Ea′,b′ at

least contains one element A′ ∈ (H〈a′, b′〉 ×H〈a′, b′〉) ∩ LD(Ŝ).
Suppose dΓIm

O (̂S)(Ea,b, Ea′,b′) ≤ 4. By Proposition 4.15, H〈a, b〉 ∩ H〈a′, b′〉 = R; therefore,

(H〈a, b〉 × H〈a, b〉) ∩ (H〈a′, b′〉 × H〈a′, b′〉) = R × R. Since Re(A) = Re(A′) = 0, A �= 0, and
A′ �= 0, we infer that A �= A′. Then, without loss of generality, we may assume that Ea,b is
immediately followed by A. By Proposition 4.11, we may take A = Fa,b. Proposition 4.16
implies that O

̂S
(Fa,b)∩(H〈a′, b′〉×H〈a′, b′〉) = {0}. Thus, d

ΓIm
O (̂S)

(Ea,b, Ea′,b′) = 4, and the path

is of the form Ea,b ←→ A ←→ C ←→ A′ ←→ Ea′,b′ for some C ∈ Z(Ŝ). By Proposition 4.11,
we may set A′ = Fa′,b′ .

Let C = (c, d). By Proposition 4.12, C ∈ O
̂S
(Fa,b) implies d = − c(a+ab)√

2
. Similarly, C ∈

O
̂S
(Fa′,b′) implies d = − c(a′+a′b′)√

2
. Then c(a+ab) = c(a′+a′b′), whence c(a+ab−a′−a′b′) = 0.

However, a + ab − a′ − a′b′ �= 0, and O has no zero divisors. Therefore, c = 0 and C = 0, a
contradiction.

Thus, d
ΓIm
O (̂S)

((a, b), (a′, b′)) ≥ 5. �

4.3. The zero divisor graph of the split-sedenions

Lemma 4.18 ([5, Lemma 5.1]). Let n ≥ 1, a ∈ Mn. Then there exists b ∈ Mn such that
b2 = a.
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Lemma 4.19. The diameter of ΓZ(Ŝ) is at most 4.

Proof. Let (a, b), (a′, b′) ∈ Z(Ŝ). By Corollary 3.3, we have n((a, b)) = n((a′, b′)) = 0, and,
without loss of generality, we may assume that n(a) = n(b) = n(a′) = n(b′) = 1. Now we look
for a path of length 4 from (a, b) to (a′, b′) in the form

(a, b) −→ (1, c) −→ (x, y) −→ (1, d) −→ (a′, b′).

• Consider c = −bā, d = −b′a′. Since O is a composition algebra, we have n(c) = n(d) =
1. By Lemma 3.5, (a, b)(1, c) = 0 and (1, d)(a′, b′) = 0.

• We are going to find (x, y) ∈ Z(Ŝ) such that (1, c)(x, y) = (x, y)(1, d) = 0. By
Lemma 3.5, this condition is equivalent to y = −cx̄ = −dx. From Lemma 4.18 it
follows that there exists x ∈ O such that x2 = d̄c. Since O is a composition algebra
and 1 = n(d)n(c) = n(d̄)n(c) = n(d̄c) = n(x2) = (n(x))2, we conclude that n(x) = 1.
Then, by the alternativity of O, x2 = d̄c implies that (dx)x = dx2 = d(d̄c) = (dd̄)c =
n(d)c = c. Thus, dx = (dx)n(x) = (dx)(xx̄) = ((dx)x)x̄ = cx̄, as desired. Now we may
set y = −cx̄ = −dx and complete the proof. �

Theorem 4.20. The diameter of ΓZ(Ŝ) equals 4.

Proof. This follows directly from Lemmas 4.19 and 4.14. �
4.4. The orthogonality graph of the split-sedenions. The results 4.21–4.23 below play

a key role in constructing shortest paths in ΓIm
O (Ŝ).

Lemma 4.21. Let (a, b) ∈ Z(Ŝ), Re(a) = Re(b) = 0, that is, (a, b) is doubly pure. Then
(a+ b, a+ b), (a− b,−(a− b)) ∈ O

̂S
((a, b)).

Proof. First we show that (a, b), (b, a) ∈ O
̂S
((a, b)). Indeed, (a, b) = −(a, b) ∈ O

̂S
((a, b))

because n((a, b)) = n(a) − n(b) = 0. Also we have − (bb)a
n(a) = n(b)a

n(a) = a, and from Lemma 3.5

for c = b it follows that (b, a) ∈ O
̂S
((a, b)).

Thus, (a + b, a + b) = (a, b) + (b, a) ∈ O
̂S
((a, b)) and (a − b,−(a − b)) = (a, b) − (b, a) ∈

O
̂S
((a, b)). �

Lemma 4.22. Let a ∈ O, n(a) = 1, Re(a) = 0. Then, for any α, β ∈ R such that α2+β2 = 1,
we have

O
̂S
((a, α + βa)) = R(a, α+ βa)⊕ {

(b, (αa − β)b)
∣
∣ b ∈ AncO(a)

}
.

Proof. Let c ∈ O, Re(c) = 0. Then c has a unique representation in the form c = ka+b for some
k ∈ R and b ∈ O with 〈a, b〉 = 0. Since Re(b) = Re(c − ka) = 0, from Lemma 2.10 it follows
that b ∈ AncO(a). Thus, the assertion of the lemma immediately follows from Lemma 3.5
because −((α + βa)a)a = −(α + βa)(aa) = (α + βa), −((α + βa)b)a = −(α + βa)(ba) =
(α+ βa)(ab) = ((α + βa)a)b = (αa− β)b. �
Corollary 4.23. Let a ∈ O, a �= 0, Re(a) = 0. Then

O
̂S
((a, a)) = R(a, a)⊕ {

(b,−b)
∣∣ b ∈ AncO(a)

}
,

O
̂S
((a,−a)) = R(a,−a)⊕ {

(b, b)
∣∣ b ∈ AncO(a)

}
.

Proof. Set α = 0, β = ±1 in Lemma 4.22. �
Our next purpose is to obtain an upper bound for the diameter of ΓIm

O (Ŝ), and the desired
result is presented in Lemma 4.31. The proof of Lemma 4.31 splits into the following steps:

(1) In Lemma 4.25, for Lemma 4.21 to be applicable, we find doubly pure neighbors of an
arbitrary zero divisor.
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(2) Corollary 4.28 establishes the existence of elements of the form (a,±a) at a distance
at most 2 from an arbitrary zero divisor.

(3) Then, in Lemma 4.31, these elements are connected by a path using Corollary 4.23.

Proposition 4.24. Let (a, b) ∈ Z(Ŝ), Re(a) = 0, n(a) = n(b) = 1. Then b = b0 + b1a + b2c
for some c ∈ Lin(1, a)⊥, n(c) = 1, and b0, b1, b2 ∈ R, b20 + b21 + b22 = 1. Consider d = ac.
Then a and c generate the quaternionic subalgebra Lin(1, a, c, d) = H〈a, c〉 ⊂ O. Particularly,
{1, a, c, d} is an orthonormal system with respect to the inner product 〈·, ·〉.
Proof. The assertions immediately follow from Lemma 4.2. �
Lemma 4.25. Let a, b, c, d be as in Proposition 4.24. Then

(1) (da, bd) = (c, b2a− b1c+ b0d) and (db, ad) = −(b2a− b1c− b0d, c) are doubly pure;
(2) (da, bd), (db, ad) ∈ O

̂S
((a, b)).

Proof. (1) From Proposition 4.24 it follows that Re(c) = Re(d) = 0, da = −ad = c, cd =
−dc = a. Then

db = d(b0 + b1a+ b2c) = b0d+ b1c− b2a,

bd = (b0 + b1a+ b2c)d = b0d− b1c+ b2a.

Since a, c, d are pure, we conclude that (da, bd) = (c, b2a − b1c + b0d) and (db, ad) =
−(b2a− b1c− b0d, c) are doubly pure.

(2) Now we use Lemma 3.5 and show that (da, bd), (db, ad) ∈ O
̂S
((a, b)) as follows:

• Re(da) = Re(db) = 0;
• H〈a, c〉 is associative, and a, b, c, d, db∈H〈a, c〉. Therefore, [a, da, b]=[a, db, b]=0.
• Finally,

− (b(da))a = −((bd)a)a = −(bd)(aa) = bd · n(a) = bd,

− (b(db))a = (b(db))a = (b(b̄d̄))a = −(bb̄)(da) = n(b) · ad = ad. �
Below, we will use the following notation.

Notation 4.26. Let a, b, c, d be as in Proposition 4.24 and letK = (k1, k2) ∈ R
2∗ = R

2\{(0, 0)}.
Denote

fK = (k1 − k2)((1 − b1)c+ b2a) + (k1 + k2)b0d ∈ O,

gK = (k1 + k2)((1 + b1)c− b2a)− (k1 − k2)b0d ∈ O.

Lemma 4.27.

(1) fK = 0 if and only if at least one of the following conditions is fulfilled:
• k1 = k2 = 0;
• k1 − k2 = b0 = 0;
• b0 = b2 = 1− b1 = 0, that is, b = a.

(2) gK = 0 if and only if at least one of the following conditions is fulfilled:
• k1 = k2 = 0;
• k1 + k2 = b0 = 0;
• b0 = b2 = 1 + b1 = 0, that is, b = −a.

Proof. (1) From Proposition 4.24 it follows that a, c, d are linearly independent. Then fK = 0
if and only if (k1 − k2)(1 − b1) = (k1 − k2)b2 = (k1 + k2)b0 = 0. Consider two cases.

• If 1− b1 �= 0, then k1 − k2 = 0. Moreover, (k1 + k2)b0 = 0, whence either k1 + k2 = 0
or b0 = 0. Equivalently, we have either k1 = k2 = 0 or k1 − k2 = b0 = 0.

• Now let 1− b1 = 0, that is, b1 = 1. Then b20 + b21 + b22 = 1 implies that b0 = b2 = 0.
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• The case where gK = 0 is treated similarly. �
Corollary 4.28.

(1) If fK �= 0, then d
ΓO(̂S)

(
(a, b), (fK , fK)

) ≤ 2.

(2) If gK �= 0, then d
ΓO(̂S)

(
(a, b), (gK ,−gK)

) ≤ 2.

Proof. Let

hK =
(
h
(1)
K , h

(2)
K

)
= k1(da, bd) + k2(db, ad)

= k1(c, b2a− b1c+ b0d)− k2(b2a− b1c− b0d, c)

= ((k1 + k2b1)c− k2b2a+ k2b0d,−(k2 + k1b1)c+ k1b2a+ k1b0d) .

By Lemma 4.25, hK ∈ O
̂S
((a, b)) and Re

(
h
(1)
K

)
= Re

(
h
(2)
K

)
= 0. Note that

h
(1)
K + h

(2)
K = ((k1 + k2b1)c− k2b2a+ k2b0d) + (−(k2 + k1b1)c+ k1b2a+ k1b0d)

= (k1 − k2)((1 − b1)c+ b2a) + (k1 + k2)b0d = fK

and

h
(1)
K − h

(2)
K = ((k1 + k2b1)c− k2b2a+ k2b0d)− (−(k2 + k1b1)c+ k1b2a+ k1b0d)

= (k1 + k2)((1 + b1)c− b2a)− (k1 − k2)b0d = gK .

Then hK = 0 implies fK = gK = 0.

(1) If fK �= 0, then hK �= 0. By Lemma 4.21, (fK , fK) =
(
h
(1)
K + h

(2)
K , h

(1)
K + h

(2)
K

)
∈ O

̂S
(hK),

whence d
ΓO(̂S)

(
(a, b), (fK , fK)

) ≤ 2.

(2) If gK �= 0, then hK �= 0. By Lemma 4.21, (gK ,−gK) =
(
h
(1)
K − h

(2)
K ,−(h

(1)
K − h

(2)
K )

)
∈

O
̂S
(hK), whence d

ΓO(̂S)

(
(a, b), (gK ,−gK)

) ≤ 2. �
Lemma 4.29. If fK �= 0, then

AncO(fK) = Lin(1, a, c, d)⊥ ⊕ Lin ((k1 + k2)b0c− (k1 − k2)(1 − b1)d, (1 − b1)a− b2c) .

Proof. Let A′ denote the right-hand side of the relation to be proved. By Lemma 4.27, fK �= 0
implies 1 − b1 �= 0 and either k1 − k2 �= 0 or (k1 + k2)b0 �= 0. Since a, c, d are linearly
independent, it follows that dim(A′) = 6. Moreover, by Proposition 4.24, 1, a, c, d form an
orthonormal system, whence A′ ⊂ Im(O) and A′ ⊂ Lin(fK)⊥. Then from Lemma 2.10 it
follows that A′ ⊂ AncO(fK). By Lemma 2.10, we also have dim(AncO(fK)) = dim(A′) = 6,
whence AncO(fK) = A′. �
Lemma 4.30. Let b0 �= 0. Then fK �= 0 for all K ∈ R

2∗, and
⋃

K∈R2∗
AncO(fK) = Im(O).

Proof. By Lemma 4.27, we have fK �= 0 for all K ∈ R
2∗. Then we use the representation of

AncO(fK) from Lemma 4.29. It is sufficient to show that
⋃

K∈R2∗

Lin ((k1 + k2)b0c− (k1 − k2)(1− b1)d, (1 − b1)a− b2c) = Lin(a, c, d).

Note that b0 �= 0 implies 1− b1 �= 0. Obviously, we have
⋃

K∈R2∗

Lin((k1 + k2)b0c− (k1 − k2)(1− b1)d, (1 − b1)a− b2c)

= Lin (b0c, (1 − b1)d, (1 − b1)a− b2c)

= Lin (c, d, (1 − b1)a− b2c) = Lin (c, d, (1 − b1)a) = Lin (a, c, d) .
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This completes the proof. �

Lemma 4.31. Let (a, b), (a′, b′)∈Z(Ŝ), Re(a)=Re(a′)=0. Then d
ΓO(̂S)

((a, b), (a′, b′)) ≤ 5.

Proof. Without loss of generality, assume that n(a) = n(a′) = 1.
If b′ = −a′, then set z = a′. Otherwise, by Lemma 4.27, there exists K ′ ∈ R

2∗ such that
g′K ′ �= 0, where g′K ′ can be obtained from gK by replacing every variable with the primed one.
Then we set z = g′K ′ . We have z �= 0 and Re(z) = 0. From Corollary 4.28 we obtain that
d
ΓO(̂S)

((a′, b′), (z,−z)) ≤ 2. Now consider the following three cases:

(1) If b0 �= 0, then from Lemma 4.30 it follows that there exists K ∈ R
2∗ such that z ∈

AncO(fK), fK �= 0. By Corollary 4.28, d
ΓO(̂S)

(
(a, b), (fK , fK)

) ≤ 2, and Corollary 4.23

implies that (fK , fK) and (z,−z) are orthogonal. Thus, d
ΓO(̂S)

((a, b), (a′, b′)) ≤ 5.

(2) If b0 = 0 and b �= a, then, by Lemma 4.21, (a − b,−(a − b)) ∈ O
̂S
((a, b)). Let y ∈

Lin(1, a − b, z)⊥, y �= 0. Then, by Corollary 4.23, in ΓO(Ŝ) there is a path of length 3 of
the form

(a, b) ←→ (a− b,−(a− b)) ←→ (y, y) ←→ (z,−z).

Thus, d
ΓO(̂S)

((a, b), (a′, b′)) ≤ 5.

(3) If b = a, then let x ∈ Lin(1, a)⊥, x �= 0, and let y ∈ Lin(1, x, z)⊥, y �= 0. Then, by

Corollary 4.23, in ΓO(Ŝ) there exists the following path of length 3:

(a, a) ←→ (x,−x) ←→ (y, y) ←→ (z,−z).

Thus, d
ΓO(̂S)

((a, b), (a′, b′)) ≤ 5. �

Theorem 4.32. The graph ΓIm
O (Ŝ) is connected, and its diameter equals 5.

Proof. This immediately follows from Lemmas 4.31 and 4.17. �

The theorem below describes the maximal cliques in ΓIm
O (Ŝ).

Theorem 4.33. The maximal cliques in ΓIm
O (Ŝ) are of the form Lin∗(a, b), where a and b are

orthogonal and linearly independent.

Proof. Let Q be a maximal clique in ΓIm
O (Ŝ). Consider an arbitrary element A ∈ Q. By

Lemma 3.5, we have dim(O
̂S
(A)) ∈ {3, 7}. Hence the inclusion Q ⊂ Lin∗(A) fails, and there

exists B ∈ Q such that A and B are linearly independent. Obviously, A ∈ Q
̂S
(A) and

B ∈ Q
̂S
(B). Thus, Lin∗(A,B) ⊂ Q.

Let A,B,C ∈ ZIm(Ŝ) be linearly independent. Then A,B,C do not form a 3-cycle in

ΓIm
O (Ŝ). Suppose the contrary. Then two cases are possible.

(1) At least one of the elements A,B,C, say, A has a 7-dimensional orthogonalizer. Then
A = (a, α + βa) for some a ∈ O, Re(a) = 0, α, β ∈ R, α2 + β2 = 1. Assume, without loss
of generality, that n(a) = 1. By Lemma 4.22,

O
̂S
((a, α+ βa)) = R(a, α+ βa)⊕ {

(b, (αa − β)b)
∣
∣ b ∈ AncO(a)

}
.

Then B = (b, (αa− β)b) + γA and C = (c, (αa− β)c) + δA for some b, c ∈ AncO(a) \ {0},
γ, δ ∈ R. Then A,B − γA,C − δA form a 3-cycle in ΓIm

O (Ŝ), and we may assume, without
loss of generality, that γ = δ = 0, that is, B = (b, (αa − β)b) and C = (c, (αa − β)c).
By Lemma 3.5, C ∈ O

̂S
(B) implies [b, c, (αa − β)b] = 0. Since O is flexible, we have

α[b, c, ab] = [b, c, (αa − β)b] + β[b, c, b] = 0. Consider two cases.
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(a) If α = 0, then B = (b,−βb), C = (c,−βc), β = ±1. By Lemma 4.22,

O
̂S
((b,−βb)) = R(b,−βb)⊕ {

(d, βd)
∣∣ d ∈ AncO(b)

}
,

whence C ∈ O
̂S
(B) implies C ∈ RB, a contradiction.

(b) Now let [b, c, ab] = 0. Assume, without loss of generality, that n(b) = 1. By Lemma 4.2,
a and b generate the quaternionic subalgebra H〈a, b〉 ⊂ O. Hence 1, b, ab are lin-
early independent. From Proposition 4.3 it follows that c ∈ Lin(1, b, ab, b(ab)) =
Lin(1, a, b, ab). Since c ∈ AncO(a), Lemma 2.10 implies that c ∈ Lin(1, a)⊥, whence
c ∈ Lin(b, ab). As A,B,C are linearly independent, b, c are linearly independent. Let

c = κb + ab. Then A,B,C − κB also form a 3-cycle in ΓIm
O (Ŝ). Therefore, we may

assume, without loss of generality, that κ = 0, that is, C = (ab, (αa − β)(ab)) =
(ab,−(α + βa)b). Then the second component of BC equals

(−(α+ βa)b)b+ ((αa− β)b)(ab) = (−(α+ βa)b)b+ ((αa − β)b)(ba)

= n(b)((α + βa)− (αa− β)a) = 2n(b)(α+ βa) �= 0.

Thus, C /∈ O
̂S
(B), a contradiction.

(2) The orthogonalizers of A,B,C are 3-dimensional. If there exists D ∈ Lin∗(A,B,C) such
that D has a 7-dimensional orthogonalizer we obtain a contradiction by the previous item.

Otherwise for any D ∈ Lin∗(A,B,C) we have Lin(A,B,C) ⊂ O
̂S
(D), and

dim(Lin(A,B,C)) = dim(O
̂S
(D)) = 3.

Thus, O
̂S
(D) = Lin(A,B,C). Therefore, the induced subgraph of ΓIm

O (Ŝ) on the vertex set

Lin∗(A,B,C) is a connected component. But from Theorem 4.32 it follows that ΓIm
O (Ŝ) is

connected. However, the inclusion ZIm(Ŝ) ⊂ Lin(A,B,C) cannot hold by the dimension
considerations. Thus, we have a contradiction.

Therefore, Q = Lin∗(A,B). �
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