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LINEAR BOUNDARY-VALUE PROBLEMS FORWEAKLY SINGULAR INTEGRAL
EQUATIONS

O. A. Boichuk1 and V. A. Feruk2;3 UDC 517.968.2

We establish necessary and sufficient conditions for the solvability of the linear boundary-value problem
for a weakly singular integral equation and find the general form of the solution to this problem.

The extensive application of integral equations and boundary-value problems for these equations promotes the
development of the theory and the appearance of numerous publications in this field. In particular, there are many
works devoted to the investigation of weakly singular integral equations called equations with weak singularity or
equations with polar kernels and encountered in various fields of natural sciences [1, 2]. The foundations of the
theory of equations of this kind were presented in the monographs by Goursat [3], Mikhlin [4], Tricomi [5], and
Smirnov [6]. The works by Vainikko [7], Graham [8], Tang [9], and other researchers [10–14] were devoted to the
study of differential properties of the solutions of weakly singular integral equations and the development of ap-
proximate methods for their solution. The problem of solvability of equations of this kind with unbounded kernels
and singular equations with Cauchy-type kernels is investigated by using the procedure of regularization of these
equations, i.e., by reduction to the Fredholm equation [15]. However, the problem of finding the solvability condi-
tions and construction of the solutions of specific equations with the help of the Fredholm alternative encounters
significant technical difficulties. In the present paper, by using the methods of the theory of pseudoinverse matri-
ces, we consider an alternative approach and establish, in the constructive way, the conditions for the existence of
solutions of weakly singular integral equations and Noetherian boundary-value problems for these equations and
determine the structure of their solutions.

1. Boundary-Value Problem for an Integral Equation with Weakly Singular Kernel

Consider a linear inhomogeneous boundary-value problem for the integral equation with weakly singular
kernel

x.t/ D f .t/C
bZ

a

K.t; s/x.s/ds; (1)

lx.�/ D ˛: (2)

Here,

K.t; s/ D H.t; s/

jt � sj� ;
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where H.t; s/ is a function bounded in the domain Œa; bç ⇥ Œa; bç; 0 < � < 1; f 2 L2Œa; bç; x 2 L2Œa; bç; l is
a bounded linear functional defined in L2Œa; bç; l D col

�
l1; l2; : : : ; lp

�
WL2Œa; bç ! Rp; l⌫ WL2Œa; bç ! R; and

˛ D col
�
˛1; ˛2; : : : ; p̨

�
2 Rp:

2. Reduction of the Integral Equation (1) to an Equation with Iterated Kernel

The kernel K.t; s/ of the integral operator

.Kw/.t/ D
bZ

a

K.t; s/w.s/ds

in Eq. (1) is unbounded. However, Eq. (1) can be reduced to a certain equivalent equation with integral operator
whose kernel is square summable. This enables us to pass from the investigation of the boundary-value problem
for the integral equation with unbounded kernel (1), (2) to the investigation of the boundary-value problem for the
Fredholm integral equation.

To substantiate the above-mentioned transition, we present the required information from the theory of weakly
singular integral operators. It is known [3–6] that, for two given integral operatorsH1 andH2 with weakly singular
kernels

H1.t; s/

jt � sj�1 and
H2.t; s/

jt � sj�2

with exponents �1 and �2; respectively, their productH1H2 has the following kernel:

F.t; s/ D
bZ

a

H1.t; ⇠/H2.⇠; s/

jt � ⇠j�1 j⇠ � sj�2 d⇠

of the same structure and the exponent that does not exceed �1 C �2 � 1: Under the condition

�1 C �2 � 1 <
1

2
(3)

the kernel F.t; s/ is square summable and, for

�1 C �2 � 1 < 0; (4)

the kernel F.t; s/ is bounded.
We now consider the iterated kernels Kn.t; s/; n 2 N; given by the recurrence relation

KnC1.t; s/ D
bZ

a

K.t; ⇠/Kn.⇠; s/d⇠; K1.t; s/ D K.t; s/: (5)

According to the results presented above, the iterated kernels Kn.t; s/ have the same structure as the weakly
singular kernel

K.t; s/ D H.t; s/

jt � sj�
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but the number � is replaced with 1 � n.1 � �/; which becomes negative for sufficiently large n: Thus, according
to (3) and (4), for all n such that the condition

n >
1

2.1 � �/
(6)

is satisfied, the kernels Kn.t; s/ are square summable and, for

n >
1

1 � �
; (7)

the kernels Kn.t; s/ are bounded.
We now show that Eq. (1) can be reduced to the Fredholm equation with the kernel Kn.t; s/: Indeed, multi-

plying both sides of Eq. (1) from the left by K.t; s/ and integrating the left- and right-hand sides of the obtained
equality over the segment Œa; bç; we get

bZ

a

K.t; s/x.s/ds D
bZ

a

K.t; s/f .s/ds C
bZ

a

K2.t; s/x.s/ds:

Continuing this process, we obtain

bZ

a

K2.t; s/x.s/ ds D
bZ

a

K2.t; s/f .s/ ds C
bZ

a

K3.t; s/x.s/ ds;

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

bZ

a

Kn�1.t; s/x.s/ ds D
bZ

a

Kn�1.t; s/f .s/ ds C
bZ

a

Kn.t; s/x.s/ ds:

Further, we add the obtained equations to Eq. (1) (term by term), this enables us to conclude that the function x.t/
is a solution of the equation

x.t/ D fn.t/C
bZ

a

Kn.t; s/x.s/ds; (8)

fn.t/ D f .t/C
n�1X

kD1

bZ

a

Kk.t; s/f .s/ds:

Thus [3–6], according to condition (6), after finitely many steps, we arrive at Eq. (8) with square summable
kernel. It is clear that any solution of Eq. (1) is a solution of Eq. (8). Generally speaking, the converse statement is
not true. However, it is possible to choose a number n such that condition (7) and, hence, condition (6) are satisfied
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and an arbitrary solution of Eq. (8) is a solution of Eq. (1), i.e., Eqs. (1) and (8) are equivalent [4, p. 98]. In what
follows, we assume that the number n is chosen in this way. Thus, for fixed n; we pass from the investigation
of the boundary-value problem for the integral equation with unbounded kernel (1), (2) to the investigation of the
boundary-value problem for the Fredholm integral equation (8), (2).

Remark. If, for some fixed n for which condition is satisfied, Eq. (8) possesses a single solution, then Eqs. (1)
and (8) are equivalent. In particular, Eqs. (1) and (8) are equivalent if the Fredholm operator in Eq. (1) is replaced
with the Volterra operator [3, p. 36].

3. Criterion of Solvability of the Boundary-Value Problem (1), (2)

To study problem (8), (2), we use the approach described in [16, 17]. Problem (8), (2) can be reduced to a
countable system of linear algebraic equations. Let f'i .t/g1iD1 be a complete orthonormal system of functions in
L2Œa; bç: We introduce the quantities

xi D
bZ

a

x.t/'i .t/ dt; aij D
bZ

a

bZ

a

Kn.t; s/'i .t/'j .s/ dt ds; (9)

fi D
bZ

a

fn.t/'i .t/dt D
bZ

a

f .t/'i .t/ dt C
n�1X

kD1

bZ

a

bZ

a

Kk.t; s/f .s/'i .t/ dt ds: (10)

Applying expressions (9) and (10) to problem (8), (2), we arrive at the following countable system of algebraic
equations:

xi �
1X

jD1

aijxj D fi ; i D 1;1; (11)

1X

jD1

l⌫'j .�/xj D ˛⌫ ; ⌫ D 1; p; (12)

1X

iD1

jxi j2 < C1:

We rewrite system (11), (12) in the form of an operator equation in the space `2:

Uz D

ƒ

W

�
z D


g

˛

�
D q; (13)

where

z D col
�
x1; x2; : : : ; xi ; : : :

�
; g D col

�
f1; f2; : : : ; fi ; : : :

�
; (14)
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ƒ D

0

BBBBBBBBB@

1 � a11 �a12 : : : �a1i : : :

�a21 1 � a22 : : : �a2i : : :

: : : : : : : : : : : : : : :

�ai1 �ai2 : : : 1 � ai i : : :

: : : : : : : : : : : : : : :

1

CCCCCCCCCA

; W D lˆ.�/; (15)

ˆ.t/ D
�
'1.t/; '2.t/; : : : ; 'i .t/; : : :

�
:

The operator ƒW `2 ! `2 on the left-hand side of the operator equation (13) has the form ƒ D I � A; where
I W `2 ! `2 is the identity operator and AW `2 ! `2 is a completely continuous operator. According to S. Krein’s
classification, ƒW `2 ! `2 is a Fredholm operator

.dim kerƒ D dim kerƒ⇤ < 1/

and U W `2 ! `2 ⇥Rp is a Fredholm operator .dim kerU < 1 and dim kerU ⇤ < 1/:

Thus, the following theorem is true for Eq. (13) [18]:

Theorem 1. The homogeneous equation (13) .q D 0/ possesses a d2-parameter family of solutions z 2 `2
of the form

z D Pƒr
PQd2

cd2
8cd2

2 Rd2 :

The inhomogeneous equation (13) is solvable if and only if r C d1 linearly independent conditions

Pƒ⇤
r
g D 0;

PQ⇤
d1

�
˛ �WƒCg

�
D 0

are satisfied and possesses a d2-parameter family of solutions z 2 `2 of the form

z D Pƒr
PQd2

cd2
C Pƒr

QC.˛ �WƒCg/CƒCg 8cd2
2 Rd2 :

Here, Q D WPƒr
; Pƒr

�
Pƒ⇤

r

�
is a matrix formed by a complete system of r linearly independent columns

(rows) of the matrix projector Pƒ .Pƒ⇤/ ; where Pƒ .Pƒ⇤/ is the projector onto the kernel (cokernel) of the matrix
ƒ and PQd2

⇣
PQ⇤

d1

⌘
is a matrix formed by the complete system of d2 .d1/ linearly independent columns (rows)

of the matrix projector PQ

�
PQ⇤

�
I here, PQ

�
PQ⇤

�
is the projector onto the kernel (cokernel) of the matrix Q;

and ƒC �
QC� is the pseudoinverse (in the Moore–Penrose sense) matrix for the matrix ƒ .Q/:

If Eq. (13) has a solution, then, by the Riesz–Fischer theorem, there exists an element x 2 L2Œa; bç such that
xi ; i D 1;1; determined from system (11), (12), are its Fourier coefficients, i.e., the representation

x.t/ D
1X

iD1

xi'i .t/ D ˆ.t/z (16)
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is true. The element x.t/ determined by relation (16) is the required solution of the boundary-value problem (8),
(2) and, hence, of the original problem(1), (2).

According to [16, 18], the following assertion is true:

Theorem 2. The homogeneous boundary-value problem (1), (2) .f .t/ D 0; ˛ D 0/ possesses the solution
x 2 L2Œa; bç

x.t/ D ˆ.t/Pƒr
PQd2

cd2
8cd2

2 Rd2 :

The inhomogeneous boundary-value problem (1), (2) is solvable if and only if r linearly independent conditions

Pƒ⇤
r
g D 0 (17)

and d1 linearly independent conditions

PQ⇤
d1

�
˛ �WƒCg

�
D 0 (18)

are satisfied and has a d2-parameter family of solutions x 2 L2Œa; bç of the form

x.t/ D ˆ.t/
⇣
Pƒr

PQd2
cd2

C Pƒr
QC �

˛ �WƒCg
�
CƒCg

⌘
8cd2

2 Rd2 : (19)

4. Example

We now illustrate the theoretical results obtained above by analyzing a specific example. Consider a boundary-
value problem for the Volterra integral equation with weakly singular kernel

x.t/ D .t C 1/.3 � 4
p
t C 1/C

tZ

�1

x.s/dsp
t � s

; t 2 Œ�1; 1ç; (20)

1Z

�1

tx.t/ dt D 2: (21)

In this case,

K.t; s/ D 1p
t � s

;

i.e.,

� D 1

2

and, according to condition (6), all iterated kernels starting from K2.t; s/ are square summable. Thus, in view of
the remark made in Sec. 2, we can pass from the boundary-value problem for the integral equation with unbounded
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kernel (20), (21) to the equivalent boundary-value problem for the integral equation with square summable kernel
K2.t; s/ of the form [5, p. 58]

K2.t; s/ D
tZ

s

d⇠
p
.t � ⇠/.⇠ � s/

D ⇡

[in view of relation (5)]. Indeed, multiplying both sides of Eq. (20) from the left by K.t; s/; integrating the left-
and right-hand sides of the obtained equality over the segment Œ�1; 1ç; and adding the obtained equation to Eq. (20)
(term by term), we get

x.t/ D 3

2
.t C 1/.2 � ⇡ � ⇡ t /C ⇡

tZ

�1

x.s/ ds; t 2 Œ�1; 1ç; (22)

1Z

�1

tx.t/ dt D 2: (23)

Problem (22), (23) can be reduced to a countable system of linear algebraic equations. We introduce a function

'i .t/ D
r

2i � 1

2
Pi�1.t/;

where Pi .t/ are the Legendre polynomials. The system f'i .t/g1iD1 is a complete orthonormal system of functions
in L2Œ�1; 1ç: We compute the quantities aij and fi : According to (9) and (10), by using the properties of the
Legendre polynomials [19, p. 142], we obtain

aij D ⇡

1Z

�1

'i .t/

tZ

�1

'j .s/ ds dt

D ⇡

2

p
.2i � 1/.2j � 1/

1Z

�1

Pi�1.t/

tZ

�1

Pj�1.s/ ds dt

D ⇡

2

s
2i � 1

2j � 1

1Z

�1

Pi�1.t/
�
Pj .t/ � Pj�2.t/

�
dt

D

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂:

⇡; i D j D 1;

⇡
p
.2i C 1/.2i � 1/

; j D i � 1;

� ⇡
p
.2i C 1/.2i � 1/

; j D i C 1;

0; i D j > 1; j D i ˙ k; k > 1;
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fi D
3

2

1Z

�1

.t C 1/.2 � ⇡ � ⇡ t /'i .t/ dt

D 3

2

r
2i � 1

2

1Z

�1

.t C 1/.2 � ⇡ � ⇡ t /Pi�1.t/dt

D

8
ˆ̂̂
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂̂
ˆ̂:

p
2.3 � 2⇡/; i D 1;

p
6.1 � ⇡/; i D 2;

�
p
10

5
⇡; i D 3;

0; i > 3:

In view of notation (14), (15), the operator equation (13) takes the form

Uz D

ƒ

W

�
z D


g

˛

�
D q;

where

z D col
�
x1; x2; : : : ; xi ; : : :

�
; xi D

r
2i � 1

2

1Z

�1

x.t/Pi�1.t/dt;

ƒ D

0

BBBBBBBBBBB@

1 � ⇡
⇡p
3

0 0 0 : : :

� ⇡p
3

1
⇡p
15

0 0 : : :

0 � ⇡p
15

1
⇡p
35

0 : : :

0 0 � ⇡p
35

1
⇡p
63

: : :

: : : : : : : : : : : : : : : : : :

1

CCCCCCCCCCCA

; g D �
p
10

5

0

BBBBBBBBB@

p
5.2⇡ � 3/

p
15.⇡ � 1/

⇡

0

: : :

1

CCCCCCCCCA

;

W D
✓
0;

p
6

3
; 0; : : : ; 0; : : :

◆
; ˛ D 2:

Equation (22) is an equation with degenerate kernel and a polynomial right-hand side. Hence [3–6], its solution
is a polynomial of degree at most 2. This means that, in the construction of the operator equation (13), we can
restrict ourselves to the functions f'i .t/g3iD1: In this case,

detƒ D 1

15

�
15 � 15⇡ C 6⇡2 � ⇡3

�
D ˇ ⇡ �0:26
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and the tridiagonal matrix ƒ is nonsingular. Therefore,

ƒC D ƒ�1 D 1

15ˇ

0

BBBB@

15C ⇡2 �5
p
3⇡

p
5⇡2

5
p
3⇡ 15.1 � ⇡/

p
15

�
⇡2 � ⇡

�

p
5⇡2 �

p
15

�
⇡2 � ⇡

�
5
�
3 � 3⇡ C ⇡2

�

1

CCCCA

and

Pƒ D Pƒ⇤ D O3⇥3; Q D O1⇥3; QC D O3⇥1; PQd2
D I3; PQ⇤

d1

D 1; d1 D 1; d2 D 3;

where O3⇥3; O1⇥3; and O3⇥1 are 3 ⇥ 3; 1 ⇥ 3; and 3 ⇥ 1 zero matrices, respectively, and I3 is the identity matrix
of order 3:

We now check the conditions of solvability formulated in Theorem 2 for the boundary-value problem (20),
(21). It is clear that condition (17) is satisfied in view of the fact that Pƒ⇤ D 0: Further, we consider condition
(18):

PQ⇤
d1

�
˛ �WƒCg

�
D 2C 2

15ˇ

�
5⇡.2⇡ � 3/C 15.1 � ⇡/.⇡ � 1/C

�
⇡2 � ⇡

�
⇡
�

D 2C 2

15ˇ

�
⇡3 � 6⇡2 C 15⇡ � 15

�
D 0:

Thus, condition (18) is also satisfied. By Theorem 2, the boundary-value problem (20), (21) possesses a unique
solution x 2 L2Œ�1; 1ç: In the analyzed case, this solution takes the form

x.t/ D ˆ.t/ƒ�1g D
p
10

300ˇ

�
2
p
2; 2

p
6t;

p
10.3t2 � 1/

�

0

BBBB@

45
p
5ˇ

15
p
15ˇ

0

1

CCCCA
D 3.t C 1/: (24)

Thus, we have established that the Noetherian boundary-value problem for the integral equation with un-
bounded kernel (20), (21) is uniquely solvable and constructed the solution of this problem (24).
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(2008).
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