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1 Introduction

The vertex operator realization of Hall–Littlewood polynomials through generalized fermions was

first described in [1] followed by the construction of a deformed version of the boson-fermion

correspondence in [2]. The ideas were further developed and applied in works of many authors

[3]–[7].

The first goal of this paper is to show that the generalized fermions in [1] can be interpreted

as a simple twist of charged free fermions that provide the vertex operator realization of Schur

symmetric functions described in [8]–[10].

The deformed boson-fermion correspondence of [2] establishes a connection between the ac-

tions of generalized fermions and the twisted Heisenberg algebra. This correspondence found

its applications in [6, 7]. Our second goal is to propose a version of the boson-fermion corre-

spondence that relates generalized fermions with the action of the classical Heisenberg algebra.

This construction is different from the deformed boson-fermion correspondence in [2] and has

its own advantages: it does not require adjustments in the standard definition of the normal

ordered product of fields; the action of the classical Heisenberg algebra and, as a consequence,
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of the Virasoro algebra are naturally present in the picture; the action of the twisted Heisenberg

algebra appears as a renormalization of the action of the classical Heisenberg algebra; proofs

of this version of the boson-fermion correspondence, the original deformed boson-fermion cor-

respondence of [2], and its applications become simple implications of a twist of the classical

boson-fermion correspondence [11].

The third result of this paper is the construction of tau-functions of the KP hierarchy in the

deformed ring of symmetric functions Λ[t]. In [9], the symmetric functions Sλ are introduced as

a basis dual to the basis of the classical Schur functions sλ with respect to the natural scalar

form in the deformed ring of symmetric functions Λ[t]. Extending the idea of twisting the fields

of charged free fermions, we prove that Sλ are solutions of the bilinear KP identity and provide

two different vertex operator realizations of this family of symmetric functions. Note that this

is stronger than the result of [6] establishing that the element Λ[t] of the form
∑

sλSλ is a

tau-function of the KP hierarchy.

The paper is organized as follows. In Sections 2 and 3, we review necessary facts about

symmetric functions and the action of charged free fermions on the ring of symmetric functions.

In Section 4, we connect generalized fermions with classical charged free fermions. In Section 5,

we propose a version of the boson-fermion correspondence for generalized fermions and compare

it with the construction of [2]. In Section 6, we prove that symmetric functions Sλ that form a

basis for Λ[t] orthogonal to the basis of Schur functions sλ are tau-functions of the KP hierarchy.

We provide two different versions of their vertex operator realization.

2 Preliminaries on Symmetric Functions

We review necessary facts about symmetric functions following [9, 12]. Let Λ = Λ[x1, x2, . . . ]

be the ring of symmetric functions in variables (x1, x2, . . . ). Schur symmetric functions sλ
labeled by partitions λ = (λ1 � λ2 � . . . � λn � 0) defined by

sλ(x1, x2, . . . ) =
det [x

λj+n−j
i ]

det [xn−j
i ]

form a linear basis of Λ. We define complete symmetric functions hr = s(r) by

hr(x1, x2 . . . ) =
∑

1�i1�...�ir<∞
xi1 . . . xir ,

elementary symmetric functions er = s(1r) by

er(x1, x2 . . . ) =
∑

1<i1<···<ir<∞
xi1 . . . xir ,

and power sums pk by

pk(x1, x2, . . . ) =
∑

i

xki .

It is convenient to set h−k(x1, x2 . . . ) = e−k(x1, x2 . . . ) = p−k(x1, x2 . . . ) = 0 for k > 0 and

h0 = e0 = p0 = 1. Each of these families generates the ring of symmetric functions Λ as a

polynomial ring:

Λ = C[h1, h2, . . . ] = C[e1, e2, . . . ] = C[p1, p2, . . . ]. (2.1)
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Based on the interpretation of a polynomial ring as the ring of symmetric functions, one

defines the boson Fock space B. Let B = C[z, z−1, p1, p2, . . . ] be the graded space of polynomials

B = ⊕
m∈Z

B(m), where B(m) = zm · C[p1, p2, . . . ] = zmΛ. We write generating functions for

complete, elementary symmetric functions and power sums:

H(u) =
∑

k�0

hk
uk

, E(u) =
∑

k�0

ek
uk

, P (u) =
∞∑

k=1

pku
k. (2.2)

Then

H(u) =
∏

i�1

1

1− xi/u
, E(u) =

∏

i�1

(1 + xi/u), H(u)E(−u) = 1 (2.3)

and

H(u) = exp

(
∑

n�1

pn
n

1

un

)

, E(u) = exp

(

−
∑

n�1

(−1)npn
n

1

un

)

. (2.4)

The Heisenberg algebra is a complex Lie algebra generated by elements {αm}m∈Z and central

element 1 with commutation relations

[αk, αn] = kδk,−n · 1. (2.5)

Combining the generators into the formal distribution α(u) =
∑

k

αku
−k−1, we can write this

relation as

[α(u), α(v)] = ∂vδ(u, v), (2.6)

where δ(u, v) =
∑

k∈Z
ukv−k−1 is the formal delta-distribution. There is a natural action of the

Heisenberg algebra on the graded components αn: B(m) → B(m) defined by the multiplication

and differentiation operators:
α−n = pn/n, n > 0,

αn =
∂

∂pn
, n > 0,

α0 = m.

(2.7)

The ring of symmetric functions Λ possesses a natural scalar product, where the classical

Schur functions sλ constitute the orthonormal basis

〈sλ, sμ〉 = δλ,μ. (2.8)

Then for the operator of multiplication by a symmetric function f one can define the adjoint

operator f⊥ acting on the ring of symmetric functions by the standard rule

〈f⊥g, w〉 = 〈g, fw〉, g, f, w ∈ Λ.

We consider generating functions of the adjoint operators

E⊥(u) =
∑

k�0

e⊥k u
k, H⊥(u) =

∑

k�0

h⊥k u
k.
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One can prove that

E⊥(u) = exp

(

−
∑

k�1

(−1)k
∂

∂pk
uk

)

, H⊥(u) = exp

(
∑

k�1

∂

∂pk
uk

)

. (2.9)

The following commutation relations serve as the foundation of most of calculations below.

Proposition 2.1 (cf. [9]).
(
1− u

v

)
E⊥(u)E(v) = E(v)E⊥(u),

(
1− u

v

)
H⊥(u)H(v) = H(v)H⊥(u),

H⊥(u)E(v) =
(
1 +

u

v

)
E(v)H⊥(u),

E⊥(u)H(v) =
(
1 +

u

v

)
H(v)E⊥(u).

Remark 2.1. Statements of Proposition 2.1 should be understood as equalities of series

expansions in powers of ukv−m, k,m � 0.

3 Fermions and Schur Symmetric Functions

Following [11, 13, 14], we define the action of the algebra of charged free fermions on the

boson Fock space.

Let R(u) : B → B act on elements zmf , f ∈ Λ, by the rule (cf., for example, [14, 15])

R(u)(zmf) =
( z

u

)m+1
f.

Then R−1(u) acts as R−1(u)(zmf) = (z)m−1umf . One should think of R±1(u) as operators that

transport the action of other operators along the grading of the boson Fock space: R±1(u) :

B(m) → B(m±1). We set

Φ+(u) = uR(u)H(u)E⊥(−u), (3.1)

Φ−(u) = R−1(u)E(−u)H⊥(u). (3.2)

Observe that

Φ+(u)|B(m) = zu−mH(u)E⊥(−u),

Φ−(u)|B(m) = z−1umE(−u)H⊥(u).

Proposition 3.1. The quantum fields Φ±(u) satisfy the relations of the algebra of charged

free fermions

Φ±(u)Φ±(v) + Φ±(v)Φ±(u) = 0, (3.3)

Φ+(u)Φ−(v) + Φ−(v)Φ+(u) = δ(u, v), (3.4)

where δ(u, v) =
∑

k∈Z

uk

vk+1
is the formal delta-distribution.
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Proof. We use Proposition 2.1 to prove this classical result, thus illustrating the simplicity

of this approach. Relations between other vertex operators further in this text are proved along

the same line. Using the commutation relations of Proposition 2.1, for any f ∈ Λ we have

Φ+(u)Φ+(v)(zmf) = zm+2(uv)−m−2(v − u)H(u)H(v)E⊥(−u)E⊥(−v)(f),

Φ−(u)Φ−(v)(zmf) = zm−2(uv)m−2(v − u)E(−u)E(−v)H⊥(u)H⊥(v)(f).

Changing the roles of u and v in these calculations, one gets (3.3). For (3.4) we observe that
(
1− u

v

)
Φ+(u)Φ−(v)(zmf) = zmu−mvm−1H(u)E(−v)E⊥(−u)H⊥(v)(f),

(
1− v

u

)
Φ−(v)Φ+(u)(zmf) = zmu−m−1vmH(u)E(−v)E⊥(−u)H⊥(v)(f).

By Remark 2.1,
(
1− u

v

)−1∑

k�0

uk

vk+1
,

(
1− v

u

)−1
=

∑

k�0

vk

uk+1
.

Then

(Φ+(u)Φ−(v) + Φ−(v)Φ+(u))(zmf)

= zm
vm

um

(
∑

k�0

uk

vk+1
+

∑

k�0

vk

uk+1

)

H(u)E(−v)E⊥(−u)H⊥(v)(f)

= zm
vm

um
δ(u, v)H(u)E(−v)E⊥(−u)H⊥(v)(f) = δ(u, v) · zmf.

We used (2.3) along with the property of the formal delta distribution δ(u, v)A(v) = δ(u, v)A(u)

for any formal distribution A(u) (cf., for example, [14, 15]).

Let 1 ∈ B(0) be the constant function.

Proposition 3.2. Φ+(u1) . . .Φ
+(ul) (1) = zlu−l

1 . . . u−1
l Q(u1, . . . , ul), where

Q(u1, . . . , ul) =
∏

1�i<j�l

(
1− ui

uj

) l∏

i=1

H(ui).

Proof. Using Proposition 2.1 and taking into account that E⊥(−u)(1) = 1, we write

Φ+(u1, ) . . .Φ
+(ul) (1) = zlu−l

1 . . . u−1
l

∏

1�i<j�l

(
1− ui

uj

) l∏

i=1

H(ui)E
⊥(−ui)(1)

= zlu−l
1 . . . u−1

l Q(u1, . . . , ul).

The proposition is proved.

It is known [9, 8] that Q(u1, . . . , ul) is a generating function for Schur symmetric functions

in the following sense. Consider the series expansion of the rational function

Q(u1, . . . , ul) =
∑

(α1,...,αl)∈Zl

Qλ u
−λ1
1 . . . u−λl

l , |u1| < · · · < |ul|.
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Then for any partition λ = (λ1 � . . . � λl � 0) the coefficient of u−λ1
1 . . . u−λl

l is exactly a

Schur symmetric function: Q(λ1,...,λl) = sλ. Thus, Proposition 3.2 describes the vertex operator

presentation of Schur symmetric functions (cf. [8]–[10]).

4 Generalized Fermions and Hall–Littlewood
Symmetric Functions

Let λ be a partition of length at most n, and let t be a parameter. Hall–Littlewood polyno-

mials are defined by

Pλ(x1, . . . , xn; t) =

(
∏

i�0

m(i)∏

j=1

1− t

1− tj

)
∑

σ∈Sn

σ

(

xλ1
1 . . . xλn

n

∏

i<j

xi − txj
xi − xj

)

,

where m(i) is the number of parts of the partition λ that are equal to i and Sn is the symmetric

group of n letters [9]. Labeled by partitions, the Hall–Littlewood polynomials form a linear basis

of the deformed ring Λ[t] of symmetric polynomials with coefficients in C[t].

In this section, we show that the vertex operators presentation of Hall–Littlewood polyno-

mials Pλ is obtained from the vertex operators presentation of Schur symmetric functions sλ by

a simple twist of the fields of charged free fermions by multiplication by E(−u/t) or H(u/t).

This approach significantly simplifies the technical proofs of [1, 2] and provides new insight into

the original results of these papers.

Consider the deformed boson Fock space B(t) = ⊕B(m)[t], where B(m)[t] = zmΛ[t]. We

extend the action of the operators in Section 2 to B(t) by t-linearity. Define the quantum fields

of operators acting on B(t) by

Ψ+(u) = E(−u/t)Φ+(u) = uR(u)E(−u/t)H(u)E⊥(−u), (4.1)

Ψ−(u) = H(u/t)Φ−(u) = R−1(u)H(u/t)E(−u)H⊥(u). (4.2)

Proposition 4.1. The quantum fields Ψ±(u) satisfy the relations of generalized fermions
(
1− ut

v

)
Ψ±(u)Ψ±(v) +

(
1− vt

u

)
Ψ±(v)Ψ±(u) = 0, (4.3)

(
1− vt

u

)
Ψ+(u)Ψ−(v) +

(
1− ut

v

)
Ψ−(v)Ψ+(u) = δ(u, v)(1− t)2. (4.4)

The proof is based on the commutation relations of Proposition 2.1 and follows the same

line as the proof of Proposition 3.1.

Proposition 4.1 immediately implies that the operators Ψ±(u) provide the vertex operators

realization [1] of Hall–Littlewood polynomials. Let

F (u1, . . . , ul; t) =
∏

1�i<j�l

uj − ui
uj − uit

l∏

i=1

H(ui)E(−ui/t),

where the expression
∏

1�i<j�l

uj−ui

uj−uit
is understood as the series expansion of this rational function

in the region |u1| < · · · < |ul|. Consider the expansion

F (u1, . . . , ul; t) =
∑

λ1,...λl∈Z
Fλ u

−λ1
1 . . . u−λl

l , |u1| < · · · < |ul|.
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As proved in [1] (cf. also [9]), for any partition λ = (λ1 � . . . � λl � 0) the coefficient of

u−λ1
1 . . . u−λl

l is exactly a Hall–Littlewood symmetric function: Fλ = Pλ(x1, x2, . . . ; t).

Proposition 4.2 (the vertex operator presentation of Hall–Littlewood symmetric functions).

Ψ+(u1) . . .Ψ
+(ul) (1) = zlu−l

1 . . . u−1
l F (u1, . . . , ul; t). (4.5)

Proof. From the definitions (4.1), (4.2) and the commutation relations of Proposition 2.1

one immediately finds

Ψ+(u1) . . .Ψ
+(ul)(1)

= zl
∏

1�i<j�l

(
1− ui

uj

)(
1− uit

uj

)−1
l∏

i=1

ui−l−1
i H(ui)E(−ui/t)

l∏

i=1

E⊥(−ui)(1),

which simplifies to zlu−l
1 . . . u−1

l F (u1, . . . , ul; t) since E⊥(−u)(1) = 1.

Corollary 4.1. The generating functions F (u1, . . . , ul; t) for Hall–Littlewood polynomials

and Q(u1, . . . , ul) for Schur symmetric functions are related by

F (u1, . . . , ul; t) =
∏

1�i<j�l

(
1− tui

uj

)−1
l∏

i=1

E(−ui/t)Q(u1, . . . , ul).

5 Boson–Fermion Correspondence for Hall–Litllewood
Polynomials Revisited

The classical boson-fermion correspondence connects the action of charged free fermions and

the action of the (classical) Heisenberg algebra with generators {αm}m∈Z, central element 1, and

the relations (2.5):

(I) Heisenberg algebra → charged free fermions → Heisenberg algebra

In the same spirit, the deformed boson-fermion correspondence between the actions of gen-

eralized fermions and the twisted Heisenberg algebra was established in [2]:

(II) twisted Heisenberg algebra → generalized fermions → twisted Heisenberg algebra

The twisted Heisenberg algebra is an algebra with generators {hk}, central element c, and

the relations

[hn,hm] =
mδm,−n

1− t|m| · c. (5.1)

This construction found its applications in [6, 7]. At the same time, it has certain disadvanta-

geous deviations from the format of the classical boson-fermion correspondence. In particular,

to obtain the bosonization [2] of generalized fermions, one has to change the standard definition

of the normal ordered product of fields. Moreover, the natural presence of the action of the

classical Heisenberg algebra and the Virasoro algebra is not reflected by this deformed version.

In this section, we propose another deformed construction of the boson-fermion correspon-

dence, different from [2]. It establishes a connection between the actions of generalized fermions

and the classical Heisenberg algebra:
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(III) Heisenberg algebra → generalized fermions → Heisenberg algebra

Among the advantages of the boson-fermion correspondence (III) over (II) is that (a) the

standard definition of the normal ordered product of fields is used in all definitions, (b) the

action of the twisted Heisenberg algebra (5.1) is a certain renormalization of the action of the

classical Heisenberg algebra, (c) the action of the Virasoro algebra remains naturally in the

construction, (d) the proofs of statements of the correspondences (II) and (III) become simple

implications of the results of the classical boson-fermion correspondence (I).

We recall the statement of the classical boson-fermion correspondence in the form convenient

for our exposition. For a formal distribution a(z) =
∑

n∈Z
anz

−n−1 we define

a(z)+ =
∑

n�−1

anz
−n−1, a(z)− =

∑

n�0

anz
−n−1.

The normal ordered product of two formal distributions is a formal distribution defined by

: a(z)b(z) := a(z)+b(z) + b(z)a(z)− (cf., for example, [15]).

Proposition 5.1 (the classical boson-fermion correspondence (I); [11, 13, 14]).

(a) In the case of the action (2.7) of the Heisenberg algebra on the boson space B, the fields

Φ+(u) = uR(u) exp

(
∑

n�1

α−n
1

un

)

exp

(

−
∑

n�1

αnu
n

)

, (5.2)

Φ−(u) = R−1(u) exp

(

−
∑

n�1

α−n
1

un

)

exp

(
∑

n�1

αnu
n

)

(5.3)

satisfy the relations (3.3), (3.4) and define the action of charged free fermions on B.

(b) Let Φ±(u) =
∑

k∈Z
Φ±
k+1/2u

±k satisfy the relations (3.3) and (3.4), and let

Φ+(u)+ =
∑

k�1

Φ+
k+1/2u

k, Φ+(u)− =
∑

k�0

Φ+
k+1/2u

k.

Then the coefficients of the formal distribution α(u) =: Φ+(u) · Φ−(u) : = Φ+(u)+Φ−(u) −
Φ−(u)Φ+(u)− satisfy the relations (2.5) of the Heisenberg algebra.

(c) Let Φ±(u) =
∑

k∈Z
Φ±
k+1/2u

±k satisfy the relations (3.3) and (3.4). For any β ∈ C the coeffi-

cients of the formal distribution L(β)(u) =
∑

k∈Z
Lku

−k−2 defined by L(β)(u) = β : ∂Φ+(u)Φ−(u) :

+(1 − β) : Φ+(u)∂Φ−(u) : satisfy the relations of the Virasoro algebra with central charge

cβ = −12β2 + 12β − 2 :

[L(β)(u), L(β)(v)] = ∂vL(v) δ(u, v) + 2L(v) ∂vδ(u, v) +
cβ
12

∂3
vδ(u, v).

Proof. In the case of the action (2.7) of the Heisenberg algebra, we use (2.4) and (2.9) to

compare (5.2) and (5.3) with the definitions (3.1) and (3.2) of Φ±(u) to get part (a), while for

the proof of (b) and (c) we refer to [15].
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Proposition 5.2 (the revisited version of the boson-fermion correspondence (III)).

(a) The action of the twisted Heisenberg algebra can be defined by renormalization of the

action of the classical Heisenberg algebra:

h−n = α−n, n � 0,

hn =
1

1− tn
αn n > 0, c = 1.

(5.4)

(b) Consider the action (2.7) of the Heisenberg algebra on the boson space B expanded to

the deformed space B(t) by the rule αn(t
sf) = tsαn(f). Then the fields

Ψ+(u) = uR(u) exp

(
∑

n�1

(1− tn)α−n
1

un

)

exp

(

−
∑

n�1

αnu
n

)

, (5.5)

Ψ−(u) = R−1(u) exp

(

−
∑

n�1

(1− tn)α−n
1

un

)

exp

(
∑

n�1

αnu
n

)

(5.6)

satisfy the relations (4.3), (4.4) and define the action of generalized fermions on B(t).

(c) The other way, consider the action of the generalized fermions Ψ±(u) on B(t) defined

by (4.1), (4.2). Then the coefficients of the normal ordered product α(u) =: H(u/t)Ψ+(u) ·
E(−u/t)Ψ−(u) : satisfy (2.5) and define the action of the classical Heisenberg algebra on B(t).

(d) For the action (4.1), (4.2) of the generalized fermions Ψ±(u) on B(t) the coefficients of

the formal distribution L(β)(u) =
∑

k∈Z
Lku

−k−2 defined by the formula

L(β)(u) = β : H(u/t)(t−1P (−u/t)Ψ+(u) + ∂Ψ+(u)) · E(−u/t)Ψ−(u) :
+ (1− β) : H(u/t)Ψ+(u) · E(−u/t)(−t−1P (−u/t)Ψ−(u) + ∂Ψ−(u)) :

satisfy the relations of the Virasoro algebra with central charge cβ = −12β2 + 12β − 2.

Proof. A direct verification of the commutation relations proves part (a). For the given

action (2.7) of the Heisenberg algebra we use (2.4) and (2.9) to compare (5.5) and (5.6) with

the definitions (4.1) and (4.2) of Ψ±(u) to obtain part (b). Note that, by (a) and (4.1), (4.2),

the quantum fields

Φ+(u) = H(u/t)Ψ+(u), Φ−(u) = E(−u/t)Φ−(u) (5.7)

satisfy the relations of charged free fermions. Then part (c) follows from Proposition 5.1 (b).

Part (d) follows by substituting (5.7) into the formula of L(β)(u) in Proposition 5.1 (c) and

the properties (cf. [9]) P (u) = ∂H(u)/H(u) and P (−u) = ∂E(u)/E(u).

6 Tau-Functions of the KP Hierarchy in Λ[t]

The ring Λ[t] possesses the scalar product 〈·, ·〉t which is a deformation of the scalar product

(2.8) on Λ. Following [9, III.4], we define symmetric functions Sλ = Sλ(x1, x2, . . . ; t) as a basis

dual to the classical Schur functions sλ = sλ(x1, x2, . . . ) with respect to the deformed scalar

product 〈Sλ, sμ〉t = δλ,μ.
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Proposition 6.1. Let

S(u1, . . . , ul) =
∏

i<j

(
1− ui

uj

) l∏

i=1

H(ui)E(−ui/t).

Then for any partition λ the coefficient of u−λ1
1 . . . u−λl

l is Sλ.

Proof. By [9, III.4, formula (4.3) and III.2, formula (2.10)], Sλ can be expressed through

Hall–Littlewood polynomials P(k) by an analogue of the Jacobi–Trudi formula

Sλ = det [(1− t)P(λi−i+j)]. (6.1)

Here, P(k) = P(k)(x1, x2, . . . ; t) is the coefficient of the expansion

S(u; t) = H(u)E(−u/t) = (1− t)
∞∑

k=0

P(k)
1

uk
.

Then

S(u1, . . . , ul) =
∏

i<j

(
1− ui

uj

) l∏

i=1

S(ui; t) = det [u−i+j
i ]

∏

i

S(ui; t) = det [u−i+j
i S(ui; t)]

= (1− t)l
∑

σ∈Sl

sgn (σ)
∑

a1...al

P(a1)u
−a1−1+σ(1)
1 . . . P(al)u

−al−l+σ(l)
l

= (1− t)l
∑

λ1...λl

∑

σ∈Sl

sgn (σ)P(λ1−1+σ(1)) . . . P(λl−l+σ(l))u
−λ1
1 . . . u−λl

l

=
∑

λ1...λl

det [(1− t)P(λi−i+j)]u
−λ1
1 . . . u−λl

l .

The proposition is proved.

Corollary 6.1. The generating functions S(u1, . . . , ul) for symmetric functions Sλ and

Q(u1, . . . , ul) for Schur symmetric functions sλ are related by the formula

S(u1, . . . , ul) = E(−ul/t) . . . E(−u1/t)Q(u1, . . . ul).

The vertex operator presentation of the generating function S(u1, . . . , ul) can be written as

zlu−l
1 . . . u−1

l S(u1, . . . , ul) = E(−ul/t) . . . E(−u1/t)Φ
+(u1) . . .Φ

+(ul) (1).

The relation of the symmetric functions Sλ to tau-functions of the KP hierarchy is discussed

in [6]. The determinant type property (6.1) of symmetric functions Sλ is interpreted as the

Plücker coordinates type property. This observation allows the authors of [6] to conclude that

the expression
∑

λ

sλSλ is an example of tau-functions of the KP hierarchy in Λ[t].

Here, we show that the symmetric functions Sλ themselves are tau-functions of the KP hier-

archy. This result is not present in [6] and does not follow from the above-mentioned statement.

Moreover, we provide an explicit formula for the charged free fermions action that realizes the

KP hierarchy for these tau-functions and conclude with one more vertex operator presentation

of the generating function of Sλ.

It is well known that the bilinear form of the KP hierarchy is the equation Ω(τ ⊗ τ) = 0,

where τ ∈ B(0) = Λ = C[p1, p2, . . . ] and

Ω = Resu=0

(1

u
Φ+(u)⊗ Φ−(u)

)
. (6.2)
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It is known that Schur symmetric functions sλ ∈ B(0) are solutions of the KP hierarchy

[11, 16, 17]. We formally define

Φ+
t (u) = uR(u)H(u)E(−u/t)

∞∏

i=0

E⊥(−u/ti), (6.3)

Φ−
t (u) = R(u)−1E(−u)H(u/t)

∞∏

i=0

H⊥(u/ti) (6.4)

and consider

Ωt = Resu=0

(1

u
Φ+
t (u)⊗ Φ−

t (u)
)
, (6.5)

Ωt(τ ⊗ τ) = 0, τ ∈ B(0)(t). (6.6)

We summarize the statements in the following assertion.

Proposition 6.2. (a) Let Φ±
t (u) be defined by (6.3), (6.4) with the expansion to the region

|t| < 1. The operators Φ±
t (u) satisfy exactly the same relations as the classical charged free

fermions Φ±(u) in Proposition 3.1. Thus, the operators Φ±
t (u) provide the action of charged free

fermions on the deformed space B(t). Consequently, Equation (6.6) is the bilinear identity of

the KP hierarchy on functions τ ∈ B(t).

(b) The symmetric functions Sλ are solutions of the bilinear identity (6.6). Consequently,

the symmetric functions Sλ are tau-functions of the KP hierarchy.

(c) The generating function S(u1, . . . , ul) of symmetric functions Sλ has the second vertex

operator presentation Φ+
t (u1) . . .Φ

+
t (ul) (1) = zlu−l

1 . . . u−1
l S(u1, . . . , ul).

Proof. The Schur symmetric functions sλ are expressed in terms of complete symmetric

functions by the Jacobi–Trudi formula sλ = det [hλi−i+j ], whereas the complete symmetric

functions hk in the determinant can be expressed as polynomial functions of power sums hk =

hk(p1, p2, . . . ) through the relation

∞∑

k=0

hk
uk

= H(u) = exp

(
∑

n�1

pn
n

1

un

)

.

At the same time, from (6.1) the dual symmetric functions Sλ are given by Sλ = det [qλi−i+j ],

where the symmetric functions qk = (1 − t)P(k) are expressed as functions of power sums qk =

qk(p1, p2, . . . ) through the relation

∞∑

k=0

qk
uk

= H(u)E(−u/t) = exp

(
∑

n�1

(1− tn)
pn
n

1

un

)

.

Thus, Sλ as a function of power sums (p1, p2, . . . ) can be obtained from sλ by the substitution

of variables pn → (1− tn)pn.

Recall that the Schur symmetric functions sλ are solutions of the bilinear KP identity (6.2)

and Φ±(u) in (6.2) expressed in terms of the operators pi and ∂/∂pi have the form (5.2), (5.3).

Hence Sλ satisfies the bilinear identity Ωt(Sλ ⊗ Sλ) = 0, where

Ωt = Resu=0

(1

u
Φ+
t (u)⊗ Φ−

t (u)
)
, (6.7)
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and Φ±
t (u) is obtained from (5.2), (5.3) by the same substitution pn → (1− tn)pn:

Φ+
t (u) = uR(u) exp

(
∑

n�1

(1− tn)pn
n

1

un

)

exp

(
∑

n�1

1

(1− tn)

∂

∂pn
un

)

,

Φ−
t (u) = R(u)−1 exp

(

−
∑

n�1

(1− tn)pn
n

1

un

)

exp

(
∑

n�1

1

(1− tn)

∂

∂pn
un

)

.

Using the geometric series expansion

1

1− tn
=

∑

i

(ti)n, |t| < 1,

we can write the second exponential factor as

exp

(

∓
∑

n�1

1

(1− tn)

∂

∂pn
un

)

=
∞∏

i=0

exp

(

∓
∑

n�1

∂

∂pn
(tiu)n

)

=
∞∏

i=0

E⊥(−u/ti).

Note that

exp

(
∑

n�1

(1− tn)pn
n

1

un

)

= H(u)E(−u/t),

which gives (6.3) for Φ+
t (u) and, similarly, (6.4) for Φ−

t (u).

Applying the same substitution pn → (1− tn)pn to the result of Proposition 3.2, we get (c).

Proposition 6.2 is proved.
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