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We generalize the well-known Scarf theorem on the nonemptiness of the core to the case

of generalized fuzzy cooperative games without side payments provided that the set of

blocking coalitions is extended by the so-called fuzzy coalitions. The notion of a balanced

family is extended to the case of an arbitrary set of fuzzy blocking coalitions, owing to

which it is possible to introduce a natural analogue of balancedness of a fuzzy game for

the characteristic function with an arbitrary efficiency domain. Based on an appropriate

approximation of a fuzzy game by finitely-generated games, together with the seminal

combinatorial Scarf lemma on ordinal and admissible bases, we obtain rather general

conditions of the existence of unblocked imputations for F -balanced fuzzy cooperative

games. Bibliography: 15 titles.

The paper is based on the results of [1]. We generalize the well-known Scarf theorem on the

nonemptiness of the core [2, 3] to the large class of cooperative games without side payments

in the case where the set of blocking coalitions, together with usual ones, includes an arbitrary

family of the so-called fuzzy coalitions. To the knowledge of the author, except for [1] and

[4], there are no results in the literature on general conditions of the existence of an unblocked

imputation in fuzzy cooperative games without side payments. We focus on the case where the

above-mentioned family is infinite (in particular, all fuzzy coalitions are blocking). The notion of

a balanced cover [5, 6] is extended to the case of an arbitrary family of fuzzy blocking coalitions,

which allows us to introduce a natural analogue of the notion of balancedness for generalized

cooperative game with any efficiency set of its characteristic function. For an arbitrary finite

efficiency set we introduce the notion of a finitely generated game and, using the combinatorial

Scarf lemma on ordinal and admissible bases [7], establish a counterpart of the classical Scarf

theorem on the nonemptiness of the core. Then, using appropriate approximations of arbitrary

finitely generated games, we prove an analogue of the Scarf theorem on the nonemptiness of

the core in the general case (provided that the efficiency domain of the characteristic function

is finite). It is of interest that the obtained generalization verbatim coincides with the original
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Scarf theorem, where ordinary coalitions are suitably replaced by more general ones. Finally,

based on traditional compactness arguments, it is possible to extend the results of this paper

to the case of an infinite efficiency set of the characteristic function of a generalized cooperative

game.

1 Definitions and Formulation of the Main Results

We introduce the notation. Let n be an arbitrary natural number. We set N = {1, . . . , n}
and denote by 2N the collection of subsets of N . In the traditional game-theoretic terminology

[8], elements of the set N are called players and elements of the family 2N are referred to as

coalitions. In a number of cases, it is convenient to identify coalitions with the corresponding

vertices of the unit n-dimensional cube In = {(τ1, . . . , τn) ∈ R
N | τi ∈ [0, 1], i ∈ N} (hereinafter,

R denotes the set of real numbers). As usual, for any coalition S ⊆ N we denote by eS its

indicator function:

(eS)i =

{
1, i ∈ S,

0, i ∈ N \ S.
These indicator functions eS (which are obviously vertices of the hypercube In) correspond to

standard coalitions S which are identified with elements of In.

As known, together with vertices (ordinary coalitions), an important role in the description

of the Walrasian and Edgeworth distributions is played by other elements of the hypercube

In (cf., for example, [9]–[12]). We mean the so-called fuzzy coalitions, the collection of which

(including all standard coalitions) is denoted by σF and is defined by the formula

σF = In \ {0}.

Thus, fuzzy coalitions are nonzero elements of the unit n-dimensional cube In. Moreover, as was

already mentioned, the vertices (the points τ ∈ σF with coordinates only 0 or 1) are naturally

identified with standard coalitions Sτ = {i ∈ N | τi = 1}. We recall [13] that the quantity of the

component τi of the fuzzy coalition τ = (τ1, . . . , τn) is interpreted as the level of participation

of player i in the coordination of efforts of players of the large coalition N . Respectively, in

ordinary coalitions, each player i either fully participates (τi = 1) or does not participate at all

(τi = 0) in this coordination. For τ in σF we denote by N(τ) the support of the fuzzy coalition τ :

N(τ) = {i ∈ N | τi > 0}.

By the definition of σF , the supports of fuzzy coalitions are nonempty sets.

Saying informally, the generalizied games considered below are mappings sending each variant

of the union τ ∈ σF to some (possibly, empty) set of payoff vectors reachable while formatting

the fuzzy coalition τ under consideration.

Definition 1. A generalized fuzzy cooperative n-person game is a set-valued mapping

τ �→ G(τ), τ ∈ σF ,

sending a coalition τ ∈ σF to a subset G(τ) of the space R
N(τ). Elements of G(τ) are called

payoff vectors of the coalition τ , and the payoff vectors of the coalition eN are also called the

payoff vectors of the game G. We define G at zero by setting G(0) = ∅.
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It is clear that the set of “capable” coalitions of the game G providing the nontrivial coop-

eration effect is of a great interest.

Definition 2. The efficiency set of a game G is the collection e(G) of all fuzzy coalitions τ

such that G(τ) �= ∅:

e(G) = {τ ∈ σF | G(τ) �= ∅}.
Elements of the set e(G) are called blocking coalitions.

In what follows, we often use the following assumption.

Assumption 1. The sets G(e{1}), . . . , G(e{n}) and G(eN ) are nonempty and closed. In

particular, the efficiency set of the game G contains all one-element coalitions and the coalition

of all players: {e{1}, . . . , e{n}, eN} ⊆ e(G).

Definition 3. A generalized fuzzy cooperative game G is called regular if Assumption 1 is

satisfied.

Remark 1. It is clear that the above-mentioned games τ �→ G(τ), τ ∈ In, naturally general-

ize the classical cooperative n-person games since each classical game S �→ F (S) ⊆ R
S , S ⊆ N,

is trivially extended to the whole hypercube In by the formula

F (τ) = ∅, τ ∈ σ0
F = In \ σ0,

where σ0 is the set of nonzero vertices of the cube In. Thus, the classical cooperative n-person

games can be identified with a generalized cooperative game G such that e(G) = σ0.

For the sake of brevity, throughout the paper, in addition to the notation eS we sometimes

use the symbol S to denote the vertices of the hypercube In corresponding to ordinary coalitions

S ⊆ N (we often use the same notation for eN and N). Furthermore, as usual, one-element

coalitions {i} are sometimes denoted by i. Finally, we use the standard notation: for any vectors

x = (x1, . . . , xm) and y = (y1, . . . , ym) in R
m we set

x � y ⇔ xk � yk, k = 1, . . . ,m,

x � y ⇔ xk > yk, k = 1, . . . ,m.

We introduce the key notion of this paper; namely, an F -balanced cover, where for covering

we can take not only ordinary, but also properly fuzzy coalitions.1)

Definition 4. A finite family of fuzzy coalitions {τk}k∈K is called an F -balanced cover of the

set N if there are nonnegative numbers {λk}k∈K such that
∑
k∈K

λkτ
k = eN . As in the classical

definition, the numbers λk are called weights of fuzzy coalitions τk.

Remark 2. We indicate a simple geometric interpretation of the F -balancedness of the

cover T = {τk}k∈K : the family T forms an F -balanced cover of a coalition N if and only if its

conical hull contains the diagonal D = {teN ∣∣t > 0} : D ⊆ coneT .

To define an F -balanced generalized game G, we begin by introducing an analogue of a

G-balanced vector [11] for such a game. Further, as usual, uS ∈ R
S denotes the restriction of

the vector u = (u1, . . . , un) ∈ R
N on the set S ⊆ N , i.e., (uS)i = ui, i ∈ S.

1) In the classical notion of a balanced cover, it is assumed that all its elements are standard coalitions [5]. In

the literature, along with a balanced cover, the term a balanced family is used (cf., for example, [14]).
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Definition 5. Let G be an arbitrary generalized cooperative n-person game. A vector

u ∈ R
N is called G-balanced if there exists an F -balanced cover {τk}k∈K of the set N such that

uN(τk) ∈ G(τk) for all k ∈ K.

Definition 6. A game G is said to be F -balanced if any G-balanced vector belongs to G(N).

We formulate the central notion of the paper: the core of a generalized cooperative game G.

Definition 7. We say that a coalition τ ∈ e(G) blocks a payoff vector u = (u1, . . . , un) ∈
G(N) if there exists a vector v = (vi)i∈N(τ) ∈ G(τ) such that vi > ui for all i ∈ N(τ). The

collection of all payoff vectors in G(N) that are not blocked by any coalition τ ∈ e(G) is denoted

by C(G) and is called the core of the game G.

We recall (cf., for example, [2, 11]) that the blocking in the classical cooperative game is

defined in the same way as in Definition 7 (applied to the blocking coalitions in the family σ0).

Unlike the classical case, the blocking in a generalized game is defined not only for elements of a

finite set consisting of 2n − 1 standard coalitions, but also for the remaining coalitions in e(G).

If necessary to emphasize that we deal with a nonclassical game, the blocking in such a game

will be also called F -blocking.

Remark 3. We indicate the property of cores of generalized cooperative games which will

be useful below. Namely, as in the case of an ordinary cooperative game, if the set G(N) is

closed, then the core of the generalized game G is closed. Indeed, assume that the sequence of

payoff vectors {vm}∞m=1 ⊆ C(G) converges to some vector v0. By the embedding C(G) ⊆ G(N)

and closeness of G(N), we have v0 ∈ G(N). Thus, to prove that v0 belongs to the core C(G), it

remains to check that there is no coalition blocking the payoff vector v0. Assume the contrary.

Let v0 be blocked by a coalition τ ∈ σF . Then ui > v0i , i ∈ N(τ), for some payoff vector

u ∈ G(τ). Since v0 = lim
m→∞ vm, there exists a sufficiently large natural number m0 such that

ui > vmi for all i ∈ N(τ) and m � m0. Consequently, the coalition τ blocks all payoff vectors vm

with m � m0. However, by assumption, the vectors vm are contained in the core C(G) for all

m � 1. This contradiction shows that the limit of any converging sequence of vectors in C(G)

also belongs to the core of the generalized cooperative game G.

We recall one of the assumptions of the classical Scarf theorem on the nonemptiness of the

core [2] which will be used in a generalization of this theorem below. We set

uGi = sup{ui ∈ R | ui ∈ G(ei)}, i ∈ N. (1)

It is clear that for the nonemptiness of the core C(G) it is necessary that for each player i ∈ N

the quantity uGi (the maximal guaranteed payoff of player i) to be finite; otherwise, the one-

element coalition ei can block any vector in G(N). Therefore, we assume that the following

condition is satisfied everywhere below.

Assumption 2. For all players of the game G the quantities uGi are finite, i.e., uGi < ∞ for

every i ∈ N .

Remark 4. It is clear that from Assumption 2 we have the inclusions uGi ∈ G(e{i}), i ∈ N ,

for any regular game G.

As in the classical Scarf theorem, we introduce the set of individually rational payoff vectors

of the large coalition N :

Ĝ(N) = {u ∈ G(N) | u � uG},
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where uG = (uG1 , . . . , u
G
n ) is a vector in R

n whose components are defined by (1). In what

follows, the term individual rationalilty will be also used for the remaining coalitions τ : a vector

u ∈ G(τ) is called an individually rational payoff vector of a coalition τ if u � uGN(τ), where

uGN(τ) is the restriction of the vector uG onto the set N(τ): uGN(τ) = (uGi )i∈N(τ). The collection

of individually rational payoff vectors of a coalition τ is denoted by Ĝ(τ):

Ĝ(τ) = {u ∈ G(τ) | u � uGN(τ)}.

We introduce a useful counterpart of another object of the classical theory of cooperative

games, namely, the set of imputations of a game with side payments [14]. By imputations of a

generalized game G we mean elements of the set I(G) of collectively rational payoff vectors in

Ĝ(eN ):

I(G) = {u ∈ Ĝ(N) | there are no v ∈ G(N) such that u 
 v}.
Remark 5. It is clear that the set I(G) of imputations of a generalized game G, as in

the case of usual games, is the set of all payoff vectors of the large coalition eN of unblocked

neither one-element coalitions e{1}, . . . , e{n} nor coalition of all players eN . Consequently, for

any regular game G we have the embedding C(G) ⊆ I(G). Therefore, in what follows, elements

of the core C(G) of a regular game G are referred to as unblocked imputations, as in the case of

usual games.

We also recall that a set X ⊆ R
m is said to be comprehensive from below if, together with

each element x of X the set X contains any element y such that y � x.

Definition 8. We say that a game G is comprehensive from below if all sets G(τ), τ ∈ e(G),

are comprehensive from below.

We indicate the following useful specification of the notion of F -balancedness for games

comprehensive from below. We introduce the necessary notation. Let T = {τk}k∈K be a finite

family of fuzzy coalitions, and let V = {vk}k∈K be a family of payoff vectors reachable by efforts

of these coalitions: vk ∈ G(τk) for every k ∈ K. We set N(T ) =
⋃

k∈K N(τk) and for every

i ∈ N(T ) denote by Ki the set of numbers in K corresponding to the coalitions τk, including

player i:

Ki = {k ∈ K | i ∈ N(τk)}, i ∈ N(T ).

In what follows, we denote by uV the vector in R
N(T ) associated with the family V by the

formula

uVi = min
{
vki

∣∣ k ∈ Ki

}
, i ∈ N(T ). (2)

The following characterization of F -balancedness is valid for comprehensive from below gen-

eralized cooperative games .

Proposition 1. Let a generalized cooperative game G be comprehensive from below. Then

G is F -balanced if and only if for any F -balanced cover T = {τk}k∈K of the set N and for any

family of payoff vectors V = {vk}k∈K such that vk ∈ G(τk), k ∈ K, we have uV ∈ G(N), where

uV is defined by formula (2).

Proof. Let G be a comprehensive from below generalized game. We first show that the

F -balancedness of G implies the inclusion uV ∈ G(N) for any finite collection V = {vk}k∈K of

payoff vectors of the fuzzy coalitions τk, k ∈ K, that form an F -balanced cover of the set N .
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Indeed, by the construction of the vector uV , we have uV
N(τk)

� vk, k ∈ K; moreover, vk ∈ G(τk),

k ∈ K, by assumption. Consequently, since the game G is comprehensive from below, we have

uV
N(τk)

∈ G(τk), k ∈ K. Since the family T = {τk}k∈K forms an F -balanced cover of the set

N, we have uV ∈ G(N), which is required.

Let a comprehensive from below game G be such that uV ∈ G(N) for every finite family V
of payoff vectors vk ∈ G(τk), k ∈ K, such that the corresponding family of coalitions {τk}k∈K
forms an F -balanced cover of the set N . We show that G is an F -balanced game. We assume

that a vector v ∈ R
N is such that vN(τk) ∈ G(τk), k ∈ K, for some F -balanced cover {τk}k∈K of

the set N . It is clear that the vector v can be represented as v = uV , where V = {vN(τk)}k∈K
(moreover, the fuzzy coalitions τk corresponding to the vectors vk = vN(τk) form an F -balanced

cover of the set N by assumption). Since the vector uV belongs to the set G(N) by assumption,

we obtain the required assertion v = uV ∈ G(N).

Remark 6. By the second part of the proof of Proposition 1, the fact that the vector uV

of the set G(N) for any finite family V of imputations vk ∈ G(τk), k ∈ K, such that the

corresponding family of coalitions {τk}k∈K is an F -balanced cover of the set N is sufficient for

the F -balancedness of the game G in the most general case where the game G is not necessarily

comprehensive from below.

According to the traditional formulation [2], the classical cooperative game G without side

payments is a set-valued mapping S �→ G(S), S ∈ 2N that associates any coalition S ⊆ N with

a nonempty subset G(S) of the space R
S . Consequently, as was already emphasized in Remark

1, the classical cooperative games can be identified with the generalized cooperative games G

satisfying the condition e(G) = σ0. Taking into account this fact, we can formulate the Scarf

theorem on the nonemptiness of the core as follows.

Theorem (Scarf [2]). Let the efficiency set of a generalized cooperative game G coincide with

σ0. Furthermore, if the game G is comprehensive from below and F -balanced, all sets G(τ) are

closed, and the set Ĝ(N) is bounded from above, then the core of the game G is nonempty.

It turns out that the Scarf theorem, which is the key results in the modern theory of coop-

erative games, can be practically word-by-word generalized to the case of an arbitrary efficiency

set. Namely, the analogue of this theorem proved below repeats the formulation of the Scarf

theorem in the case of generalized cooperative games with any restrictions on the efficiency set

of the game (in addition to the regularity condition). We remain details for further discussion

and emphasize that the principal point for obtaining such an analog is proposed in sufficiently

natural and “operable” generalization of the classical notions of balanced cover and balanced

cooperative game.

Theorem 1. If a regular generalized fuzzy cooperative game G is comprehensive from below

and F -balanced, all the sets G(τ) are closed, and the set Ĝ(N) is bounded from above, then the

core of the game G is nonempty.

The further analysis whether the saturation from below and F -balancedness properties are

inherited shows that Theorem 1 can be considerably improved. Namely, the conclusion of

Theorem 1 remains valid if the requirement of the closeness of G(τ) is imposed only on the sets

of payoff vectors of one-element coalitions ei, i ∈ N, and the coalition eN (in other words, the

requirement of the closeness of all sets G(τ), τ ∈ σF , in Theorem 1 is superfluous).
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Theorem 2. If a regular generalized cooperative game G is comprehensive from below and

F -balanced and the set Ĝ(N) is bounded from above, then the core of the game G is nonempty.

2 Common Properties of Cores of Regular Games

Proceeding by considering auxiliary constructions necessary for proving Theorems 1 and 2,

we establish some useful general facts concerning some properties of regular cooperative games.

Let G be an arbitrary regular cooperative game. With G we associate the game G0 defined by

G0(τ) = Ĝ(τ)− R
N(τ)
+ , τ ∈ e(G). (3)

For τ such that Ĝ(τ) = ∅ we set G0(τ) = ∅.

Remark 7. It is clear that the set e(G0), in general, is only a part of the efficiency set e(G)

of the regular game G. However, in any case, for a nonempty and bounded from above set Ĝ(N)

the game G0 is also regular. Indeed, by Remark 4, Ĝ(ei) = {uGi }, i ∈ N , for a regular game G.

Consequently, the relation G0(ei) = (−∞, uGi ] for every i ∈ N , which proves the nonemptiness

and closeness of the sets G0(ei). The nonemptiness and closeness of G0(N) follow from the

nonemptiness, closeness, and boundedness of Ĝ(N). Indeed, in this case, the nonempty set

G0(N), regarded as the algebraic sum of the compact set Ĝ(N) and the closed set −R
N
+ , is a

closed set in view of the known theorem in mathematical analysis.

A close connection between the games G and G0 is illustrated by the following lemma.

Lemma 1. For any comprehensive from below regular game G such that Ĝ(N) �= ∅ the

following equality holds:

C(G) = C(G0);

moreover, if the game G is F -balanced and the set Ĝ(N) is bounded from above, then G0 is also

a comprehensive from below, F -balanced, and regular game such that

Ĝ0(N) = Ĝ(N).

Proof. It is clear that for any game G the corresponding game G0 is comprehensive from

below by construction. Therefore if the game G itself is comprehensive from below, then G0(τ) ⊆
G(τ) for all coalitions τ ∈ e(G). By the first of the following obvious relations

C(G) ⊆ Ĝ(N), C(G0) ⊆ Ĝ(N), (4)

we have C(G) ⊆ C(G0). On the other hand, the fact that of some payoff vector u ∈ Ĝ(N)

is blocked by a coalition τ ∈ e(G) in the game G means that vi > ui, i ∈ N(τ), for some

v ∈ G(τ). By the relation u � uG, we have the inequality v � uGN(τ) which means that the

vector v belongs to G0(τ). Consequently, by formula (3) and the relation v � uN(τ), the payoff

vector u is blocked by the coalition τ and in the game G0. Thus, vectors in Ĝ(N) that are

blocked in the game G are also blocked in the game G0. By the second relation in (4), we have

C(G0) ⊆ C(G), which together with the inverse embedding proved above, leads to the required

equality C(G) = C(G0).

Now, we assume that a comprehensive from below regular gameG has an individually rational

payoff vector (Ĝ(N) �= ∅) and is F -balanced. We first verify that the associated game G0 is also
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F -balanced. For this purpose we consider an arbitrary G0-balanced vector v = (v1, . . . , vn) and

show that this vector belongs to the set G0(N). Indeed, the G0-balancedness of v implies the

existence of an F -balanced cover {τk}k∈K of the coalition N for which vNk
∈ G0(τk), k ∈ K,

where Nk = N(τk). By the definition of the game G0, from these inclusions imply the existence

of vectors uk ∈ Ĝ(τk), k ∈ K, such that

vNk
� uk, k ∈ K.

We denote by u =
∧

k∈K
uk the vector in R

N defined by

ui = min
k∈Ki

uki , i ∈ N,

where Ki = {k ∈ K | i ∈ Nk}, i ∈ N . By the definition of u, it is obvious that uk ∈ Ĝ(τk),

k ∈ K, imply u � uG. On the other hand, by the obvious inequalities uNk
� uk, k ∈ K, and,

since the sets G(τk) are comprehensive from below, we have uNk
∈ G(τk), k ∈ K. Consequently,

in view of the F -balancedness of the game G, we have the inclusion u ∈ G(N) which, together

with the above-mentioned inequality u � uG, shows that the vector u belongs to the set Ĝ(N).

To complete the proof of the inclusion v ∈ G0(N), it remains to note that the inequality v � u

holds since vNk
� uk, k ∈ K. Indeed, since the set is saturated from below, the set G0(N) is

comprehensive from below, the last inequality, together with the inclusion u ∈ Ĝ(N) proved

above, leads to the required result: v belongs to G0(N).

As for the regularity and saturation from below of the game G0, these properties immediately

follow from the regularity of G, the condition Ĝ(N) �= ∅, and the definition of the game G0.

Indeed, it suffices to prove the closeness of the set G0(N), but this property follows from the

nonemptiness and compactness of Ĝ(N) (recall that in the case under consideration, in view of

the boundedness of Ĝ(N), the set G0(N) is the algebraic sum of the compact set Ĝ(N) and the

closed set −R
N
+ ). Finally, the equality Ĝ0(N) = Ĝ(N) immediately follows from formula (3)

and the definition of an individually rational payoff vector of the coalition N in the games G

and G0. Thus, Lemma 1 is proved.

We also need the notion of the closure of a generalized cooperative game G.

Definition 9. By the closure of a game G we mean the game G defined by

G(τ) = clG(τ), τ ∈ σF .

Hereinafter, for X ⊆ R
m we denote by clX the closure of a set X in R

m.

Lemma 2. If a set X ⊆ R
m is comprehensive from below, then its closure X = clX is also

comprehensive from below.

Proof. Let x = (x1, . . . , xm) belong to X. We consider an arbitrary y = (y1, . . . , ym) ∈ R
m

such that y � x and show that y belongs to X. For this purpose we construct a sequence

{yr}∞1 , where yr = y − 1

r
e and e = (1, . . . , 1) is the vector in R

m with components equal

to 1. We set εr = min{xk − yrk|k = 1, . . . ,m}, r � 1. Since all εr are strictly positive and

x belongs to the closure of X, for every r � 1 there exists an element xr of X such that

max{|xk − xrk|
∣∣k = 1, . . . ,m} < εr/2. From the construction of xr and yr we get yr � xr for

r � 1. Since xr ∈ X, r � 1, and the set X is saturated from below, we have yr ∈ X for all

r � 1. By the obvious relation y = lim yr, the element y belongs to X, which is required.
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Corollary 1. If a generalized game G is saturated from below, then its closure G is also a

saturated from below game.

Lemma 3. If a generalized cooperative game G is saturated from below and F -balanced, then

its closure G = clG is also a saturated from below and F -balanced game.

Proof. The property of saturation from below follows from Corollary 1. Let us prove the F -

balancedness property. Let fuzzy coalitions {τk}k∈K form a balanced cover of the large coalition

N ; moreover, for some vector v ∈ R
N we have the inclusions vNk

∈ G(τk), k ∈ K, where, as

above, Nk = N(τk), k ∈ K. By the definition of the closure of a game G, for every r � 1 there

exist payoff vectors ukr ∈ G(τk), k ∈ K, such that

max{|vi − ukri |∣∣i ∈ Nk} < 1/r, k ∈ K. (5)

Using these payoff vectors, for every r � 1 we construct vectors ur by the formula

uri = min{ukri | k ∈ Ki}, i ∈ N, (6)

where Ki = {k ∈ K | i ∈ Nk}, i ∈ N . From (6) we immediately obtain the relations urNk
� ukr,

k ∈ K, r � 1. Since ukr ∈ G(τk), k ∈ K, and the sets G(τk) are saturated from below,

urNk
is contained in G(Nk) for every k ∈ K and r � 1. Based on the above inclusions, from

the balancedness of the cover {τk}k∈K and F -balancedness of the game G we find that for

every r � 1 the vector ur belongs to the set G(N). To complete the proof of Lemma 3, it

remains to verify that limur = v. For this purpose we note that from (5) and (6) it follows that

‖ur − v‖∞ < 1/r, r � 1, where, as usual,

‖x‖∞ = max{|xi|
∣∣i ∈ N}, x ∈ R

N .

Indeed, from the relations

|vi − uri | = |vi − min
k∈Ki

ukri | � max{|vi − ukri |∣∣k ∈ Ki} < 1/r, i ∈ N,

which are valid in view of (5) and (6), for all r � 1 we find

max{|vi − uri |
∣∣i ∈ N} < 1/r, r � 1,

which implies the required relation limur = v ∈ G(N). Lemma 3 is proved.

Lemma 4. The core of the generalized game G is contained in the core of its closure:

C(G) ⊆ C(G). Moreover, if the set G(N) is closed, then the core of the game G coincides with

the core of its closure: C(G) = C(G).

Proof. Let u belong to the core C(G). Assuming that an imputation u can be blocked in

the game G by some coalition τ ∈ σF , we find that there exists a vector v in G(τ) such that

vi > ui for all i ∈ N(τ). We set ε = min{vi − ui | i ∈ N(τ)}. Since v belongs to the closure

of the set G(τ), there is a vector ṽ in G(τ) such that ‖v − ṽ‖∞ < ε/2. However, it is obvious

that the vector ṽ satisfies the inequality ṽi > ui, i ∈ N(τ), which contradicts the assumption

u ∈ C(G). The obtained contradiction proves the embedding C(G) ⊆ C(G) for any game G.

By the embedding C(G) ⊆ C(G) proved in the first part of the proof, in order to prove the

identity C(G) = C(G) in the case where G(N) is a closed set, it suffices to verify that C(G) is
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contained in C(G). Assume the contrary. Assume that an imputation u in C(G) is not contained

in C(G). Since C(G) ⊆ G(N) = G(N), from the condition u /∈ C(G) it follows that u belongs

to the set G(N) \ C(G). However, the inclusion u ∈ G(N) \ C(G) means that u is blocked in

the game G and, consequently, it is also blocked (by the embeddings G(τ) ⊆ G(τ), τ ∈ σF )

in the game G. This contradicts the assumption u ∈ C(G) and thereby completes the proof of

Lemma 4.

The following assertion is a direct consequence of Lemmas 3 and 4.

Corollary 2. If G is a regular, saturated from below, F -balanced game, then its closure

G = clG is also a regular, saturated from below, F -balanced game. Moreover, the game G has

the same core: C(G) = C(G).

3 Core of Generalized Finitely Generated Game

To prove Theorem 1, we distinguish two important classes of generalized n-person games.

Definition 10. A regular game G is said to be F -finite if its efficiency set e(G) is finite:

|e(G)| < ∞.

Definition 11. A game G is said to be finitely generated if it is F -finite and for any coalition

τ ∈ e(G) there exists a finite family of vectors uτ,k ∈ R
N(τ), k ∈ K(τ), such that

G(τ) =
⋃

k∈K(τ)

{v ∈ R
N(τ) | v � uτ,k},

where, as everywhere below, K(τ) = {1, . . . , kτ}, τ ∈ e(G). For the sake of brevity the vectors

uτ,1, . . . , uτ,kτ are referred to as vertices of the set G(τ). Furthermore, if uτ,k � uGN(τ), then the

vector uτ,k is called the individually rational vertex of the set G(τ).

The collection of all individually rational vertices of the set G(τ) of a finitely generated game

G is denoted by

E(τ) = E(G, τ) = {k ∈ K(τ)
∣∣uτ,k � uGN(τ)}.

It is clear that for any finitely generated game G the condition Ĝ(N) �= ∅ is satisfied if and only

if there is at least one individually rational vertex of the set G(N), i.e.,

E(G,N) �= ∅. (7)

Since the nonemptiness of the set Ĝ(N) is necessary for the nonemptiness of the core of a

game G, we assume below that the finitely generated games under consideration satisfy the

condition (7).

The following property of finitely generated games is useful for analyzing the nonemptiness

condition for the cores. Let G be an arbitrary finitely generated cooperative game. In the above

notation, with G we associate the game G0 by

G0(τ) =
⋃

k∈E(τ)

{
v ∈ R

N(τ)
∣∣ v � uτ,k

}
, τ ∈ e(G). (8)

Recall that G0(τ) = ∅ for τ /∈ e(G) by definition. In particular, for one-element coalitions

G0(i) = G0(e{i}) =
{
ui ∈ R

{i} ∣∣ ui � uGi
}

(9)
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for every i ∈ N, where, as above, uGi is the maximal guaranteed payoff of the one-element

coalition {i}. Therefore, if the condition (7) is satisfied, then the game G0 is also regular and,

consequently, finitely generated in view of (8).

Based on Lemma 1, we obtain the following result.

Corollary 3. For any finitely generated game G satisfying the condition E(G,N) �= ∅ the

following equality holds: C(G) = C(G0).

Proof. By the definition of the set Ĝ(N), we have

Ĝ(N) =
⋃

k∈E(G,N)

{
v ∈ R

N
∣∣ v � ue

N ,k
}
.

Since E(G,N) �= ∅, the set Ĝ(N) is nonempty and, consequently, the game G is regular and

saturated from below (the last property immediately follows from the definition of a finitely

generated game). By Lemma 1, we obtain the required equality C(G) = C(G0).

Corollary 4. If a finitely generated game G is F -balanced, then G0 is also a finitely generated

F -balanced game.

Proof. If a generalized finitely generated game G is F -balanced, then the F -balancedness

of the cover {e1, . . . , en} implies that the vector uG belongs to Ĝ(N). Consequently, the set

Ĝ(N) is nonempty, which (together with the relation (9) and Definition 11) shows that all the

assumptions of Lemma 1 are satisfied. Applying Lemma 1 and taking into account that the game

G is F -balanced, we see that the game G0 is F -balanced. To complete the proof of Corollary 4,

it remains to note that the game G0 is also finitely generated in view of (8).

Remark 8. In the general case, where the game G is neither finitely generated nor saturated

from below, the nonemptiness of the sets G(ei), i ∈ N, and closeness of the set G(N) imply

that the F -balanced game G has an individually rational payoff vector by the large coalition N ,

i.e., the set Ĝ(N) is nonempty. Indeed, since the one-element coalitions {e1, . . . , en} form an

F -balanced cover of N, from the definition of the vector uG and F -balancedness of the game

G it follows that for any natural number m there exists a vector um = (um1 , . . . , umn ) such that

um ∈ G(N) ∩∏
i∈N G(ei) and ‖um − uG‖∞ < 1/m. Since the set G(N) is closed, we conclude

that uG = limum ∈ G(N). Thus, uG belongs to the set G(N), which implies the required

relation Ĝ(N) �= ∅.

The proof of Theorem 1 is based on the following analogue of the classical result proved for

usual cooperative games in [7] (cf. also [11]).

Proposition 2. If a finitely generated game G is F -balanced, then C(G) �= ∅.

This generalization is justified, as in the classical case, by using the known combinatorial

Scarf lemma [7]. We recall the definitions of two types of basis sets participated in the formulation

of this lemma. Let A = [aji ] and C = [cji ] be arbitrary (n × m)-matrices, where m > n � 2.

We set M = {1, . . . ,m} and denote by aj and cj , j ∈ M, the columns of the matrices A and C

respectively. Let b be a nonnegative vector in R
n. We recall one of the main notions of linear

programming.
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Definition 12. A set B ⊆ M is called an admissible basis set of the system of linear

equations Ax = b if the vectors {aj}j∈B form a basis for the space R
n and all the coefficients in

the expansion of b in the basis {aj}j∈B are nonnegative.

Throughout the paper, for any set J ⊆ M we denote by CJ a submatrix [cj ]j∈J of the matrix

C (the columns are ordered in ascending numbers in J) and by πJ the vector in R
n which is the

row-by-row minimum of the matrices CJ :

πJ
i = min{cji | j ∈ J}, i = 1, . . . , n.

We recall that for the vectors x = (x1, . . . , xn) and y = (y1, . . . , yn) in R
n we use the abbreviation

x � y ⇐⇒ xi > yi, i = 1, . . . , n. Finally, |P | denotes the number of elements of a finite set P .

Definition 13. The set J ⊆ M is called an ordinal basis set 2) of a matrix C if |J | = n and

there are no elements j ∈ M such that cj � πJ .

To formulate the Scarf lemma, we also need two definitions concerning the form of the

matrices A and C. We set

M1 = {1, . . . , n}, M2 = M \M1 = {n+ 1, . . . ,m}.
Definition 14 (standard form of the matrix A). We say that a matrix A has the standard

form if the first n columns of A form the standard basis for the space R
n: aj = ej for every

j ∈ M1 (here, ej is the jth unit vector in the space R
n).

Definition 15 (standard form of the matrix C). We say that a matrix C has the standard

(ordinal) form if cii = min
j∈M

cji for all i ∈ M1; moreover, cji � max
k∈M2

cki for all i, j ∈ M1 such that

i �= j.

It is easy to see that Definition 15 can be formulated in terms of submatrices CM1 and CM2

as follows: a matrix C has the standard form if the diagonal entries of the submatrix CM1 are

row-by-row minima of C and each entry of the submatrix CM1 lying outside the diagonal is not

less than any entry located in the same row of the submatrix CM2 .

Lemma (Scarf [7]). Assume that matrices A and C have standard form, a vector b belongs

to R
n
+, and the set of nonnegative solutions to the system Ax = b is bounded from above. Then

there exists an admissible basis of this system which is simultaneously an ordinal basis of the

matrix C.

Using the Scarf lemma, we can prove Proposition 2.

Proof of Proposition 2. Let G be an arbitrary F -balanced finitely generated cooperative

game. Since a finitely generated game is regular by definition, the sets G(ei) are nonempty for

all i ∈ N . Since the game G is F -balanced and the family {e1, . . . , en} is an F -balanced cover of

the coalition N, we find that the vector uG belongs to the set G(N), which implies Ĝ(N) �= ∅.

Thus, by Corollaries 3 and 4, in order to prove the existence of an unblocked imputation of the

game G, we can assume without loss of generality (passing to the game G0, if necessary) that

the vertices of all sets G(τ) satisfy the individual rationality condition

uτ,k � uGN(τ), τ ∈ e(G), k ∈ K(τ). (10)

2) A primitive set in the terminology of [7].
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In particular, the set G(ei) corresponding to one-element coalitions has one vertex (kei = 1);

moreover, it is obvious that ue
i,1
i = uGi , i ∈ N .

We construct the matrices AG and CG associated with G such that these matrices together

with the vector b = eN satisfy all the assumptions of the Scarf lemma. For this purpose we

apply (mutatis mutandis) the approach used in [7] (cf. [11]) for constructing similar matrices

for standard finitely generated games. We first introduce the columns a(τ,k) of the matrices AG

by setting

a(τ,k) = τ, k ∈ K(τ), (11)

for each coalition τ ∈ e(G). Further, to construct columns of the matrix CG, we use vertices

uτ,k ∈ R
N(τ) extended in a suitable way to vectors in the space R

N . Defining the required

extensions c(τ,k), we fix numbers di, i ∈ N, such that

di > max
k∈K(τ)

uτ,ki ∀τ ∈ ei(G), (12)

where ei(G) = {τ ∈ e(G) | i ∈ N(τ)}, i ∈ N, and set

c
(τ,k)
i =

⎧⎨
⎩uτ,ki , i ∈ N(τ),

di, i ∈ N \N(τ).
(13)

Thus, the components c
(τ,k)
i of the column c(τ,k) corresponding to player i which indeed par-

ticipates in the coalition τ, coincide with the components uτ,ki of the vertices uτ,k of the set

G(τ), whereas the remaining components c
(τ,k)
j coincide with the corresponding numbers dj , j ∈

N \N(τ). Furthermore, by the condition (12) for any player i∈N and any coalition τ such that

τi>0 the number di exceeds the payoff of this player in any payoff vectors reachable by efforts

of this coalition, which directly follows from the structure of the game G:

G(τ) =
⋃

k∈K(τ)

{u ∈ R
N(τ) | u � uτ,k}.

We fix an ordering of pairs (τ, k), τ ∈ e(G), k ∈ K(τ), such that the first n pairs form the

sequence (e1, 1), . . . , (en, 1). We compose the (n×m)-matrices AG and CG, where m =
∑

τ∈e(G)

kτ ,

of the constructed columns a(τ,k) and c(τ,k) respectively by ordering them in accordance to the

above order of pairs (τ, k).

We show that the matrices AG = [a
(τ,k)
i ] and CG = [c

(τ,k)
i ] satisfy all the assumptions of the

Scarf lemma. It is clear that, by the ordering of pairs (τ, k), the first n columns of the matrix AG

form the identity matrix: ae
i,1 = ei, i ∈ N , in view of (11). Consequently, the matrix AG has the

standard form. By (10), (12), and the above-mentioned relations ue
i,1
i = uGi , i ∈ N , the columns

c(e
i,1) of the matrix CG corresponding to the pairs (ei, 1) satisfy the condition ce

i,1
i = uGi � c

(τ,k)
i

for every i ∈ N , τ ∈ e(G), k ∈ K(τ). Furthermore, by formula (13), all entries of the matrix

[c(e
1,1) . . . c(e

n,1)] located outside the diagonal in the ith row are equal to di. By (12), this fact

means that the entries c
(ei,1)
j , j ∈ N \ i, lying outside the diagonal are the largest ones in the ith

row of the matrix CG. Consequently, the matrix CG is also written in the standard form. To

complete the verification that the Scarf lemma can be applied to AG, CG, and eN , it remains to

note that from (11) it follows that for any nonnegative solution (x(τ,k)) to the system∑
x(τ,k)a

(τ,k) = eN
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we have

x(τ,k) � 1/τi ∀ i ∈ N(τ), τ ∈ e(G), k ∈ K(τ).

Thus, x(τ,k) � maxi∈N(τ) 1/τi for all τ ∈ e(G), k ∈ K(τ) and for every nonnegative solution

x = (x(τ,k)) to the system AGx = eN , which means the upper boundedness of the set of such

solutions. Summarizing, we conclude that the matrices AG, CG and vector b = eN satisfy all

the assumptions of the Scarf lemma.

Applying the Scarf lemma to the constructed matrices and vector eN , we conclude that there

exists an admissible basis set B = {(τ j , kj)}nj=1 of the system AGx = eN which is simultane-

ously the ordinal basis of the matrix CG. By the definition of an admissible basis, there exist

nonnegative numbers xj , j = 1, . . . , n, such that

n∑
j=1

xja
(τj ,kj) = eN

for some τ j∈e(G) and kj∈K(τ j), j = 1, . . . , n. Because of a(τ
j ,kj) = τ j , j = 1, . . . , n, and (11),

the family of coalitions a(τ
1,k1) = τ1, . . ., a(τ

n,kn) = τn is an F -balanced cover of the set N . Using

this fact, we show that the row-by-row minimum πB of the matrix CB
G = [c(τ

1,k1) . . . c(τ
n,kn)] is

the payoff vector of the coalition N . Indeed, from the relations

πB
i = min

j=1,...,n
c
(τj ,kj)
i , i ∈ N,

which are valid by the definition of the row-by-row minimum and formula (13), we obtain the

inequalities

πB
N(τj) � uτ

j ,kj , j = 1, . . . , n. (14)

By the definition of the game G, the relations (14) mean that the restrictions πB
N(τ1), . . . , π

B
N(τn)

of the vector πB onto the set N(τ1), . . . , N(τn) belong to G(τ1), . . . , G(τn) respectively. Con-

sequently, by the F -balancedness of the cover {τ j}nj=1, the vector πB is G-balanced. By the

F -balancedness of the game G, we obtain the required inclusion πB ∈ G(N).

To complete the proof of Proposition 2, it remains to verify that the vector πB is not blocked

by any coalition in e(G). Assume the contrary, i.e., there exist τ ∈ e(G) and v = (vi)i∈N(τ) ∈
G(τ) such that

vi > πB
i , i ∈ N(τ). (15)

Since

G(τ) =
⋃

k∈K(τ)

{
u ∈ R

N(τ)
∣∣ u � uτ,k

}

by construction, for a vector v in G(τ) there exists a vertex uτ,k such that v � uτ,k. But this

inequality together with (15) means that uτ,k � πB
N(τ). By (13), we find c

(τ,k)
i = uτ,ki > πB

i

for all i ∈ N(τ). We show that the remaining components of the column c(τ,k) of the matrix

CG are strictly larger than the corresponding components of the vector πB. For this purpose

we note that πB ∈ G(N) and the structure of G(N) imply the existence of a vertex ue
N ,l ∈

G(N) such that πB � ue
N ,l. Therefore, taking into account the relations di > ue

N ,l
i , i ∈ N ,

following from (12), we arrive at the required assertion c
(τ,k)
j = dj > ue

N ,l
j � πB

j , j ∈ N \N(τ).

Thus, all the components of the column c(τ,k) of the matrix CG are strictly larger than the
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corresponding components of the row-by-row minimum πB of the matrix CB
G . We arrive at a

contradiction with the fact that B is the ordinal basis of the matrix CG, which completes the

proof of Proposition 2.

4 Unblocked Imputations of Regular Games. General Case

We generalize Proposition 2 to the case where the game G is not necessarily finitely generated

(but one of the main assumptions of Proposition 2 is preserved; namely, the set e(G) is assumed

to be finite). We recall that a game G is F -finite if its efficiency set e(G) is finite.

Proposition 3. If a regular saturated from below game G is F -finite and F -balanced, all

sets G(τ) are closed, and Ĝ(N) is bounded from above, then C(G) �= ∅.

Proof. Since the set G(N) is closed and the game G is regular and F -balanced, from Remark

8 it follows that the set Ĝ(N) is nonempty. Since the game G is regular, saturated from below,

and F -balanced, from Lemma 1 it follows that C(G) = C(G0) and the game G0 satisfies all the

assumptions of Proposition 3 (as was already mentioned, the closeness of G0(N) follows from

the compactness of the set Ĝ(N) and closeness of the cone −R
N
+ ). Passing to the proof of the

nonemptiness of the core C(G0), if necessary, we can assume without loss of generality that all

sets Ĝ(τ), τ ∈ e(G), are nonempty.

We fix a countable everywhere dense set Q = {q1, q2, . . .} in R and, slightly generalizing

the constructions used for classical cooperative games in [15], introduce generalized games Gm,

m � 1, such that the sets Gm(τ) are generated by those vectors in Ĝ(τ) whose components

belong to the set Qm = {uG1 , . . . , uGn } ∪ {q1, . . . , qm}. Namely, for every m � 1 we set

Gm(τ) =

{
G̃m(τ)− R

N(τ)
+ , τ ∈ e(G),

∅, τ ∈ σF \ e(G),
(16)

where G̃m(τ) =
{
(vi)i∈N(τ) ∈ Ĝ(τ)

∣∣ vi ∈ Qm, i ∈ N(τ)
}
, τ ∈ e(G). If the game G is saturated

from above and the sets Ĝ(τ), τ ∈ e(G), are nonempty, then it is clear that G̃m(τ) �= ∅ for all

m � 1 and τ ∈ e(G) (in particular, uGN(τ) ∈ G̃m(τ) for all m � 1 and τ ∈ e(G)). Therefore, the

games Gm are well defined.

We fix m � 1 and verify that the finitely generated game Gm is F -balanced. Let v =

(v1, . . . , vn) be aGm-balanced vector corresponding to the F -balanced covering T = {τ1, . . . , τk}
⊆ e(G) of the set N . By the definition of Gm-balancedness, there exist vectors us ∈ G̃m(τ s),

s = 1, . . . , k, such that vN(τs) � us for all s = 1, . . . , k. We denote by u = (u1, . . . , un) the vector

defined by the formula

ui = min
s∈Ki

usi , i ∈ N, (17)

where Ki = {s ∈ {1, . . . , k} | i ∈ N(τ s)}, i ∈ N . It is clear that uN(τs) � us for all s = 1, . . . , k.

Hence, by the relations us ∈ G̃m(τ s) ⊆ G(τ s), s = 1, . . . , k, and F -balancedness of the game G,

the vector u belongs to the set G(N). On the other hand, by the inclusions us ∈ G̃m(τ s) ⊆ Ĝ(τ s)

and formula (17), the vector u belongs to the set Ĝ(N) and all its components belong to the set

Qm. Consequently, u ∈ G̃m(N). To complete the proof of the inclusion v ∈ Gm(N), it remains

to recall that vN(τs) � us for all s = 1, . . . , k, and, consequently (in view of (17)), we have v � u.

Taking into account that u ∈ G̃m(N), we obtain the required relation v ∈ Gm(N).
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Thus, all finitely generated games Gm defined by formula (16) are F -balanced. By Proposi-

tion 2, C(Gm) �= ∅ for all m = 1, . . . We choose imputations vm ∈ C(Gm), m � 1. Since these

imputations are not unblocked by one-element coalitions, we have {vm}∞m=1 ⊆ Ĝ(N). There-

fore, by the compactness of Ĝ(N), we can assume that the sequence {vm}∞m=1 converges to some

vector v0 ∈ Ĝ(N). To complete the proof of Proposition 3, it remains to verify that v0 belongs

to the core C(G). Assuming the contrary. we find that for some fuzzy coalition τ ∈ e(G) there

exists a vector u ∈ G(τ) such that u � v0N(τ). Since the set G(τ) is saturated from below and

Q is everywhere dense in R, there is a vector v ∈ G(τ) such that u � v � v0N(τ); moreover, v

belongs to G̃m(τ) for all m > m1. Hence the vector v belongs to Gm(τ) for all m > m1. Since

v0 = lim vm, for sufficiently large m2 > m1 we have the inequality vi > vmi for all i ∈ N(τ) and

m � m2. However, this inequality, together with the above-mentioned inclusions v ∈ Gm(τ),

m > m1, contradicts the fact that for every m � 1 the imputation vm belongs to the core

C(Gm). Thus, we have proved that v0 ∈ C(G) which means that the core C(G) is nonempty.

Proposition 3 is proved.

Proof of Theorem 1. The case where the efficiency set of a game is finite is covered by

Proposition 3. Therefore, it suffices to consider only the case where the set e(G) is infinite.

Denote by F the family of all finite subsets of the efficiency set e(G) of the game G containing

the coalition eN and all one-element coalitions {ei}:

F =
{
T ⊆ e(G)

∣∣ {e1, . . . , en, eN} ⊆ T , |T | < ∞}
.

Further, for every T ∈ F we denote by GT the restriction of a game G on the set T :

GT (τ) =

⎧⎨
⎩G(τ), τ ∈ T ,

∅, τ ∈ σF \T .

From the definition of the core of a cooperative game and the construction of the games GT we

immediately find

C(G) =
⋂

T ∈F
C(GT ). (18)

Therefore, to prove that the core C(G) is nonempty, it suffices to establish two facts concerning

the cores of the games GT :

1) C(GT ) �= ∅ for all T ∈ F ,

2) the cores {C(GT )}T ∈F form the centered family 3) of compact subsets of the space R
n

(and, consequently, has a nonempty general part).

Indeed, from the above facts, formula (18), and the known compactness criterion expressed

in terms of open covers it follows that

C(G) =
⋂

T ∈F
C(GT ) �= ∅,

3) As usual, we say that a family of sets {C(GT )}T ∈F is centered if every finite subfamily has nonempty

common part, i.e.,
m⋂

k=1

C(GTk) �= ∅ for any finite subfamily {C(GT1), . . . , C(GTm)} of the family {C(GT )}T ∈F .
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which is required. To complete the proof, it remains to recall that the cores C(GT ) are closed

subsets of the compact set Ĝ(N) according to Remark 3. Hence the cores are also compact (the

set Ĝ(N) is compact under the assumptions of Theorem 1 because it is bounded and closed

which follows from the closeness of the set G(N)). Furthermore, it is easy to see that the family

of cores {C(GT )}T ∈F is centered in view of Proposition 3 which is valid under the assumptions

of Theorem 1 related to the games GT , T ∈ F , and the obvious formula

m⋂
k=1

C(GTk) = C(G
⋃m

k=1 Tk),

where {T1, . . . ,Tm} is an arbitrary finite family in F .

Proof of Theorem 2. Since G(N) is closed, we have Ĝ(N) = Ĝ(N). By Lemma 3, if

the closure of the game G satisfies the assumptions of Theorem 2, then it also satisfies all the

assumptions of Theorem 1 (including the upper boundedness of the set Ĝ(N)). Hence the core

C(G) is nonempty by Theorem 1. Using again the closeness of the set G(N) and Lemma 4, we

obtain the equality C(G) = C(G) which implies the required relation C(G) �= ∅.
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