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MEAN-SQUARE RISK OF THE THRESHOLD
PROCESSING IN THE PROBLEM OF INVERTING
THE RADON TRANSFORM WITH A RANDOM
SAMPLE SIZE

O. V. Shestakov1

Methods for reconstructing tomographic images based on the inversion of the Radon transform are
used in problems arising in medicine, biology, astronomy, and many other fields. In the presence of
noise in the projection data, as a rule, it is necessary to apply regularization methods. Recently,
methods of the threshold processing of wavelet expansion coefficients have become popular. The
analysis of errors of these methods is an important practical task, since it makes it possible to assess
the quality of both the methods themselves and the equipment used. When using threshold processing,
it is usually assumed that the number of expansion coefficients is fixed, and the noise distribution
is Gaussian. This model is well studied in the literature, and the optimal values of the threshold
processing parameters are calculated for different classes of functions. However, in some situations,
the amount of data is not known in advance and has to be modeled with a certain random variable.
In this paper, we consider a model with a random amount of data containing Gaussian noise, and
estimate the order of the mean-square risk with an increasing number of decomposition coefficients.

1. Introduction

Problems of tomographic image reconstruction arise in medicine, biology, astronomy, and in many
other areas. In this case, as a rule, mathematical models based on the Radon transform are used. The
problem of inverting this transform is ill-posed, and if there is a noise in the projection data, the wavelet
analysis methods based on the threshold processing of the wavelet coefficients are applicable for its
regularization [1, 2]. The papers [3–5] analyze the mean-square risk and calculate the optimal values of
the parameters of such regularization methods.

In some cases, the amount of data available for analysis is not known in advance. Such situations
may arise, for example, in the case of missing data or lack of information about the characteristics of the
equipment used. In such a case, it is assumed that the data sample size is a random variable with some
specified distribution. In this paper, we consider a model with a random number of expansion coefficients
of a function that describes the projection data of a tomographic image “polluted” with white Gaussian
noise, and estimate the order of the mean-square risk of the threshold processing method. Similar results
in the model of direct observation of a signal were obtained in [6, 7].

2. Inversion of the Radon transform

The mathematical model of the problem of tomographic image reconstruction is based on the so-
called Radon transform. Denote by Lip(γ, L) the class of uniformly Lipschitz-regular functions, where
γ > 0 is a Lipschitz exponent and L > 0 is a Lipschitz constant [8]. Let the image be described by the
function f(x, y) ∈ Lip(γ, L) with a compact support (without loss of generality, we assume that this is a
circle of unit radius with the center at the origin) and uniformly Lipschitz-regular with some exponent
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γ > 0. The Radon transform of a function f is

Rf(s, θ) =

∫

Ls,θ

f(x, y)dl,

where

Ls,θ =
{
(x, y) : x cos θ + y sin θ − s = 0

}
.

One of the possible methods for inverting the transform Rf is the wavelet-vaguelette decomposition
[1].

Let φ(x) and ψ(x) be the scaling function and the wavelet function, respectively. Define

ψ
[1]
j,k1,k2

(x, y) = 2jφ(2jx− k1)ψ(2
jy − k2),

ψ
[2]
j,k1,k2

(x, y) = 2jψ(2jx− k1)φ(2
jy − k2),

ψ
[3]
j,k1,k2

(x, y) = 2jψ(2jx− k1)ψ(2
jy − k2).

(1)

The family {ψ[λ]
j,k1,k2

} forms an orthonormal basis in L2(R2). The index j in (1) is called the scale, and
the indices k1, k2 are called the shifts.

The wavelet decomposition of the function f has the form

f =
∑

λ,j,k1,k2

〈f, ψ[λ]
j,k1,k2

〉ψ[λ]
j,k1,k2

. (2)

If the wavelet function has M vanishing moments and M continuous derivatives (M � γ) and quickly
decays at infinity, then the expansion coefficients in (2) satisfy the inequality

∣∣∣〈f, ψ[λ]
j,k1,k2

〉
∣∣∣ � A

2j(γ+1)
, (3)

where A is a positive constant [8].

Let us define the functions ξ
[λ]
j,k1,k2

(s, θ):

ξ
[λ]
j,k1,k2

(s, θ) =
2−j/2

4π
I−1

[
Rψ

[λ]
j,k1,k2

]
(s, θ),

where I α is the Riesz potential, defined in the Fourier space by the formula Î αg(ω) = |w|−αĝ(ω). These
functions are called the “vaguelettes” [1]. They satisfy the relation

〈f, ψ[λ]
j,k1,k2

〉 = 2j/2〈Rf, ξ
[λ]
j,k1,k2

〉.

The sequence {ξ[λ]j,k1,k2
} forms a stable basis [3], and the wavelet-vaguelette decomposition of f has the

form

f =
∑

λ,j,k1,k2

2j/2〈Rf, ξ
[λ]
j,k1,k2

〉ψ[λ]
j,k1,k2

. (4)

The decomposition (4) uses only projection data, and it serves as the basis of the reconstruction method.
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3. Data model and de-noising method

In practice, the image is described by discrete samples of a certain function. Moreover, since the
support of the function is the unit circle, (s, θ) ∈ [−1, 1]× [0, π], and the model of noisy projection data
considered in this paper looks as follows:

Yi,j = Rf(−1 + 2i/N, jπ/N) + ei,j, i = 1, . . . , N, j = 1, . . . , N,

where N = 2J for some J > 0. It is assumed that ei,j are independent and have a normal distribution
with zero mean and variance σ2. Then, in the discrete analogue of the wavelet-vaguelette decomposition,
the coefficients are described by the model [9]

X
[λ]
j,k1,k2

= μ
[λ]
j,k1,k2

+ e
[λ]
j,k1,k2

, (5)

where μ
[λ]
j,k1,k2

= 2J〈Rf, ξ
[λ]
j,k1,k2

〉, and e
[λ]
j,k1,k2

have a normal distribution with zero mean and variance σ2
λ

(λ = 1, 2, 3) and are no longer independent. The value of σ2
λ depends on the chosen wavelet basis and

λ, but does not depend on k1, k2, and j.

To suppress the noise and construct estimates for the coefficients μ
[λ]
j,k1,k2

, threshold processing of
the noisy coefficients of the model (5) is usually used. The meaning of this processing is to remove

sufficiently small coefficients, which are considered to be the noise. Estimates of μ
[λ]
j,k1,k2

are calculated

using the threshold processing function ρ(x, Tλ) with some threshold Tλ: μ̂
[λ]
j,k1,k2

= ρ(X
[λ]
j,k1,k2

, Tλ). This
paper assumes the use of the hard threshold processing function ρH(x, Tλ) = x1(|x| > Tλ) or the soft
threshold processing function ρS(x, Tλ) = sgn(x) (|x| − Tλ)+.

The mean-square risk of the threshold processing method is defined by the formula

rJ(f) =
1

22J

J−1∑
j=0

2j−1∑
k1=0

2j−1∑
k2=0

3∑
λ=1

2jE
(
μ̂
[λ]
j,k1,k2

− μ
[λ]
j,k1,k2

)2
. (6)

In the case when the number of expansion coefficients is not random, the optimal threshold values
and the order of the mean square risk for various classes of signal functions are known. In particular,
using the methods from [4,10,11], we can prove the following estimate for the minimax order of the risk
(6).

Theorem 1. When choosing an asymptotically optimal threshold for hard and soft threshold processing,
the following relation holds:

sup
f∈Lip(γ,L)

rJ(f) � C2
−4γ
2γ+3

J
J

2γ+6
2γ+3 ,

where C is a positive constant.
The asymptotically optimal threshold in Theorem 1 for J → ∞ satisfies the relation

T � σ

√
6γ + 3

2γ + 3
ln 22J .

In the next section, the order of the mean-square risk of threshold processing in a model with a
random number of empirical decomposition coefficients is estimated.

4. Risk for a random number of coefficients

Let M be a positive integer random variable and N = 2M . Then the mean-square risk takes the
form

r(f) =

∞∑
J=0

P
(
N = 2J

) 1

22J

J−1∑
j=0

2j−1∑
k1=0

2j−1∑
k2=0

3∑
λ=1

2jE
(
μ̂
[λ]
j,k1,k2

− μ
[λ]
j,k1,k2

)2
, (7)
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and its asymptotic order depends on the distribution of N . To get meaningful estimates of the order of
(7), the value of N must be “large.” Consider the sequence Nn, n = 1, . . ., and assume that there is a
nonrandom increasing sequence of the natural numbers Jn, n = 1, . . ., such that Nn/2

Jn has a certain
limit (in the sense of uniform convergence in distribution) when n → ∞, i.e.,

sup
x�0

|Hn(x)−H(x)| < εn
2

→ 0, n → ∞, (8)

where

Hn(x) = P

(
Nn

2Jn
< x

)
,

and H(x) is the limit distribution function. Suppose H(x) does not have an atom at zero. Let us study
the behavior of

rn(f) =

∞∑
J=0

P
(
Nn = 2J

) 1

22J

J−1∑
j=0

2j−1∑
k1=0

2j−1∑
k2=0

3∑
λ=1

2jE
(
μ̂
[λ]
j,k1,k2

− μ
[λ]
j,k1,k2

)2

when n → ∞.
Let δn → 0 and αn → 0 when n → ∞ so that Jn + log2 δn → ∞ and H(δn) + 1 −H(δ−1

n ) < αn for
all n = 1, . . .. Then

rn(f) =

[Jn+log2 δn]∑
J=0

P
(
Nn = 2J

) 1

22J

J−1∑
j=0

2j−1∑
k1=0

2j−1∑
k2=0

3∑
λ=1

2jE
(
μ̂
[λ]
j,k1,k2

− μ
[λ]
j,k1,k2

)2
+

+

[Jn−log2 δn]∑
J=[Jn+log2 δn]+1

P
(
Nn = 2J

) 1

22J

J−1∑
j=0

2j−1∑
k1=0

2j−1∑
k2=0

3∑
λ=1

2jE
(
μ̂
[λ]
j,k1,k2

− μ
[λ]
j,k1,k2

)2
+

+

∞∑
J=[Jn−log2 δn]+1

P
(
Nn = 2J

) 1

22J

J−1∑
j=0

2j−1∑
k1=0

2j−1∑
k2=0

3∑
λ=1

2jE
(
μ̂
[λ]
j,k1,k2

− μ
[λ]
j,k1,k2

)2 ≡ S1 + S2 + S3.

Given (8), for S1 + S3 we have

S1 + S3 � C0(Hn(δn) + 1−Hn(δ
−1
n ))(Jn + log2 δn)2

Jn+log2 δn �
� C0(αn + εn)(Jn + log2 δn)2

Jn+log2 δn

where C0 is a positive constant.
For S2, using Theorem 1, we can obtain an estimate

S2 � C12
− 4γ

2γ+3
(Jn+log2 δn)(Jn + log2 δn)

2γ+6
2γ+3 .

where C1 is a positive constant. Thus, the following statement holds.
Theorem 2. In the model with a random number of empirical coefficients, when choosing an asymp-

totically optimal threshold, starting with some n the following estimate is valid:

sup
f∈Lip(γ,L)

rn(f) � C0(αn + εn)(Jn + log2 δn)2
Jn+log2 δn + C12

− 4γ
2γ+3

(Jn+log2 δn)(Jn + log2 δn)
2γ+6
2γ+3 .

The asymptotically optimal threshold when n → ∞ satisfies the relation

Tn � σ

√
6γ + 3

2γ + 3
ln 22(Jn+log2 δn).
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The form of αn, εn, and δn in Theorem 2 essentially depends on the behavior of the sequence Nn/2
Jn

and the limit distribution function H(x). Thus, εn characterizes the rate of convergence of Hn(x) to
H(x), while αn and δn depend on the behavior of H(x) in the neighborhood of zero and infinity.

Corollary 1. If the limit distribution of Nn/2
Jn is degenerate: Nn/2

Jn P−→ 1 when n → ∞, then
starting with some n

sup
f∈Lip(γ)

rn(f) � ε′nJn2
Jn + C22

− 4γ
2γ+3

JnJ
2γ+6
2γ+3
n ,

where ε′n characterizes the rate of convergence Nn/2
Jn P−→ 1, and C2 is a positive constant.

If ε′n decreases fast enough, then this estimate coincides with the estimate for the mean-square risk
in a model with a non-random number of coefficients.

Corollary 2. Let H(x) be differentiable in a neighborhood of origin, and for some positive constants

b and B, the relation b � H ′(x) � B holds in this neighborhood. Let δn � 2
− 6γ+3

8γ+6
Jn. Then, starting with

some n, the following estimate is valid:

sup
f∈Lip(γ)

rn(f) � C0εnJn2
2γ+3
8γ+6 + C32

− 2γ
4γ+3

JnJ
2γ+6
2γ+3
n , (9)

where C3 is a positive constant.
Thus, the mean-square risk for a random number of empirical coefficients may tend to zero much

slower than the mean-square risk for a non-random number of coefficients.
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