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ON THE CHROMATIC NUMBERS CORRESPONDING
TO EXPONENTIALLY RAMSEY SETS

A. A. Sagdeev∗ UDC 517

In this paper, nontrivial upper bounds on the chromatic numbers of the spaces R
n
p = (Rn, lp) with

forbidden monochromatic sets are proved. In the case of a forbidden rectangular parallelepiped
or a regular simplex, explicit exponential lower bounds on the chromatic numbers are obtained.
Exact values of the chromatic numbers of the spaces R

n
p with a forbidden regular simplex in the

case p = ∞ are found. Bibliography: 39 titles.

1. Introduction

In 1950, Nelson formulated his famous question (see [1]): “What is the minimal number
χ
(
R
2
)
of colors enough to color all points of a plane such that no two points at distance 1

have the same color?” Unfortunately, this question remains open. It is known that

5 ≤ χ
(
R
2
) ≤ 7

(see [1] for the proof of the upper bound; the lower bound has been proved in a recent
preprint [2]).

There are different ways to generalize the classical Nelson’s problem. For example, instead
of the plane R

2, one can color the Euclidean space R
n or, more general, the metric space R

n
p ,

for p ∈ [1;∞], which is defined as Rn with the following metric lp:

x = (x1, . . . , xn), y = (y1, . . . , yn) ⇒ lp(x,y) =
p
√

|x1 − y1|p + · · ·+ |xn − yn|p.
The chromatic numbers χ

(
R
n
p

)
were studied in several papers, and a lot of facts about them

are known. In particular, for χ
(
R
n
p

)
where n is large, the following is known:

Theorem 1. The following four statements are valid:
(1) for p ∈ [1,∞] and n → ∞, one has

(
1 +

√
2

2
+ o(1)

)n

= (1.207... + o(1))n ≤ χ
(
R
n
p

) ≤ (4 + o(1))n ,

(2) for p = 1 and n → ∞, one has
(
1 +

√
3

2
+ o(1)

)n

= (1.366... + o(1))n ≤ χ (Rn
1 ) ≤ (4 + o(1))n ,

(3) for p = 2 and n → ∞, one has

(1.239... + o(1))n ≤ χ (Rn
2 ) ≤ (3 + o(1))n ,

(4) For p = ∞ and arbitrary n, one has

χ (Rn
∞) = 2n.
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For proofs of upper and lower bounds in item 1, see [3] and [4], respectively. The proof of
item 2 can be found in [5] and [4]. Item 3 is proved in [6] and [7]. The equality of item 4 is
classical, and its proof can be found in [8].

Euclidean Ramsey Theory studies other generalizations of Nelson’s question, see [9–11] and
book [12]. Let the parameters p and n be as defined above, and Y = (Y, dY ) be a metric space.
A subset X ⊂ R

n is called a copy of the space Y if there exists a bijection f : Y → X such
that for any y1, y2 ∈ Y one has dY (y1, y2) = lp(f(y1), f(y2)).

The chromatic number χ
(
R
n
p ;Y

)
of the space R

n
p with a forbidden space Y is the minimal

number of colors enough to color Rn
p such that no copy X ⊂ R

n of the space Y is colored with
only one color.

Clearly, the initial Nelson’s question of finding χ
(
R
2
)
is a special case of finding χ

(
R
n
p ;Y

)
.

Indeed, one can set n = p = 2 and choose a two-point space as Y. Since the exact value of
χ
(
R
2
)
has not been found yet, we cannot hope to obtain the exact value of χ

(
R
n
p ;Y

)
in the

general case. However, we will try to solve simpler questions.
For example, we can try to ask a natural question, which is similar to the result of Theorem 1:

does χ
(
R
n
p ;Y

)
tend to infinity (exponentially) as n tends to infinity? If this property holds,

the metric space Y is called an lp-(exponentially) Ramsey space.
No criterion that allows one to describe all Ramsey and exponentially Ramsey sets is known.

However, there are two popular conjectures on this topic. The first conjecture claims that each
Ramsey set is exponentially Ramsey. The second conjecture claims that for p = 2 (i. e., for
Euclidean metric) a set Y is Ramsey if and only if it is finite and “spherical” (i. e., lies on a
certain multidimensional sphere). Now it is known that these two conditions are necessary,
but their sufficiency is not proved, see [12].

Only a few types of sets are known to be Ramsey or exponentially Ramsey. We will list
them after giving some definitions.

An lp-Cartesian product ×p of metric spaces X = (X, dX) and Y = (Y, dY ) is a metric space
X ×p Y = (X × Y, d) , where the metric d is defined as follows:

∀x1, x2 ∈ X ∀ y1, y2 ∈ Y d((x1, y1), (x2, y2)) =
p

√
dpX(x1, x2) + dpY (y1, y2).

A k-dimensional lp-rectangular parallelepiped Ik
p = Ik

p (a1, . . . , ak) is a metric space, which
is an lp-Cartesian product of k “ intervals” (2-point metric spaces) such that for all i, the
length of the ith interval is equal to ai.

A k-dimensional simplex is any metric space that consists of k+1 points. If, in addition, all
distances between two of these points are equal, then we call such a simplex Sk regular. Note
that this definition is natural in l2-metric, but there is no obstacle to define a simplex in this
way for p 
= 2.

Now we are ready to list all known exponentially Ramsey sets.
It was proved in [13] that for all p ∈ [1;∞], the set of vertices of any lp-rectangular paral-

lelepiped is lp-exponentially Ramsey. Also it was proved there that for p = 2, each nondegen-
erate simplex is exponentially Ramsey. Clearly, each subset of an exponentially Ramsey set
is also exponentially Ramsey: if Y1 ⊂ Y2 then χ

(
R
n
p ;Y1

) ≥ χ
(
R
n
p ;Y2

)
. These are all known

examples of exponentially Ramsey sets.
A weaker Ramsey property is proved for some other sets. In [14] and [15], it was proved

that the set of vertices of an arbitrary regular polytope is l2-Ramsey. In [16], it was proved
that an arbitrary trapezoid is l2-Ramsey.

However, despite the fact that some sets have been known to be exponentially Ramsey for a
long time, only a few papers studied exponentially increasing lower bounds similar to bounds
from Theorem 1 for these exponentially Ramsey sets.
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In [17] and [18], the case Y = Sk was studied and the following theorem was proved.

Theorem 2. Given p ∈ [1,∞], k ≥ 1, for n → ∞, one has

χ
(
R
n
p ;Sk

) ≥
(
1 +

1

22
k+4 + o(1)

)n

.

In [19], a new method allowed one to obtain several bounds and, in particular, the following
Theorem.

Theorem 3. Let p ∈ [1,∞], and let Y = Sk or Y = Ik
p . Then there is a function ε(k) that

approaches 0 as k → ∞ such that the following holds. Given k ≥ 1, for n → ∞, one has

χ
(
R
n
p ;Y

) ≥
(

1 +

(
1

2 + ε(k)

)k

+ o(1)

)n

.

It is clear that for large k, Theorem 3 gives a more powerful bound than Theorem 2.
However, since there is no explicit form of ε(k), we do not know whether it is true for small
k or not. In Sec. 2, we state Theorem 6 and its advantage over Theorem 2 becomes clear for
all k.

An interesting result is proved in [19] (compare with item 4 of Theorem 1):

Theorem 4. Given k ≥ 1, one has χ (Rn∞;Sk) = (2 + o(1))n as n → ∞.

In this paper, we find the exact value of χ (Rn∞;Sk) for every n and k via Theorem 7 (see
Sec. 2).

This is what is known about lower exponentially increasing bounds on χ
(
R
n
p ;Y

)
. Now let

us discuss upper bounds, some of them can be found in [20] and [21]. In [21], the following
theorem was proved.

Theorem 5. Let Y = (Y, dY ) be a finite metric space. Define l(Y) as a minimal positive l
such that any two elements u, v ∈ Y can be joined by a path {u = y0, y1, . . . , ym = v}, where
yi ∈ Y and

max
0≤i≤m−1

dY (yi, yi+1) ≤ l.

Define R(l2;Y) as the minimal radius of an l2-ball that contains a copy of Y. Then, for n → ∞,
one has

χ (Rn
2 ;Y) ≤

(
1 +

l(Y)
R(l2;Y) + o(1)

)n

.

This theorem allows one to obtain explicit nontrivial upper bounds for any fixed space Y,
since in each special case one can easily calculate the values l(Y) and R(l2;Y) (see, for example,
several corollaries to this theorem in [21]). However, this theorem holds only for l2-metric.

In the present paper, we apply the method from [21] to a more general case. The bound
obtained in Theorem 8 (see Sec. 2) is valid for all lp-metrics.

Note that some other similar problems of combinatorial geometry and Euclidean Ramsey
theory were considered in papers [22–33], surveys [34–37], and in book [12].

2. Main results

As was mentioned in Sec. 1, this paper contains three main results. First of them is the
following Theorem 6, which is a detailed version of Theorem 3.

Theorem 6. For all p ∈ [1,∞], k ≥ 2, and for n → ∞, one has

χ
(
R
n
p ;Ik

p

)
≥

(
1 +

1

2k+1 · k2 + o(1)

)n

.
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Since a regular k-dimensional simplex Sk is a subset of a (k + 1)-dimensional cube Ik+1
p (a

k + 1 ×p-power of an interval), Theorem 6 implies the following corollary.

Corollary 1. For all p ∈ [1,∞], k ≥ 1, and for n → ∞, one has

χ
(
R
n
p ;Sk

) ≥
(
1 +

1

2k+2 · (k + 1)2
+ o(1)

)n

.

It is clear that the bound from Corollary 1 is more powerful than the bound from Theorem 2
for all k.

The second main result of our paper is the following Theorem 7.

Theorem 7. Given positive integers k and n, one has

χ (Rn
∞;Sk) =

⌈
2n

k

⌉
.

In the special case k = 1, the result of Theorem 7 coincides with the previously known result
(item 4 of Theorem 1).

To state the third main result of our paper, we need several new definitions concerned with
the theory of dense packings.

Let K be a bounded convex body in R
n, and let Ω be a lattice in R

n such that

K = K +Ω =
⋃

ω∈Ω
(K + ω)

is a packing, i. e., the union is disjoint. Let δ(K) = vol K
det Ω be the density of our packing and

δ(K) = sup
Ω

δ(K).

Let r > 0 and Bn
p = Bn

p (r) be an n-dimensional lp-ball of radius r. Let c(p) be the least c
for which the following inequality holds:

δ(Bn
p ) ≥ (2c + o(1))−n ,

or, in other words,

c(p) = lim sup
n→∞

log2
(
δ−1(Bn

p )
)

n
.

Now we are ready to state the third main result of our paper.

Theorem 8. Let p ∈ [1,∞], and let Y = (Y, dY ) be a finite metric space. The values l(Y) and
R(lp;Y) are defined as in Theorem 5. Then, for n → ∞, one has

χ
(
R
n
p ;Y

) ≤
(
2c(p) ·

(
1 +

l(Y)
2 · R(lp;Y)

)
+ o(1)

)n

.

Unfortunately, it is difficult to apply this theorem even in special cases. The exact value of
c(p) is known only for p = ∞: c(∞) = 0 (see [38]). However, we need not the exact value of
c(p) to apply Theorem 8, it is enough to have an upper bound on it. Such upper bounds can
be found in [38]. In particular, it is known that c(p) ≤ 1 for all p.

One more problem with applying Theorem 8 in special cases is the fact that for p 
= 2 it
is not clear how to calculate R(lp;Y) (or, even, how to give a lower bound on it). Of course,
we can use the obvious inequality 2 · R(lp;Y) ≥ diam Y, but this bound is often far from the
optimal one.

Applying what was written above, we immediately obtain two corollaries to Theorem 8.
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Corollary 2. Let p < ∞ and Y = (Y, dY ) be a finite metric space. Then for n → ∞, one has

χ
(
R
n
p ;Y

) ≤
(
2 +

l(Y)
R(lp;Y) + o(1)

)n

≤
(
2 +

2 · l(Y)
diam Y + o(1)

)n

.

Corollary 3. Let p = ∞ and Y = (Y, dY ) be a finite metric space. Then for n → ∞, one has

χ (Rn
∞;Y) ≤

(
1 +

l(Y)
2 · R(l∞;Y) + o(1)

)n

≤
(
1 +

l(Y)
diam Y + o(1)

)n

.

Remark 1. Note that, in “the most interesting case” p = 2, no better bound than c(2) ≤ 1
is known. Moreover, the conjecture that c(2) = 1 is popular. Thus, probably, for p = 2, the
bound from Corollary 2 is the best possible that can be obtained by our method. However,
this bound is much weaker than the previously known bound from Theorem 5. In the proof of
Theorem 5, more powerful technique is used. The proof is based on the fact that each Voronoj
decomposition consists of convex bodies. Unfortunately, this fact is not true for lp-metrics in
the general case. To obtain a bound valid for all p, we apply a less powerful but more universal
method. Thus, in the case p = 2, our bound is weaker than the previously known one.

In Theorem 6, we have written an explicit lower bound on the chromatic number in the case
where Y = Ik

p (a1, . . . , ak). To illustrate this case, let us also write an upper bound, which
trivially follows from Corollary 2.

Corollary 4. Let p < ∞ and Y = Ik
p = Ik

p (a1, . . . , ak), where the ai are sorted in ascending
order. Then, for n → ∞, one has

χ
(
R
n
p ;Ik

p

)
≤

⎛

⎝2 +
ak

p

√
ap1 + · · · + apk

+ o(1)

⎞

⎠

n

.

In particular, if all the ai are equal, i. e., Ik
p is a k-dimensional cube, then

χ
(
R
n
p ;Ik

p

)
≤

(
2 +

1
p
√
k
+ o(1)

)n

.

The remaining part of our paper is organized as follows. In Sec. 3, we prove Theorem 6. In
Sec. 4, we prove Theorem 7. Finally, in Sec. 5, we prove Theorem 8.

3. The proof of Theorem 6

3.1. Statement of an auxiliary Theorem 9 and derivation of Theorem 6 from The-
orem 9. The proof of Theorem 6 is close to the proof of Theorem 3 from [19], but now we
perform the main calculations more carefully. In fact, this leads to a more powerful statement
than Theorem 6.

Theorem 9. For all p ∈ [1,∞], k ≥ 3, and for n → ∞, one has

χ
(
R
n
p ;Ik

p

)
≥

(
e

1

2k+1·k·(k−1) + o(1)

)n

.

For all k ≥ 3, Theorem 6 follows from Theorem 9, since

e
1

2k+1·k·(k−1) > 1 +
1

2k+1 · k · (k − 1)
> 1 +

1

2k+1 · k2 .

The only remaining case of Theorem 6 is the case k = 2. Here we need another result
from [19]:

χ
(
R
n
p ;I2

p

) ≥ (1.0428 · · · + o(1))n .
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Clearly, this bound is even better than is required. Therefore, it remains only to prove Theo-
rem 9.

3.2. The proof of Theorem 9. Let us give a proof by induction on k. The base of induction
— the case k = 3 — follows from the bound proved in [19]:

χ
(
R
n
p ;I3

p

) ≥ (1.0126 · · · + o(1))n

and the trivial fact that

ln 1.0126 >
1

23+1 · 3 · 2 .
To prove the inductive step, we apply the following theorem proved in [19].

Theorem 10. Let A = (A, dA) be a finite metric lp-exponentially Ramsey space for a certain
p ≥ 1. Assume that

χ
(
R
n
p ;A

) ≥ (χA + o(1))n

as n → ∞. Let I be a two-point metric space. Then A×pI is also an lp-exponentially Ramsey
space and

χ
(
R
n
p ;A×p I

) ≥
(
χδ
A + o(1)

)n

as n → ∞, where

cba =
aa

bb · (a− b)(a−b)
, χ(x, y) =

c
min(x,2x−2y)
1

cx−y
1

, δ =
lnχ(x, y)

lnχA + lnχ(x, y) + ln cyx + ln cx−y
1−x

,

and the values of the auxiliary parameters 0 < y < x ≤ 1
2 can be chosen arbitrary.

Remark 2. In [19], this theorem was stated under a stronger condition than the lp-expo-
nentially Ramsey property on A. Informally speaking, it was required in [19] that the fact
that A is lp-exponentially Ramsey could be proved by showing a sequence of hypergraphs such
that its number of vertices grew “rather slow”. However, by looking over the proof of that
theorem, one can see that a “rather slow” increasing of the number of vertices is not necessary,
and it is sufficient to have any sequence of hypergraphs showing that A is lp-exponentially
Ramsey. One can also note that Erdős–de Breun theorem (which holds not only for graphs,
but also for hypergraphs, see [34]) implies that such a sequence of hypergraphs exists for
every lp-exponentially Ramsey set. Hence, the theorem proved in [19] is equivalent to our
Theorem 10.

Theorem 10 is rather complicated and not explicit, because the optimal values of the aux-
iliary parameters x and y still have to be calculated. That is why we use a simplified version
of this theorem.

Corollary 5. Let p ≥ 1 and let A = (A, dA) be a finite metric lp-exponentially Ramsey space.
Assume that

χ
(
R
n
p ;A

) ≥ (er + o(1))n

as n → ∞, where 0 ≤ r ≤ 1
2 . Let I be a two-point metric space. Then A ×p I is also an

lp-exponentially Ramsey space and

χ
(
R
n
p ;A×p I

) ≥
(
er·s(r) + o(1)

)n

as n → ∞, where

s(r) =
1

2
− ln 2

ln
(
1
r

) − ln 2 · ln (ln (1r
))

ln2
(
1
r

) .
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Proof. To obtain this result, we apply Theorem 10 to our situation with

x =
r ln

(
1
r

)

2 ln 2
, y =

r ln
(
1
r

)

4 ln 2
.

After that it is sufficient to verify that the number δ from Theorem 10 is greater than the
required quantity s(r). �

Now to prove the inductive step, we apply Corollary 5 to

A = Ik
p and r =

1

2k+1 · k · (k − 1)
.

It is easy to check that s(r) > 1
2 − 1

k+1 . Therefore,

r · s(r) > 1

2k+1 · k · (k − 1)
·
(
1

2
− 1

k + 1

)
=

1

2k+2 · (k + 1) · k .

This completes the inductive step. Thus, Theorem 9 holds by induction.

4. Proof of Theorem 7

Since the space R
n∞ is homothetic to itself, we may assume without loss of generality that

the length of each edge of Sk is equal to 1. Let m = 2n, and let v1, . . . ,vm be all points of
R
n such that each of its coordinates is equal to either 0 or 1.
Now we are ready to give a proof, which we divided into two simple lemmas.

Lemma 1. Given positive integers k and n, one has

χ (Rn
∞;Sk) ≥

⌈
2n

k

⌉
.

Proof. Given positive integers k and n, let us assume the contrary. Then, there is a “proper”
coloring of Rn∞ with s <

⌈
2n

k

⌉
colors. In particular, the points v1, . . . ,vm are colored with s

colors. By the pigeonhole principle, there are k + 1 points of the same color among them. It
is easy to see that this set of k + 1 points is a copy of Sk. But this situation is forbidden for
proper colorings. Hence, it contradicts the assumption that there is a proper coloring. �

Lemma 2. Given positive integers k and n, one has

χ (Rn
∞;Sk) ≤

⌈
2n

k

⌉
.

Proof. We prove the desired inequality by constructing an explicit coloring. Let

Vi =
⋃

z∈Zn

{vi + 2z+ [0; 1)n} ⊂ R
n, 1 ≤ i ≤ m.

Clearly,
m⊔

i=1

Vi = R
n. (1)

It is easy to see that

∀ i ∀x, y ∈ Vi l∞(x, y) 
= 1. (2)

Now we color R
n with

⌈
2n

k

⌉
colors as follows: we join sets Vi into

⌈
2n

k

⌉
classes such that

each of these classes contains exactly k sets Vi (maybe, except for the last class that contains
remaining 2n − k · ⌊2n

k

⌋
sets in the case where 2n is not divisible by k). We color each class

with its own color and obtain the desired coloring.
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Indeed, (1) implies that each point of R
n is colored. It follows from (2) that for each

(k+1)-element set X which is a copy of Sk in R
n∞, and for each Vi, we have |X ∩ Vi| ≤ 1 and,

therefore, X cannot be colored with one color.
Thus, we have constructed a “proper” coloring of Rn∞ with

⌈
2n

k

⌉
colors and Lemma 2 is

proved. �

5. Proof of Theorem 8

Let a number p and a space Y be fixed. Let ε(n) be a positive function that approaches 0
as n → ∞. Given n ∈ N, set

μ = 1 +
l(Y)

2 · R(lp;Y) + ε(n) and r = R(lp;Y) + l(Y)
2

.

The reason for such a choice of parameters will become clear later.
By the definition of c(p), there is a function ε(p, n) that approaches 0 as n → ∞ and such

that the following holds. Given n, there is a lattice Ω such that

δ(Bn
p (r) + Ω) ≥

(
2c(p) + ε(p, n)

)−n
.

Let K(μ) = 1
μB

n
p (r) + Ω = Bn

p (
r
μ) + Ω. We are going to prove that K(μ) does not contain a

copy of Y. Let us consider two cases.
Assume that a copy of Y is a subset of one lp-ball of radius

r
μ . However, this contradicts

the definition of R(lp;Y), since r
μ < R(lp;Y).

Now assume that a copy of Y is a subset of K(μ) and intersects several lp-balls. By the
definition of l(Y), there are its two points in different balls at distance at most l(Y). However,
this is impossible as well, since the distance between any two balls of K(μ) is greater than
l(Y). Indeed, let the points x1 and x2 belong to balls with centers O1 and O2, respectively.
Then, by the triangle inequality,

lp(x1, x2) ≥ lp(O1, O2)− lp(O1, x2)− lp(x2, O2) ≥ 2r − r

μ
− r

μ
> l(Y).

Thus, K(μ) contains no copy of the space Y and, therefore, we can color K(μ) with one
color in the desired coloring. To complete the proof we need a statement, which is a simplified
version of the main result in [39].

Theorem 11. There is a subexponential function ω(n) = (1 + o(1))n such that for any convex
body K ⊂ R

n and for any lattice such that K = K+Ω is a packing, the space R
n can be covered

with at most δ−1(K) · ω(n) copies of the set K.

Now we apply Theorem 11 to K(μ). It gives us that there is a proper coloring with at most

(
2c(p) + ε(p, n)

)n · μn · ω(n) =
(
2c(p) ·

(
1 +

l(Y)
2 ·R(lp;Y)

)
+ o(1)

)n

colors. The proof of Theorem 8 is complete.
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