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THE HARMONIC DECOMPOSITION IN CYCLIC HOMOLOGY

M. Karoubi UDC 512.664.2

Abstract. It has been shown by Cuntz and Quillen that in characteristic 0 the kernel of the square of
the “noncommutative Laplacian” on the Hochschild and cyclic complexes contains the relevant homology
information. In this note, we show that the same property holds for the plain kernel of this Laplacian,
as in differential geometry. Using the same ideas, we define a variant of Hochschild homology and cyclic
homology and show that we recover the classical definitions in characteristic 0.

1. Hochschild Homology

Let A be a k-algebra with unit, where k is a commutative ring with unit. The classical Hochschild
homology HHn(A) may be described as the homology of the following complex:

. . .
b−→ Ωn(A) b−→ · · · b−→ Ω1(A) b−→ Ω0(A) −→ 0,

where Ω∗(A) =
⊕

n
Ωn(A) is the algebra of noncommutative differential forms on A [2, 3]. The b operator

from Ωn(A) to Ωn−1(A) is defined by the following formula in terms of these differential forms:

b(ω.dx) = (−1)n−1(ω.x − x.ω).

In [3], we introduced an operator
κ : Ω∗(A) → Ω∗(A)

defined by κ(ω.dx) = (−1)n−1dx.ω on elements of degree n > 0 and κ = 1 on elements of degree 0. As
pointed out in the previous references, the operator κ is related to the two differentials d and b by the
following identity:

db + bd = 1 − κ.

In particular, κ commutes with d and b. The operator 1− κ is called the noncommutative Laplacian [2],
b playing the role of the adjoint of d.

Now we define a variant of Hochschild homology as the homology of the quotient complex

. . .
b−→ Ωn(A)/(1 − κ) b−→ · · · b−→ Ω1(A)/(1 − κ) b−→ Ω0(A)/(1 − κ) −→ 0.

We denote this new homology by κHH∗(A). There is a canonical homomorphism between Hochschild
homology and its variant:

ϕn : HHn(A) −→ κHHn(A).

Theorem 1.1. The map ϕn above is an isomorphism for n = 0 and n = 1. Moreover, if n is invertible
in k, then ϕn is an isomorphism.

Proof. Since the theorem is clear for n = 0 and 1, we may assume n > 1. As in [3, p. 30], we consider the
quotient Ω̄n(A) of Ωn(A) by the k-submodule Im b + Im(1−κ). The injectivity of ϕn is equivalent to the
injectivity of the composition

HHn(A) ↪→ Ωn(A)/ Im b −→ Ωn(A)/[Im b + Im(1 − κ)] = Ω̄n(A).
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The argument in [3] is to remark that κ acts as a cyclic group of order n on the quotient group Ωn(A)/ Im b.
Since κ is homotopic to 1 in the b-complex, HHn(A) is included in the invariant part of Ωn(A)/ Im b by the
action of κ. Since n is invertible, this invariant part is isomorphic by the quotient map to the coinvariant
part Ω̄n(A).

To prove the surjectivity, since b commutes with κ, we remark that κ also acts as a cyclic group of
order n on the image of Ωn(A)/ Im b in Ωn−1(A) by the operator b according to [3, p. 30] again. Now let
ω be an element of Ωn(A)/ Im b such that b(ω) = (1 − κ)(θ). We choose rational polynomials f(κ) and
g(κ) with denominators 1/n such that

f(κ)(1 − κ) + g(κ)(1 + κ + · · · + κn−1) = 1

on each of the two previous groups Ωn(A)/ Im b and b
(
Ωn(A)

) ⊂ Ωn−1(A). More precisely, we may choose

f(κ) = − 1
n

(1 + 2κ + 3κ2 + · · · + nκn−1), g(κ) =
1
n

,

which are related by the identity

− 1
n

(1 − κ)(1 + 2κ + 3κ2 + · · · + nκn−1) +
1
n

(1 + κ + · · · + κn−1) = 1.

Therefore, we have
ω = f(κ)(1 − κ)(ω) + g(κ)(1 + κ + · · · + κn−1)(ω)

and
b(ω) = b(1 − κ)f(κ)(ω) + g(κ)(1 + κ + · · · + κn−1)(1 − κ)(θ) = b(1 − κ)f(κ)(ω).

If we put ω′ = ω − (1 − κ)f(κ)(ω), we have b(ω′) = 0. This shows that ϕn is surjective.

Remark. According to the harmonic decomposition of noncommutative differential forms proved by
Cuntz and Quillen [2], the quotient map between the complexes Ω∗(A) and Ω∗(A)/(1 − κ)2 induces
a quasi-isomorphism (for the b differential) if Q ⊂ k. Equivalently, the subcomplex Ker(1 − κ)2 of
“harmonic forms” is quasi-isomorphic to the complex Ω∗(A). The previous theorem shows that the
subcomplex Ker(1−κ) enjoys the same property. This result is closer to its analog in differential geometry:
as pointed out in [2], the operator 1−κ is a substitute for the Laplacian in this algebraic setting. On the
other hand, there is no obvious projection of Ω∗(A) onto Ker(1 − κ) as it is the case with Ker(1 − κ)2.

Remark. In general, Hochschild homology and its variant do not coincide if we do not assume that Q ⊂ k.
As an example, let A be the Z-algebra Z[x]/x2. Then HH2(A) ∼= Z generated by the differential form
x dx dx. On the other hand, κHH2(A) ∼= Z⊕ Z/2 generated by x dx dx and dx dx.

2. Cyclic Homology

Since db + bd = 1 − κ, we may define a mixed complex in the sense of Kassel [4] with the two
differentials b and d given on the quotient module Ω∗(A)/(1 − κ):

Ω∗(A)/(1 − κ) d−−−−→ Ω∗(A)/(1 − κ)

b

⏐
⏐
� b

⏐
⏐
�

Ω∗(A)/(1 − κ) d−−−−→ Ω∗(A)/(1 − κ)

.

We define our variant κHC∗(A) of cyclic homology as the homology of this mixed complex. Our first task
is to compare this definition with the classical one. We recall that Connes’ operator

B : Ωn−1(A) → Ωn(A)

is deduced from the operators d, b, and κ = 1 − db − bd by the formula

B = (1 + κ + · · · + κn−1).d.

On the quotient module Ω∗(A)/(1 − κ), it is reduced to N = nd in degree n − 1.
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We also recall that the cyclic complex CC∗(A) is defined as

CCn(A) = Ωn(A) ⊕ Ωn−2(A) ⊕ . . . .

The total differential D : CCn(A) → CCn−1(A) is defined as the following matrix:

D =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

b B 0 0 . . .
0 b B 0
0 0 b B . . .
0 0 0 b
...

...
. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

If we take the quotient by Im(1 − κ), the operator B reduces to the operator N above and D may be
written D̄ on the quotient with

D̄ =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

b (n − 1)d 0 0 . . .
0 b (n − 3)d 0
0 0 b (n − 5)d . . .
0 0 0 b
...

...
. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

Now we consider the automorphism of CCn(A) defined by

(xn, xn−2, . . . ) �→ (αnxn, αn−2xn−2, αn−4xn−4, . . . ),

where αn = (n − 1).(n − 3) . . . . Modulo this automorphism, the differential D̄ may be written as

D′ =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

b d 0 0 . . .
0 b d 0
0 0 b d . . .
0 0 0 b
...

...
. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

Therefore, if we assume (n + 1)! invertible in k, we get the same homology for D̄ and D′. Moreover,
according to the theorem above, the canonical map ϕm : HHm(A) −→ κHHm(A) is an isomorphism for
m ≤ n + 1. Thanks to the five lemma, we deduce the following theorem.

Theorem 2.1. Let us assume (n + 1)! is invertible in k. Then the previous zigzag maps induce an
isomorphism

HCn(A) ∼= κHCn(A).

Now we consider the reduced de Rham complex

Ω̃∗(A) = Ω∗(A)/k

and the quotient complex Ω̃∗(A)/(1 − κ). We claim that Connes’ property, as formalized in [2], is valid
for this quotient. More precisely, we have the following proposition.

Proposition 2.2. Let us assume (n + 1)! is invertible in k. Then the cohomology (for the differential d)
of degree n of the quotient complex Ω̃∗(A)/(1 − κ) is trivial. In particular, if Q ⊂ k, the mixed complex
(Ω̃∗(A)/(1 − κ), b, d) satisfies Connes’s property.

Proof. We already know that the noncommutative reduced de Rham complex Ω̃∗(A) is acyclic [3]. There-
fore, it is enough to prove that if d(ω) ∈ Im(1 − κ), there exists ω′ such that d(ω′) = 0 and ω′ − ω ∈
Im(1− κ) + Im d. For this, we apply exactly the same argument as in Theorem 1.1, since the operator κ

acts as a cyclic group of order n + 1 on Ω̃n(A)/ Im(d).
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The following theorem is in [2, 5]: our proof is slightly different, with the differential d instead of
Connes’ differential B. We note that the operator k also acts as a cyclic group of order n+1 on the other
quotient Ω̃n(A)/ Im(d) ∼= (A/k.1)⊗(n+1), up to the sign (−1)n+1.

Theorem 2.3. Let us assume (n + 1)! is invertible in k. Then the reduced cyclic homology in degree n is
the homology of the reduced cyclic complex of Connes

. . .
b−→ Ā⊗3/(1 − k) b−→ Ā⊗2/(1 − k) b−→ Ā −→ 0,

where Ā = A/k.1 and b is the usual Hochschild differential.

We know that the usual Hochschild homology and cyclic homology are Morita invariant. The same
property is true for their variants. The key point is that an inner automorphism of an algebra A sends
a Hochschild cycle to a homologous one, since we are dealing with commutators [ω, a], where ω is a dif-
ferential form and a is an algebra element. The Morita invariance of our variant of Hochschild homology
implies the Morita invariance of its variant in cyclic homology.
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