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DOUBLE OCCURRENCE WORDS: THEIR GRAPHS
AND MATRICES

A. E. Guterman,∗ E. M. Kreines,∗ and N. V. Ostroukhova† UDC 512.548, 519.177

Double occurrence words play an important part in genetics in describing epigenetic genome re-
arrangements. A useful geometric representation for double occurrence words is provided by the
so-called assembly graphs. The paper investigates properties of the incidence matrices that corre-
spond to the assembly graphs. An explicit matrix characterization of the simple assembly graphs
of a given structure and a series of constructions, using these graphs and important for genetic
investigations, are provided. Bibliography: 10 titles.

1. Introduction

Double occurrence words and the corresponding simple assembly graphs are important no-
tions of branches of algebra and geometry having nontrivial connections. There are two direc-
tions of investigations that have originated from applications of these notions. The first one
is investigation of numerical invariants of double occurrence words, such as assembly number,
minimal realization number, genus, etc. The second one is related to different constructions
that allow one to build new families of simple assembly graphs based on already known ones.

In this paper, we consider finite graphs Γ = (V,E), where V is the vertex set and E ⊆ V ×V
is the edge set. Both loops and multiple edges are allowed.

Definition 1.1. The degree or valency of a vertex v ∈ V is the number of edges incident to
it. If an edge is twice incident to a vertex (this edge is called a loop), then it is counted twice.

Definition 1.2 ([1, p. 3022]). The cyclic order for a k-tuple (x1, x2, x3, . . . , xk−1, xk) is the
set

(x1, x2, x3, . . . , xk−1, xk)
cyc = {(x1, x2, x3, . . . , xk−1, xk), (x2, x3, . . . , xk−1, xk, x1),

(x3, . . . , xk−1, xk, x1, x2), . . . , (xk, x1, x2, x3, . . . , xk−1), (xk, xk−1, xk−2, . . . , x2, x1),

(xk−1, xk−2, . . . , x2, x1, xk), (xk−2, . . . , x2, x1, xk, xk−1), . . . , (x1, xk, xk−1, xk−2, . . . , x2)},
i.e., the set of all cyclic shifts of the tuple and all cyclic shifts of this tuple written in reverse
order.

One element of the set (x1, x2, x3, . . . , xk−1, xk)
cyc is sufficient for specifying the cyclic order

because all other elements are obtained as its cyclic shifts and reversed cyclic shifts.

Definition 1.3. A vertex v is said to be rigid (or sometimes regular) if a cyclic order of the
edges incident to this vertex is fixed.

Remark 1.4. 1. If, for example, a graph is embedded into an oriented surface, then all its
vertices are rigid.

2. If a vertex is rigid, then for each of its edges the neighbors are well defined.

A regular vertex of valency n is also said to be n-regular.

Example 1.5. In Fig. 1, a rigid vertex of degree 4 with the cyclic order of edges (e1, e2, e3, e4)
is shown. It can readily be seen that e2 and e4 are the neighbors of e1 (or e3) in v.

∗Lomonosov Moscow State University, Moscow, Russia and Moscow Institute of Physics and Technology,
Dolgoprudny, Moscow Region, Russia, e-mail: guterman@list.ru, elena.kreines@gmail.com.

†Lomonosov Moscow State University, Moscow, Russia, e-mail: natosova@gmail.com.

Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 482, 2019, pp. 45–72. Original article
submitted October 7, 2019.

1072-3374/20/2492-0139 ©2020 Springer Science+Business Media, LLC 139

DOI 10.1007/s10958-020-04928-5



v

e1

e2

e3

e4

Fig. 1. A rigid vertex of degree 4.

In [5], a special class of rigid graphs, called assembly graphs, is investigated. These graphs
appear in genetics and are used in describing epigenetic genome rearrangements.

Definition 1.6. An assembly graph is a finite connected graph all of whose vertices are rigid
and have valency 1 or 4.

Definition 1.7. Vertices of degree 1 are called endpoints.

Definition 1.8. The number of 4-regular vertices in an assembly graph Γ is called the size of
Γ and is denoted by |Γ|.
Definition 1.9. An assembly graph is said to be trivial if |Γ| = 0.

Definition 1.10. Assembly graphs Γ1 = (V1, E1) and Γ2 = (V2, E2) are said to be isomorphic
if |Γ1| = |Γ2| and there exists an isomorphism φ : V1 → V2 such that
(i) for arbitrary u, v ∈ V1, (u, v) ∈ E1 if and only if (φ(u), φ(v)) ∈ E2;
(ii) for an arbitrary u ∈ V1, the cyclic order of edges at u coincides with that of their φ-images
at φ(u).

Note that two graphs can be isomorphic as abstract graphs but nonisomorphic as assembly
graphs.

Example 1.11. Consider graphs ΓA and ΓB presented in Fig. 2. The order of edges and the
neighborhood relations can be seen from the figure. For example, the order of edges of the
graph ΓA at vertex 2 is (a, b, c, d)cyc , whereas the order of edges of the graph ΓB at vertex
2 is (a, c, b, d)cyc . Obviously, these graphs are isomorphic as general graphs. However, this
isomorphism does not preserve the cyclic order of edges at vertex 2. For the graph ΓA, the
edges d and b are neighbors of a at vertex 2, but, for the graph ΓB , the edge a is a neighbor
of c and d at vertex 2.
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(A) Graph ΓA
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(B) Graph ΓB

Fig. 2. Assembly graphs that are isomorphic as general graphs but not as as-
sembly graphs.
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Definition 1.12. A path from a vertex u to a vertex v in Γ is a sequence of vertices u,w1,. . . ,wl,
v ∈ V (Γ) and a sequence of edges (u,w1), (w1, w2), . . . , (wl, v) ∈ E(Γ), where the vertices and
edges are not necessarily distinct. A path without coinciding vertices is said to be simple. A
path containing only one vertex is called a singleton.

Definition 1.13. A transverse path, or a transversal is a path in Γ such that all its edges are
pairwise distinct and consecutive edges are not neighbors at their common vertex in the sense
of the above introduced edge order at vertices.

Definition 1.14. A transversal is said to be Eulerian if it passes through all edges of Γ.

Definition 1.15. An assembly graph having an Eulerian transversal is called a simple assembly
graph.

Definition 1.16. A path in which all vertices are pairwise distinct and all consecutive edges
are neighbors at their common vertex is said to be polygonal.

Lemma 1.17. Let Γ be a simple assembly graph with two endpoints, |Γ| = n. Then Γ contains
2n+ 1 edges. In the case where Γ has no endpoints, it contains 2n edges.

Proof. Since a simple assembly graph has an Eulerian transversal, the number of vertices of
degree 1 is either two or zero, whereas all other vertices have degree 4. Therefore, we can
count all edges. We take the sum of the valencies of all vertices and divide it by 2 because
every edge is incident to two vertices. In the case of two endpoints, the number of edges is
4·n+2

2 = 2n+ 1, and, in the case of no endpoints, the number of edges equals 4·n
2 = 2n. �

Given an Eulerian transverse path in a simple assembly graph Γ, |Γ| = n, one can fix an
orientation of this path and in this way obtain an oriented (or a directed) simple assembly
graph. Obviously, in a simple assembly graph, there are either two or no endpoints. If there
are two endpoints, then an oriented Eulerian transversal starts at one of them (we denote this
vertex by 0) and terminates at the other one (we denote it by n+ 1).

Definition 1.18. Two transversals are said to be equivalent if they coincide or one is the
reverse of the other.

Below, unless otherwise specified, all graphs are simple assembly graphs with exactly two
endpoints.

The assembly graphs are naturally related to a special class of words.

Definition 1.19. An assembly word or a double occurrence word is a word in a certain alphabet
S = {a1, a2, . . . } such that every symbol ai either occurs in the word exactly twice or does not
occur at all.

Definition 1.20. The word wR = aik . . . ai1 is said to be reverse to the word w = ai1 . . . aik .

Definition 1.21. Two double occurrence words are said to be equivalent if, upon renaming
some letters, they coincide or are mutually reverse.

Example 1.22. The word w = 123321 is equivalent to its reverse, whereas the word w′ =
213132 coincides with wR upon interchanging 1 and 3.

We denote the empty double occurrence word by ε.
The following theorem interrelates the assembly graphs and the double occurrence words.

Theorem 1.23 ([1, Lemma 3.8]). The equivalence classes of double occurrence words are in
one-to-one correspondence with the isomorphism classes of simple assembly graphs.

The following example illustrates this theorem.
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Example 1.24. The assembly words of the graphs ΓA and ΓB from Example 1.11, which
are isomorphic as abstract graphs but nonisomorphic as assembly graphs, are 1123345542 and
1123443552, respectively. It is straightforward to check that these words are not equivalent.

In order to obtain a word from the graph, one can use the following algorithm.

Algorithm 1.25.

(1) Mark all 4-valent vertices of Γ by the integers 1, . . . , |Γ|.
(2) Choose a vertex of degree 1 as the beginning of the transversal; this vertex is said to

be initial.
(3) Follow the transverse path, starting from the initial vertex, and write down the number

of every 4-valent vertex each time it is visited by the transversal.

Since every marked vertex has degree 4 and, by definition, a transversal path visits all edges,
every 4-valent vertex will be visited twice, whence a double occurrence word will be obtained.

Assume that ω = w1w2 . . . w2n−1w2n is a double occurrence word. Here, wi denotes the ith
letter of the word, whence wi are not necessarily distinct. In order to display the corresponding
graph, one can use the following algorithm.

Algorithm 1.26.

(1) Draw the initial vertex and start the edge corresponding to it.
(2) Add a vertex to the end of the edge drawn, label it with w1, and draw an edge outgoing

from w1. Note that so far w1 has valency 2.
(3) Each of the letters wi, i ∈ {2, 3, . . . , 2n− 1}, is processed in the following way:

(a) After the previous step, we have obtained a graph, a vertex wi−1, and an edge
going out of this vertex; the second end of the latter edge is so far not determined.

(b) In the case where the letter wi has not previously occurred in the word ω, we
draw a new vertex on the edge outgoing from the vertex wi−1 and label it with
the letter wi. Then draw an edge outgoing from wi and go to the beginning of
step 3. Note that now the vertex wi has valency 2, which implies that in the word
ω there are unprocessed letters.

(c) In the case where the letter wi has already occurred in the word ω, by construction,
there is a vertex vk with valency 2 labeled with the letter wi. Denote the edges
incident to vk by ek1 , e

k
2 . In this case, we connect the vertex wi−1 with vk, so

that the new edge ek3 meets the vertex vk between the edges ek1 and ek2 . Then
we draw an edge ek4 going out of the vertex vk between the edges ek1 and ek2 . We
choose the side where so far there are no edges between ek1 and ek2 . Note that in
accordance with Definition 1.2, it does not matter which one of the edge tuples
(ek1 , e

k
3 , e

k
2 , e

k
4) or (ek1 , e

k
4 , e

k
2 , e

k
3) (clockwise, starting from ek1) is obtained because

both tuples define the same cyclic order of edges at vk.
(d) If in the word ω there remain unprocessed letters, then go to the beginning of

step 3 else proceed to the next step.
(4) When the last letter of the word ω has been processed (obviously, it is the second

occurrence of this letter), we complete the drawn “cross” of edges with the terminal
vertex.

In Fig. 3, the process of constructing the assembly graph corresponding to the word 1221
is shown.

Given a double occurrence word w, we denote the assembly graph corresponding to this
word by Γw. The empty word ε corresponds to two vertices 0 and 1 connected by an edge.
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Fig. 3. Construction of a simple assembly graph from the word 1221.

Definition 1.27. A composition Γ1 ◦ Γ2 of two oriented simple assembly graphs Γ1 and Γ2 is
the graph obtained by identifying the terminal vertex of Γ1 with the initial vertex of Γ2 and
then forgetting this vertex.

Remark 1.28. It is straightforward to see that a composition of simple assembly graphs itself
is a simple assembly graph.

A composition of two words is given by their concatenation. From the definition it imme-
diately follows that given assembly words w1 and w2, one has Γw1 ◦ Γw2 = Γw1w2 .

In general, the graphs Γ1 ◦ Γ2 and Γ2 ◦ Γ1 are not isomorphic. Consider, for example, the
graphs Γaa and Γbbcddc. We have Γ1 ◦ Γ2 = Γaabbcddc, whereas Γ2 ◦ Γ1 = Γbbcddcaa.

Definition 1.29. The composition Γ ◦ Γ ◦ · · · ◦ Γ
︸ ︷︷ ︸

k

is called the kth power of the graph Γ and

is denoted by Γk.

Now we introduce the notions of Hamiltonian set of polygonal paths and of assembly number,
which are the main objects of our investigations. These characteristics of assembly graphs were
considered in detail in [1, 2, 5].

Definition 1.30. Two paths are said to be disjoint if they have no vertices in common.

We consider disjoint polygonal paths that cover all vertices of an assembly graph.

Definition 1.31. A set {γ1, γ2, . . . , γk} of pairwise disjoint polygonal paths in Γ is said to be
Hamiltonian if their union covers all 4-regular vertices of Γ.

For example, the set V (Γ) of all vertices is a Hamiltonian set of singletons.

Definition 1.32. A polygonal path γ is said to be Hamiltonian if the set {γ} is Hamiltonian.

Let Γ be a nontrivial assembly graph.

Definition 1.33. The assembly number of Γ (denoted by An(Γ)) is the smallest size of a
Hamiltonian set of polygonal paths, i.e.,

min{k : there exists a Hamiltonian set of polygonal paths {γ1, γ2, . . . , γk} in Γ}.

Fig. 4. The realizable graph with assembly word 12134564326577 and a Hamil-
tonian polygonal path (shown by the dashed line).
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Definition 1.34. A graph with An(Γ) = 1 is said to be realizable; otherwise it is said to be
unrealizable.

Definition 1.35. For a positive integer n, the minimal realization number is defined as the
smallest size of an assembly graph with assembly number n: Rmin(n) = min{|Γ| : An(Γ) = n}.

It is well known that assembly graphs are used in describing epigenetic genomic rearrange-
ments, see, for example, [6]. Following [1], we briefly describe this process here for the sake of
completeness; for more detail, see [1, 6] and the references therein.

There are two types of nuclei, micronuclear and macronuclear, and both can be represented
in several copies. Only micronuclear genes are exchanged during mating. After conjuga-
tion, the old macronuclei are destroyed, and new macronuclei are constructed from one of the
newly formed micronuclei. These DNA processing events involve effective destruction of all
the so-called “junk” DNA, intervening DNA segments (internal eliminated sequences, IESs)
that interrupt coding of the genes. Note that the newly constructed DNA contains 95–98% of
intervening segments. Since IESs interrupt coding regions in the micronucleus, every macronu-
clear gene may appear as several nonconsecutive segments (macronuclear destined sequences,
MDSs) in the micronucleus. Moreover, for thousands of genes, even the order of these MDS
segments in the micronuclei can be permuted, or sequences can be reversed with respect to
the micronuclear sequence.

There are several theoretical models attempting to describe these DNA recombination pro-
cesses [6–8, 10]. It has been conjectured that an additional molecule takes part in the recom-
bination process [2, 10], and experimental support for this model was obtained in [9].

Based on these observations, a theoretical model with spatial graphs depicting the mole-
cule(s) at the time of recombination was introduced in [2]. This model describes a micronuclear
gene as a graph with 1- or 4-valent regular vertices. Every 4-valent vertex represents the loca-
tion of the homologous recombination. A single micronuclear gene is modeled as an assembly
graph with an Eulerian path, in which consecutive edges are not “neighbors” with respect to
the common incident vertex. Observe that the sequence of vertices listed in the order they are
visited by an Eulerian path is an assembly word.

The aim of this paper is to describe simple assembly graphs in terms of their incidence
matrices. In particular, we characterize matrices corresponding to several standard series of
graphs and translate into matrix language certain important procedures on graphs, which are
actual in genetic applications. In particular, we characterize procedures of loop addition and
graph concatenation.

The paper is organized as follows. In Sec. 2, we collect basic properties of the incidence
matrices of assembly graphs. Section 3 contains some examples of the incidence matrices
of some special series of assembly graphs. In Secs. 4 and 5, we describe, in matrix terms,
several standard procedures, actively used in modifying assembly graphs, such as (interior)
loop saturation and composition, which are important for genetics.

2. Incidence matrices

In this section, we recall the definition of the incidence matrix of an arbitrary graph and
describe some properties of the incidence matrices of simple assembly graphs.

Definition 2.1. Let Γ be a general (not necessarily simple assembly) graph of order n with
vertices v1, . . . , vn and edges e1, e2, . . . , em. The incidence matrix of Γ is the n × m integral
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matrix I(Γ) = (aij) defined by

aij =

⎧

⎨

⎩

1 if vi is incident to ej and ej is not a loop;
2 if vi is incident to ej and ej is a loop;
0 otherwise.

Remark 2.2. Let Γ = (V,E), |Γ| = n, be a simple assembly graph. We can enumerate its
vertices and edges in ascending order corresponding to the transversal path from the initial
vertex to the terminal one starting from 0. By Lemma 1.17, we have V = {0, 1, . . . , n, n + 1}
and E = {e0, e1, . . . e2n−1, e2n}.
Definition 2.3. The incidence matrix of a simple assembly graph Γ is the incidence matrix
of Γ, where the order of vertices and edges is fixed as in Remark 2.2.

Example 2.4. In Fig. 5, one can see the graph with assembly word w = 1122 and edges
labeled in the order we meet them following the transversal.

e0

e1

e2

e3

e4

Fig. 5. The graph with assembly word 1122.

Below, we present the incidence matrix of the graph from Fig. 5.

I(Γ1122) =

⎛

⎜

⎜

⎝

e0 e1 e2 e3 e4
0 1 0 0 0 0
1 1 2 1 0 0
2 0 0 1 2 1
3 0 0 0 0 1

⎞

⎟

⎟

⎠
.

Proposition 2.5. The incidence matrices of simple assembly graphs possess the following
properties:

(1) The incidence matrix of a simple assembly graph with |Γ| = n has n+2 rows and 2n+1
columns.

(2) For all rows except for the first and last ones, the row sums of entries equal 4. The
row sums of the first and last rows equal 1.

(3) Two nonconsecutive columns that have a common row with nonzero entries correspond
to two edges that are neighbors at their common vertex.

(4) Two neighboring columns corresponding to edges ek, ek+1 always share at least one
common row with nonzero entries.

Proof. (1) This assertion immediately follows from Lemma 1.17.
(2) Since all vertices of a simple assembly graph are 4-valent, except for the initial and

terminal ones, the result follows.
(3) If a row has two nonzero entries, then the corresponding edges are incident to the

same vertex. We label edges following the transversal, which implies that consecutive columns
correspond to edges that are not neighbors at their common vertex. For a fixed vertex v and
an edge e incident to it, there are exactly two neighbors of e at v and only one edge incident
to v that is not a neighbor of e at v. Hence two nonconsecutive columns sharing a common
row with nonzero entries correspond to neighboring edges.

(4) Indeed, since we write edges in the order we meet them following the transversal, it
follows that two consecutive edges always share a common vertex. �
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For example, both columns corresponding to edges e1 and e2 in the matrix I(Γ1122) have
nonzero entries only in the row corresponding to vertex 1.

3. Structured graphs and their matrices

In this section, we consider series of graphs, which are well known in many examples due to
their extremal behavior, see [1, 2, 5]. We start with very simple examples of assembly graphs.

3.1. Examples of simple assembly graphs. We start with a graph free of 4-valent ver-
tices. Then we consecutively add loops and obtain the graph sequence Γε,Γ11,Γ1122,Γ112233,
presented in Fig. 6.

Γε Γ11 Γ1122 Γ112233

Fig. 6. Realizable assembly graphs.

The incidence matrices of these graphs are as follows:

I(Γε) =

(

e0
0 1
1 1

)

, I(Γ11) =

⎛

⎝

e0 e1 e2
0 1 0 0
1 1 2 1
2 0 0 1

⎞

⎠, I(Γ1122) =

⎛

⎜

⎜

⎝

e0 e1 e2 e3 e4
0 1 0 0 0 0
1 1 2 1 0 0
2 0 0 1 2 1
3 0 0 0 0 1

⎞

⎟

⎟

⎠
,

I(Γ112233) =

⎛

⎜

⎜

⎜

⎜

⎝

e0 e1 e2 e3 e4 e5 e6
0 1 0 0 0 0 0 0
1 1 2 1 0 0 0 0
2 0 0 1 2 1 0 0
3 0 0 0 0 1 2 1
4 0 0 0 0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎠

.

As is readily seen, a row corresponding to vk, k ∈ {1, . . . , n}, has a block 121 that starts from
the column corresponding to e2(k−1).

3.2. Graphs with given assembly numbers. Show how one can construct a graph with
an arbitrary given assembly number. Consider the assembly graph with assembly word u =
122133 (see Fig. 7).

Fig. 7. The assembly graph Γu with assembly word u = 122133.
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Its incidence matrix is

I(Γu) =

⎛

⎜

⎜

⎜

⎜

⎝

e0 e1 e2 e3 e4 e5 e6
0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 0
2 0 1 2 1 0 0 0
3 0 0 0 0 1 2 1
4 0 0 0 0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎠

.

Now consider the composition Γn := Γaa ◦ Γn
u. As was shown in [1], this composition has

assembly number An(Γn) = n+1. Therefore, the graph Γu allows us to construct an example
of an assembly graph with given assembly number k. Note that |Γk| = 3k+1 by construction.

Figures 8 and 9 present the graphs with assembly numbers 2 and 3 constructed as described
above. In Sec. 5, the process of finding the incidence matrix of a composition of two graphs is
described in more detail.

Fig. 8. The assembly graph Γaa ◦ Γu with assembly number 2.

The incidence matrix of Γaa ◦ Γu is as follows:

I(Γaa ◦ Γu) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

e0 e1 e2 e3 e4 e5 e6 e7 e8
0 1 0 0 0 0 0 0 0 0
1 1 2 1 0 0 0 0 0 0
2 0 0 1 1 0 1 1 0 0
3 0 0 0 1 2 1 0 0 0
4 0 0 0 0 0 0 1 2 1
5 0 0 0 0 0 0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Fig. 9. The assembly graph Γaa ◦ Γ2
u with assembly number 3.

The incidence matrix of the graph Γaa ◦ Γ2
u is

I(Γaa ◦ Γ2
u) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

e0 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 2 1 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0
3 0 0 0 1 2 1 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 1 2 1 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0
6 0 0 0 0 0 0 0 0 0 1 2 1 0 0 0
7 0 0 0 0 0 0 0 0 0 0 0 0 1 2 1
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.
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3.3. Tangled cord

Definition 3.1. Let n be a positive integer. A tangled cord of size n, denoted by TCn, is
the simple assembly graph corresponding to the word defined inductively in the following way:
The starting word is wTC1 = 11, and wTCn is obtained from wTCn−1 by replacing the last letter
n− 1 with the subword n(n− 1)n.

For example, the first four words are 11, 1212, 121323, 12132434; the nth word is wTCn =
121324354 · · · (n− 1)(n − 2)n(n − 1)n.

Figures 10, 11, and 12 below provide examples of such graphs for n = 2, 3, 4, along with the
corresponding words and matrices.

Example 3.2. Let n = 2. Then wTC2 = 1212,

I(TC2) =

⎛

⎜

⎜

⎝

e0 e1 e2 e3 e4
0 1 0 0 0 0
1 1 1 1 1 0
2 0 1 1 1 1
3 0 0 0 0 1

⎞

⎟

⎟

⎠
,

and the corresponding graph is presented in Fig. 10.

e1

e2

e3

Fig. 10. The graph TC2 with labeled edges.

Example 3.3. Let n = 3. Then wTC3 = 121323,

I(TC3) =

⎛

⎜

⎜

⎜

⎜

⎝

e0 e1 e2 e3 e4 e5 e6
0 1 0 0 0 0 0 0
1 1 1 1 1 0 0 0
2 0 1 1 0 1 1 0
3 0 0 0 1 1 1 1
4 0 0 0 0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎠

,

and the corresponding graph is presented in Fig. 11.

e1

e2

e3

e4

e5

Fig. 11. The graph TC3 with labeled edges.
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Example 3.4. Let n = 4. Then wTC4 = 12132434,

I(TC4) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

e0 e1 e2 e3 e4 e5 e6 e7 e8
0 1 0 0 0 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0
2 0 1 1 0 1 1 0 0 0
3 0 0 0 1 1 0 1 1 0
4 0 0 0 0 0 1 1 1 1
5 0 0 0 0 0 0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

and the corresponding graph is presented in Fig. 12.

e1

e2

e3

e4

e5

e6

e7

Fig. 12. The graph TC4 with labeled edges.

Figure 13 shows the general form of a tangled cord and the process of adding vertices.

e1

e2

e3

e4

e5

e6

e0
e2n−5 e2n−3

e2n−2

e2n−4

v1

v2
v3 vn−2 vn−1

v4

e1

e2

e3

e4

e5

e6

e0
e2n−5

v1

v2
v3 vn−2

vn−1

v4

e′

e′′

e′′′

Fig. 13. Adding a vertex to TCn−1.

Proposition 3.5. For an arbitrary n ≥ 3, the rows of the matrix I(TCn) have the following
form:

R0(TCn) = (1, 0, . . . , 0
︸ ︷︷ ︸

2n times

), R1(TCn) = (1, 1, 1, 1, 0, . . . , 0
︸ ︷︷ ︸

2n−3 times

),

Rk(TCn) = ( 0, . . . , 0
︸ ︷︷ ︸

2k−3 times

, 1, 1, 0, 1, 1, 0, . . . , 0
︸ ︷︷ ︸

2n−2k−1 times

), k = 2, . . . , n− 1;

Rn(TCn) = ( 0, . . . , 0
︸ ︷︷ ︸

2n−3 times

, 1, 1, 1, 1), Rn+1(TCn) = ( 0, . . . , 0
︸ ︷︷ ︸

2n times

, 1).
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Proof. It is straightforward to see that the row corresponding to vertex 0 (resp., n+1) contains
only one entry 1 in the first (resp., last) column, whereas the other entries of these rows are zero.
The row corresponding to vertex 1 (resp., n) contains ones in the four consecutive columns
starting from e0 (resp., starting from e(2n−1)−2). Any other row, corresponding to a vertex
k ∈ {2, . . . , n − 1}, contains the block [1 1 0 1 1], which starts from the column corresponding
to e2k−3. The proof is completed by counting the entries. �

3.4. Return words

Definition 3.6. A return word is a double occurrence word of the form

a1a2 . . . an−1ananan−1 . . . a2a1.

In what follows, a return word with n different letters will be denoted by ret(n).

Return words are used to represent the parts of the micronuclear genome corresponding
to frequently occurring sequences and play an important part in studying the nesting index,
see [3, 4] for more detail.

Example 3.7. Consider, for example, the double occurrence word 12344321. The correspond-
ing graph is shown in Fig. 14.

0

5

1 2 3 4

e0

e1

e2

e3

e4

e5

e6

e7

e8

Fig. 14. The assembly graph corresponding to ret(4).

The incidence matrix of this graph is

I(Γret(4)) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

e0 e1 e2 e3 e4 e5 e6 e7 e8
0 1 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 1 1
2 0 1 1 0 0 0 1 1 0
3 0 0 1 1 0 1 1 0 0
4 0 0 0 1 2 1 0 0 0
5 0 0 0 0 0 0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Proposition 3.8. For any n � 2, the rows of the matrix I(Γret(n)) have the following form:

R0(ret(n)) = (1, 0, . . . , 0
︸ ︷︷ ︸

2n times

),

Rk(ret(n)) = ( 0, . . . , 0
︸ ︷︷ ︸

k−1 times

, 1, 1 0, . . . , 0
︸ ︷︷ ︸

2n−2k−1 times

, 1, 1, 0, . . . , 0
︸ ︷︷ ︸

k−1 times

), k = 1, . . . , n− 1;

Rn(ret(n)) = ( 0, . . . , 0
︸ ︷︷ ︸

n−1 times

, 1, 2, 1, 0, . . . , 0
︸ ︷︷ ︸

n−1 times

),

Rn+1(ret(n)) = ( 0, . . . , 0
︸ ︷︷ ︸

2n times

, 1).

In other words, the incidence matrix (excluding the first and last rows) of the graph with
assembly word ret(n) is symmetric with respect to the column labeled by en.
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Proof. The first and last rows correspond to the initial and terminal vertices, having only one
edge. Therefore, in each of these rows, there is only one nonzero entry. The only vertex with
a loop is vertex n, and the loop is in the middle of the Eulerian transversal, whence it is en.
Obviously, en−1 and en+1 are also incident to n. The return word is a palindrome, which
implies that nothing changes as we follow the Eulerian transversal backwards. Hence ek and
e2n−k connect the same vertices. Obviously, every edge ek, k = 0, 1, . . . , n−1, connects vertices
with numbers k, k + 1. �
3.5. Repeat words

Definition 3.9. A repeat word is a double occurrence word of the form

a1a2 . . . an−1ana1a2 . . . an−1an.

Note that any repeat word with n letters is equivalent to 123 . . . n123 . . . n. Thus, in the
sequel, we denote the repeat word with n different letters by rep(n).

Along with return words, repeat words help us in studying the complexity of the micronu-
clear gene, see [3, 4] for more detail.

Example 3.10. Consider, for example, the word rep(4) = 12341234. The corresponding
graph is shown in Fig. 15.

0

5

1

2

3

4

e0 e1
e2

e3

e4

e5

e6

e7

e8

Fig. 15. The assembly graph corresponding to rep(4).

The incidence matrix of this graph is as follows:

I(Γrep(4)) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

e0 e1 e2 e3 e4 e5 e6 e7 e8
0 1 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0
2 0 1 1 0 0 1 1 0 0
3 0 0 1 1 0 0 1 1 0
4 0 0 0 1 1 0 0 1 1
5 0 0 0 0 0 0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Proposition 3.11. For any n ≥ 2, the rows of the matrix I(Γrep(n)) are as follows:

R0(rep(n)) = (1, 0, . . . , 0
︸ ︷︷ ︸

2n times

),

Rk(rep(n)) = ( 0, . . . , 0
︸ ︷︷ ︸

k−1 times

, 1, 1 0, . . . , 0
︸ ︷︷ ︸

n−2 times

, 1, 1, 0, . . . , 0
︸ ︷︷ ︸

n−k times

), k = 1, . . . , n;

Rn+1(rep(n)) = ( 0, . . . , 0
︸ ︷︷ ︸

2n times

, 1).

Proof. Consider the chain of edges e0, . . . , en−1, corresponding to the first n columns of our
matrix. Every edge ei, i ∈ {0, 1, . . . , n−1}, connects vertices i and i+1. This implies that the
entries Ri(rep(n))[i] (the ith entry of the ith row) and Ri+1(rep(n))[i] (the ith entry of the
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(i+ 1)st row) equal 1 for i ∈ {0, 1, . . . , n− 1}. The edge en connects vertices n and 1, whence
R1(rep(n))[n] = 1 and Rn(rep(n))[n] = 1. Consider the edges en+1, . . . , e2n, corresponding
to the last n columns. The edge ei, i ∈ {n + 1, n + 2, . . . , 2n}, connects vertices i − n and
i − n + 1. Therefore, the entries Ri(rep(n))[n + i] and Ri+1(rep(n))[n + i] equal 1 for i ∈
{n+ 1, n + 2, . . . , 2n}. Thus, the incidence matrix of our graph has the form indicated. �

4. Interior Loop Saturation

Interior loop saturation is an important transformation of assembly graphs originating from
genetics, see [5] for details. In this section, we describe the corresponding matrix transforma-
tions. We start with the necessary definitions.

Definition 4.1. A loop is the assembly graph with assembly word 11, see Fig. 16.

Fig. 16. The loop Γ(1).

The next lemma is obvious.

Lemma 4.2 ([5, p. 15, Definition 5.1]). Let Γ be an assembly graph and let Γ′ be obtained
from Γ by replacing one of the edges with the loop Γ(1). Then Γ′ is an assembly graph.

Proof. As is readily seen, all vertices of Γ′ have degree 1 or 4, and the number of vertices with
degree 1 remains unchanged. Show that Γ′ has an Eulerian transversal. Consider the Eulerian
transversal of Γ. Since the edge replaced by a loop is a part of this transversal, it is possible to
include the loop into the existing Eulerian transversal and obtain the desired path in Γ′. �

Figure 17 shows how a loop is incorporated into a transverse path in the two standard cases
where a loop is adjoined to an edge that is a loop and to an edge that is not a loop.

Fig. 17. Incorporating a loop into an existing transversal path.

Applying this lemma a number of times, we see that upon replacing some edges of an
assembly graph by loops, an assembly graph is obtained. This leads us to the following
definition.

Definition 4.3 ([5, Definition 5.1]). Let Γ be an assembly graph and let Γ̃ be obtained from

Γ by adding the loop Γ(1) to every edge. Then Γ̃ is called a loop-saturated graph or a graph

obtained by loop-saturation. An assembly graph Γ̃◦ is called an interior loop-saturated graph
if it is obtained from Γ by adding the loop Γ(1) to every edge, except for two edges incident to
the endpoints.
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The incidence matrix of the graph obtained by loop-saturation (or interior loop-saturation)
can readily be constructed from the incidence matrix of a given graph.

Proposition 4.4. Let Γ be an assembly graph and let Γ(i) be obtained from Γ by changing the
ith edge for the loop Γ(1). Then the following assertions hold:

1. I(Γ(i)) is obtained from I(Γ) by replacing the ith column ci with three columns C1, C2, C3

and adding a row R as described below. Let the nonzero entries of ci be located in the kth and
lth rows, k ≤ l. If k = l, then R is inserted below row k. If k �= l, then R is inserted above
row l. The entries of the inserted columns are as follows: C2 contains 2 in the row R; C1

contains 1 in the row R and 1 in the kth row; C3 contains 1 in the row R and 1 in the former
lth row. All the other entries of the inserted rows and columns are zero.

2. I(Γ) is obtained from I(Γ(i)) by removing the row and column corresponding to Γ(1) and
substituting two columns with 1 in the removed row by their sum.

Proof. 1. Adjoining a loop to a graph results in that two edges and a vertex appear. By
definition, the loop corresponds to a column with 2 in the new row. The edge between k and
l is split by the new vertex into two new edges. Therefore, the corresponding column must
be changed for the following two columns: The column C1 contains unit entries in row k and
the new row. The column C2 contains unit entries in the former lth row and the new row.
Also, the column C2, corresponding to the loop, with entry 2 in the new row, must be inserted
between them. All the other entries of C1, C2, C3 are zero.

2. Conversely, if Γ(1) is the loop on the ith edge, then the row corresponding to the vertex
of Γ(1) contains exactly three nonzero entries: 1, 1, 2. It is necessary to delete the column with
entry 2 and change two other columns either for the column with ones in the same rows where
they used to be (if these rows are different) or for the column with 2 in the row in which the
columns being replaced have unit entries. Obviously, this is exactly the sum of the columns
removed. �

Corollary 4.5. Let Γ be an assembly graph. The incidence matrix I(Γ̃) of the loop saturated

(resp., the incidence matrix I(Γ̃◦) of the interior loop saturated) graph can be obtained from
I(Γ) by successively applying the procedure described in Proposition 4.4 to every column (resp.,
every column except the first and last ones). Similarly, the converse procedure can be applied.

Note that if |Γ| = n, then I(Γ) ∈ Mn+2,2n+1, I(Γ̃) ∈ M3n+3,6n+3, and I(Γ̃◦) ∈ M3n+1,6n−1.

Example 4.6. Let Γ be the graph shown in Fig. 18. Then Γ is the assembly graph related to

e0

e1

e2

e3

e4

Fig. 18. The graph Γ = Γ1221 with labeled edges.

the word w = 1221. The corresponding loop saturation graph Γ̃ is shown in Fig. 19.
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Fig. 19. The loop saturation graph Γ̃.

As is straightforward to check, the related incidence matrices are as follows:

I(Γ̃) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

e0 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 2 1 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 1 1 0 0 0 0 0 0 0 1 1 0 0
3 0 0 0 1 2 1 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0
5 0 0 0 0 0 0 1 2 1 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 1 2 1 0 0 0
7 0 0 0 0 0 0 0 0 0 0 0 0 1 2 1
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

and

I(Γ1221) =

⎛

⎜

⎜

⎝

e0 e1 e2 e3 e4
0 1 0 0 0 0
1 1 1 0 1 1
2 0 1 2 1 0
3 0 0 0 0 1

⎞

⎟

⎟

⎠
.

Below, we provide an algorithm allowing one to construct the matrix of an original assembly
graph from the matrix of its loop saturation graph. In order to simplify the notation, in the
next algorithm we assume that the loop saturation graph has 3n+ 3 vertices and the interior
loop saturation graph has 3n + 1 vertices. In this case, the loop saturation graph has 6n + 3
edges, and the interior loop saturation graph has 6n− 1 edges, respectively.

Algorithm 4.7.

1. Mark all the rows that correspond to loops.
2. Replace any triple of columns with numbers k, k+1, k+2 by the column equal to the

vector sum of the columns with numbers k, k + 2. Here, k = 0, 3, 6, . . . , 6n in the case
of loop saturation and k = 1, 4, 7, . . . , 6n− 5 in the case of interior loop saturation.

3. Delete the rows marked at step 1.

Proof. The algorithm is based on the fact that every occurrence of 2 in the incidence matrix
corresponds to a loop added during loop saturation. Therefore, we delete the rows and columns
that contain the entry 2 and sew together columns k, k+2 that both belong to the same edge.
All the column triples are processed in the same way, starting from the zeroth column in the
case of loop saturation and from the first column in the case of interior loop saturation. �
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Example 4.8. In order to illustrate the above algorithm, consider the loop saturation graph
shown in Fig. 19. First, we mark all the rows that correspond to loops:

I(Γ) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

e0 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 2 1 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 1 1 0 0 0 0 0 0 0 1 1 0 0
3 0 0 0 1 2 1 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0
5 0 0 0 0 0 0 1 2 1 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 1 2 1 0 0 0
7 0 0 0 0 0 0 0 0 0 0 0 0 1 2 1
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Then we perform the second step and replace columns with the corresponding vector sums:

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

e0 + e2 e3 + e5 e6 + e8 e9 + e11 e12 + e14
0 1 0 0 0 0
1 2 0 0 0 0
2 1 1 0 1 1
3 0 2 0 0 0
4 0 1 2 1 0
5 0 0 2 0 0
6 0 0 0 2 0
7 0 0 0 0 2
8 0 0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Finally, we delete the marked rows and obtain the incidence matrix of the graph with assembly
word w = 2442,

I(Γ′) =

⎛

⎜

⎜

⎝

e0 + e2 e3 + e5 e6 + e8 e9 + e11 e12 + e14
0 1 0 0 0 0
2 1 1 0 1 1
4 0 1 2 1 0
8 0 0 0 0 1

⎞

⎟

⎟

⎠
.

Obviously, the incidence matrix I(Γ1221) of the graph from Fig. 18 and the matrix I(Γ′)
coincide.

5. Incidence matrix of a composition

The incidence matrix of a composition is obtained as a block matrix whose blocks correspond
to the incidence matrices of the components, except for the rows corresponding to the terminal
(initial) vertices.

Proposition 5.1. Let Γ1 and Γ2 be two simple assembly graphs with incidence matrices I(Γ1)
and I(Γ2) and sizes |Γ1| = n and |Γ2| = m. Then the incidence matrix of the composition
I(Γ1 ◦ Γ2), with n +m+ 2 rows and 2n + 2m + 1 columns, has the following form (here, the
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rows and columns are enumerated starting from 0):

(1) I(Γ1 ◦ Γ2)k,l = I(Γ1)k,l if 0 ≤ k ≤ n, 0 ≤ l ≤ 2n;

(2) I(Γ1 ◦ Γ2)k,l = 0 if n < k ≤ m+ n+ 1 and 0 ≤ l < 2n

or 0 ≤ k < n+ 1 and 2n < l ≤ 2m+ 2n;

(3) I(Γ1 ◦ Γ2)k,l = I(Γ2)k−n,l−2n if n+ 1 ≤ k ≤ m+ n+ 1, 2n ≤ l ≤ 2n + 2m.

Proof. Indeed, the vertices of the composition graph are divided into two parts: those of Γ1,
except for the terminal vertex, and the vertices of Γ2, except for the initial vertex. Within each
of the parts, the vertices are connected by the same edges as in the original graphs. Vertices
from different parts are not connected, except for the edge e2n, corresponding to column 2n,
that connects the two parts. �

We illustrate the above proposition by considering two graphs with assembly words 1212
and 1221 (see Fig. 20).

1212 1221

Fig. 20. Graphs before composition.

These graphs have the following incidence matrices:

I(TC2) =

⎛

⎜

⎜

⎝

e0 e1 e2 e3 e4
0 1 0 0 0 0
1 1 1 1 1 0
2 0 1 1 1 1
3 0 0 0 0 1

⎞

⎟

⎟

⎠
, I(Γ1221) =

⎛

⎜

⎜

⎝

e0 e1 e2 e3 e4
0 1 0 0 0 0
1 1 1 0 1 1
2 0 1 2 1 0
3 0 0 0 0 1

⎞

⎟

⎟

⎠
.

The incidence matrix of the composition 1212 ◦ 1221 is constructed in the following way.
We take I(TC2) and delete the last row. Then we take I(Γ1221) and delete the first row. After
that we write I(Γ1221) below, starting with the column that corresponds to the edge incident
to the terminal vertex of the first matrix, and fill the remaining positions with zeros:

1212 1221

Fig. 21. The graph obtained by composition.

e0 e1 e2 e3 e4 e5 e6 e7 e8
0 1 0 0 0 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0
2 0 1 1 1 1 0 0 0 0
3 0 0 0 0 1 1 0 1 1
4 0 0 0 0 0 1 2 1 0
5 0 0 0 0 0 0 0 0 1

.
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