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We consider ill-conditioned matrices of systems of linear algebraic equations with ran-

dom error of vector right-hand side. We study the condition number ν of the matrix

of the system. We show that, under certain natural assumptions, the number ν can be

considerably diminished. Bibliography: 3 titles. Illustrations: 3 figures.

0.1. We consider the system of linear algebraic equations Ax = b. Let Δb and Δx are

errors of the right-hand side b and solution x respectively. The relative errors of the solution

and right-hand side are connected by the inequality

‖Δx‖
‖x‖ � ν · ‖Δb‖

‖b‖ , (1)

where the condition number ν := ‖A−1‖·‖A‖ determines the quality of the matrix A. The value

of the condition number can be used to determine the coefficient of the regularization system.

The number ν in the inequality (1) cannot be replaced with a less number. However, in a sense,

the estimate (1) is rough. We will specify this assertion below and show how to diminish ν

considerably in the estimate.

0.2. It is natural to assume that the error vector Δb is random. If the components of this

vector are independent, then it is natural to assume that the random radius vector s := Δb/|Δb|
is isotropic, i.e., a random point s is uniformly distributed on the unit sphere Sn−1 ⊂ Rn.

Assume that the vectors x and b are fixed (nonrandom).

We propose a new method for estimating the condition number in the norm ‖ ·‖2 taking into

account the randomness of the error vector. We describe ideas providing to such an estimate.

0.3. The inequality (1) is equivalent to the inequality

|Δx|
|Δb| ·

|b|
|x| � ‖A−1‖ · ‖A‖
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which is the product of the inequalities

|Δx|
|Δb| � ‖A−1‖ (2)

and |b|
|x| � ‖A‖.

The inequality (2) is related to the random vectors Δx and Δb. We write the inequality (2) in

the equivalent form

|A−1s| � ‖A−1‖. (3)

0.4. The length of the radius vector e = A−1s varies in [λn, λ1], where λn � λ1, if the

matrix A is ill-conditioned.

To illustrate the situation, we consider the simplified two-dimensional case. In Figure 1,

the points sk are uniformly distributed on the unit circle S1, whereas the corresponding points

ek = A−1sk are located on the ellipse E. It is seen that the length of the larger half-axis of the

ellipse E is considerably greater than the mean value of the random length of the radius vector

e = A−1s:

E(|A−1s|) � max
s∈S1

|A−1s| ≡ ‖A−1‖. (4)

(a) (b)

Figure 1. Location of points (a) sk ∈ S1 and (b) ek ∈ E.

In the case of a real ill-conditioned matrix, the condition number can be equal to several

hundred or even thousands so that the inequality (4) becomes stronger and, respectively, the

inequality (1) presents a rather rough estimate. The above raises a question about distribution

of the random variable |A−1s|.

1 The Random Variable L

1.1. We write the expression for the length L of the radius vector of the point e = A−1s ∈ E

L := |A−1s| = (A−1s ·A−1s)1/2 = (s · (A−1)∗A−1s)1/2 = ((A∗A)−1s · s)1/2.
Here, s is a random point and, consequently, L is a random variable.
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Let λ2
1 > . . . > λ2

n > 0 be eigenvalues of the matrix (A∗A)−1. We have [1]

1

‖A‖ = λn � L =

(
n∑

k=1

λ2
ks

2
k

)1/2

� λ1 = ‖A−1‖. (5)

1.2. Since s is a random point, the inequality (3) is an estimate for the random variable

|A−1s| and is satisfied with probability 1. We write this inequality in the equivalent probabilistic

form

P (L < λ1) = 1. (6)

In turn, (6) can be generalized as follows. Let F be a distribution [2] of a random variable L.

Then P (L < t) = F (t) is a generalization of (6).

1.3. We consider calculations of the values of the function F . Let μ be the Lebesgue measure

on the sphere Sn−1. Since the point s is uniformly distributed on Sn−1 (cf. Subsection 0.2), for

any (measurable) set M ⊂ Sn−1

P (s ∈ M) = μ(M)/μ(Sn−1). (7)

Thus,

F (t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, t � λn,

μ(L < t)

μ(Sn−1)
, λn < t < λ1,

1, t � λ1.

(8)

We cannot analytically determine μ(L < t) in (8) (together with the function F ). Therefore,

we calculate a sample distribution function for L by the Monte–Carlo method. For this purpose

we simulate a sequence of random points sk, k = 1, 2, . . ., uniformly on Sn−1 with the help of

known formulas. For each point sk we calculate tk = |A−1sk|. The numbers tk, k = 1, 2, . . .,

form a sequence of sample values of the random variable L. If the number Ns of points sk is

sufficiently large, then we construct the approximate distribution function.

Note that tk for every k = 1, 2, . . . , Ns satisfies the inequalities λN � tk � λ1. For every ti
we calculate the number Ni of tk such that tk < ti. We define the function FNs at the nodes tk,

k = 1, 2, . . . , Ns, by the formula

FNs(tk) =
Ni

Ns
.

The piecewise constant approximation of the function FNs between neighboring nodes yields the

sample function of distribution. Below, we will consider piecewise linear approximation in order

to obtain convenient graphs.

The random variable L and its distribution function F are determined by the choice of a

finite sequence Λ(1:n) = {λk, k = 1, . . . , n}. Therefore, we use the notation L ≡ LΛ(1:n) and

F ≡ FΛ(1:n).

Further, we will consider only number sequences Λ(1:n), where n is large and λn/λ1 is small,

without mention matrices from which they are obtained.
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(a) (b)

Figure 2. (a) Λ1 = {λk = 210, 29, . . . , 1} and (b) Λ2 = {λk = 1.010, 1.01−1, . . . , 1.01−300}.
For two such sequences Λ1 and Λ2 we present the graphs of the corresponding functions FΛ1

and FΛ2 . They look like the graph of the Heaviside function χ. This fact will be explained in

the theorem proved in the following section.

2 Convergence Theorem

We show that for finite number sequences Λ(1:n) (cf. Section 1) FΛ(1:n) � χ. To prove the

corresponding limit relation, we form the auxiliary normed sequence Λ(1:n) = {λk = λk/λ1,

k = 1, . . . , n}. Here, λ1 = 1 and λn � 0. The finite normed sequence Λ(1:n) can be regarded

as a part of the infinite sequence {λk, k = 1, 2, . . .}, where λk → 0. For such sequences the

following assertion holds.

Theorem. Assume that λk → 0 and sn = (sn1 , . . . , s
n
n) is a random point uniformly dis-

tributed on the unit sphere Sn−1; LΛ(1:n) =
(
λ
2
1(s

n
1 )

2 + . . .+ λ
2
n(s

n
n)

2
)1/2

. Then for all t ∈ R

lim
n→∞FΛ(1:n)(t) = χ(t), (9)

Moreover, the convergence FΛ(1:n) → χ for any ε > 0 is uniform on the set R \ (0, ε).
Proof. Below, all formulas with the Γ-function are taken from [3]. We first transform the

relation (9).

2.1. By (5), we have

0 < λn � LΛ(1:n) � λ1 = 1.

Consequently,

FΛ(1:n)(t) ≡
⎧⎨
⎩0, t ∈ (−∞, λn],

1, t ∈ [1,+∞),

i.e., FΛ(1:n)(t) ≡ χ(t) for t ∈ (−∞, 0]∪ [1,+∞). Now, instead of (9), it suffices to prove that for

t ∈ (0, 1)

lim
n→∞FΛ(1:n) = 1; (10)

moreover, the convergence is uniform on the set [ε, 1) for any ε ∈ (0, 1).
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2.2. Since

FΛ(1:n)(t) = P (LΛ(1:n) < t) = 1− P (LΛ(1:n) � t),

(10) is equivalent to the relation

P (LΛ(1:n) � t)
(7)
=

μ(LΛ(1:n) � t)

μ(Sn−1)
=

μ
( n∑
k=1

λ
2
k(s

n
k)

2 � t2
)

μ(Sn−1)
→ 0.

Thus, instead of (9), we have the equivalent relation

μ
( n∑
k=1

λ
2
k(s

n
k)

2 � t2
)

μ(Sn−1)
→ 0. (11)

2.3. We prove an auxiliary inequality. Let a function f � 0 be defined on the set S, and let

h > 0. Then ∫
S

f =

∫
f(x)<h

+

∫
f(x)�h

� h · μ{f(x) � h}.

Hence

μ{f(x) � h} � 1

h
·
∫
S

f. (12)

2.4. Assume that

f(s) =
∑

λ
2
k(s

n
k)

2, h = t2,

in (12). We estimate the numerator of the fraction in (11):

μ

(
n∑

k=1

λ
2
k(s

n
k)

2 � t2

)
� 1

t2

∫
Sn−1

n∑
k=1

λ
2
k(s

n
k)

2 dsn =

(
1

t2

n∑
k=1

λ
2
k

)
·
∫

Sn−1

(snk)
2dsn. (13)

Since the integral on the right-hand side of (13) is independent of k, we can interchange sum-

mation and integration if 1 � k � n is arbitrary.

2.5. We calculate the integral on the right-hand side of (13):

∫
Sn−1

(snk)
2dsn = 2

π(n−1)/2

Γ((n− 1)/2)
·

π∫
0

cos2 ϕ sinn−2 ϕdϕ =
π(n−1)/2

Γ((n− 1)/2)

π∫
0

(sinn−2 ϕ− sinn ϕ)dϕ.

Here,
π∫

0

sinn ϕ dϕ =
√
π · Γ

(
n+1
2

)
Γ
(
n+2
2

) .
We use the following two simple assertions [3].

2.6.1. If cn → 0, then
1

n

n∑
k=1

ck → 0.

2.6.2. If lim
k→∞

ak = 0 and ak � bk � 0 for all k, then lim
k→∞

bk = 0.
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2.7. We return to the proof of (11):

0 �
μ
( n∑
k=1

λ
2
k(s

n
k)

2 � t2
)

μ(Sn−1)
� . . . .

Taking into account Subsections 2.4 and 2.5 and the formula

μ(Sn−1) = 2
πn/2

Γ(n/2)
,

we have

. . . �
(
1

t2

n∑
k=1

λ
2
k

)
·
2π

(n−1)/2

Γ
(
n−1
2

)
2 πn/2

Γ
(
n
2

) · √π ·
⎛
⎝Γ

(
n−1
2

)
Γ
(
n
2

) −
Γ
(
n+1
2

)
Γ
(
n+2
2

)
⎞
⎠

=

(
1

t2

n∑
k=1

λ
2
k

)
·
⎛
⎝1−

Γ
(
n
2

)
· Γ

(
n+1
2

)
Γ
(
n−1
2

)
· Γ

(
n+2
2

)
⎞
⎠ = . . . .

Using the formula

Γ(x+ 1) = x · Γ(x), x = (n− 1)/2, x = n/2,

and taking into account that t � ε, we continue as follows:

. . . =

(
1

t2

n∑
k=1

λ
2
k

)
·
(
1− Γ

(
n
2

) · Γ(n−1
2

) · (n−1
2

)
Γ
(
n−1
2

) · Γ(n2 ) · (n2 )
)

=
1

t2
· 1
n

n∑
k=1

λ
2
k � 1

ε2

[
1

n

n∑
k=1

λk

]
.

Returning to the beginning of Subsection 2.7, we see that

0 �
μ
( n∑
k=1

λ
2
k(s

n
k)

2 � t2
)

μ(Sn−1)
� 1

ε2

[ 1
n

n∑
k=1

λk

]
; (14)

moreover,

1

ε2

[ 1
n

n∑
k=1

λk

]
→ 0

by Subsection 2.6.1 and

μ
( n∑
k=1

λ
2
k(s

n
k)

2 � t2
)

μ(Sn−1)
→ 0

by Subsection 2.6.2. The convergence is uniform since the majorant in (14) is independent of t.

The theorem is proved.

We return to the finite sequence Λ(1:n) = {λk > 0, k = 1, . . . , n}, where n is large and

λn/λ1 is small. With this sequence we associate the auxiliary sequence Λ(1:n). Since LΛ(1:n)

and LΛ(1:n) are connected by

LΛ(1:n) = (λ2
1(s

n
1 )

2 + . . .+ λ2
n(s

n
n)

2)1/2 = λ1 · (λ2
1(s

n
1 )

2 + . . .+ λ
2
n(s

n
n)

2)1/2 = λ1LΛ(1:n),
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the functions FΛ(1:n) and FΛ(1:n) are connected by the equality

FΛ(1:n)(t) = FΛ(1:n)(t/λ1).

By the above theorem, FΛ(1:n) � χ for large n outside the interval (0, ε). Consequently, FΛ(1:n) �
χ outside the interval (0, λ1ε).

In the following section, we show how to use the above-obtained results.

3 Replacement of ν with νε

By definition and notation, the condition coefficient ν(A) is the least number satisfying (with

probability 1) the inequality L · ‖A‖ � ν.

We choose a sufficiently small ε > 0 such that it is possible to ignore some random event

in calculations provided that the probability of this event is less than ε. We find a numerical

solution to Equation FΛ(1:n)(Lε) = 1− ε (cf. Figure 3; a fragment of Figure 2).

Figure 3. The graphical solution of the equations FΛk(Lε) = 1− ε (k = 1, 2).

Since P (L < Lε) ≡ FΛ(1:n)(Lε) = 1− ε, we have P (L � Lε) = 1− P (L < Lε) = ε. In other

words, the event {L � Lε} is so improbable that it can be ignored in calculations.

Let νε = Lε · ‖A‖. Then the following relation holds with probability 1− ε:

|Δx|
|Δb| · ‖A‖ ≡ L · ‖A‖ � νε.

Thus, the coefficient ν can be replaced with νε (although, cf. below νε/ν � 1).

The ratio of νε and ν is expressed as follows:

νε
ν

=
Lε‖A‖
λ1‖A‖ =

Lε

λ1
.

We compute νε/ν for the sequences Λ1 and Λ2 (cf. Figure 2) with ε = 0, 01:

Λ1 : Lε = 0, 2481, λ = 1024,
νε
ν

= 0, 00024,

Λ2 : Lε = 0, 1411, λ = 1,
νε
ν

= 0, 14.
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The values of
νε
ν

in the first and second cases are essentially different, which could be caused by

the fact that the sequence 1, 01−k (Λ2) converges to zero much slower than 2−k (Λ1).
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