PROBABILISTIC ESTIMATION OF MATRIX CONDITION NUMBER

V. S. Antyufeev

Institute Numerical Mathematics and Mathematical Geophysics SB RAS 6, Akad. Lavrent'eva pr., Novosibirsk 630090, Russia Novosibirsk State University 1, Pirogova St., Novosibirsk 630090, Russia ant@osmf.sscc.ru UDC 519.6

We consider ill-conditioned matrices of systems of linear algebraic equations with random error of vector right-hand side. We study the condition number ν *of the matrix of the system. We show that, under certain natural assumptions, the number* ν *can be considerably diminished. Bibliography*: 3 *titles. Illustrations*: 3 *figures.*

0.1. We consider the system of linear algebraic equations $Ax = b$. Let Δb and Δx are errors of the right-hand side \boldsymbol{b} and solution \boldsymbol{x} respectively. The relative errors of the solution and right-hand side are connected by the inequality

$$
\frac{\|\Delta x\|}{\|x\|} \leqslant \nu \cdot \frac{\|\Delta b\|}{\|b\|},\tag{1}
$$

where the condition number $\nu := ||A^{-1}|| \cdot ||A||$ determines the quality of the matrix A. The value of the condition number can be used to determine the coefficient of the regularization system. The number ν in the inequality (1) cannot be replaced with a less number. However, in a sense, the estimate (1) is rough. We will specify this assertion below and show how to diminish ν considerably in the estimate.

0.2. It is natural to assume that the error vector Δb is random. If the components of this vector are independent, then it is natural to assume that the random radius vector $\mathbf{s} := \Delta \mathbf{b} / |\Delta \mathbf{b}|$ is isotropic, i.e., a random point *s* is uniformly distributed on the unit sphere $S^{n-1} \subset R^n$. Assume that the vectors *x* and *b* are fixed (nonrandom).

We propose a new method for estimating the condition number in the norm $\|\cdot\|_2$ taking into account the randomness of the error vector. We describe ideas providing to such an estimate.

0.3. The inequality (1) is equivalent to the inequality

$$
\frac{|\Delta x|}{|\Delta b|} \cdot \frac{|b|}{|x|} \leqslant \|A^{-1}\| \cdot \|A\|
$$

1072-3374/20/2466-0755 *-***c 2020 Springer Science+Business Media, LLC**

Translated from *Sibirskii Zhurnal Chistoi i Prikladnoi Matematiki* **18**, No. 1, 2018, pp. 28-34.

which is the product of the inequalities

$$
\frac{|\Delta x|}{|\Delta b|} \leqslant \|A^{-1}\| \tag{2}
$$

and

$$
\frac{|\boldsymbol{b}|}{|\boldsymbol{x}|} \leqslant \|A\|.
$$

The inequality (2) is related to the random vectors Δx and Δb . We write the inequality (2) in the equivalent form

$$
|A^{-1}s| \leqslant \|A^{-1}\|.\tag{3}
$$

0.4. The length of the radius vector $e = A^{-1}s$ varies in $[\lambda_n, \lambda_1]$, where $\lambda_n \ll \lambda_1$, if the matrix A is ill-conditioned.

To illustrate the situation, we consider the simplified two-dimensional case. In Figure 1, the points s_k are uniformly distributed on the unit circle S^1 , whereas the corresponding points $e_k = A^{-1} s_k$ are located on the ellipse E. It is seen that the length of the larger half-axis of the ellipse E is considerably greater than the mean value of the random length of the radius vector $e = A^{-1}s$:

$$
\mathbf{E}(|A^{-1}s|) \ll \max_{s \in S^1} |A^{-1}s| \equiv ||A^{-1}||. \tag{4}
$$

FIGURE 1. Location of points (a) $s_k \in S^1$ and (b) $e_k \in E$.

In the case of a real ill-conditioned matrix, the condition number can be equal to several hundred or even thousands so that the inequality (4) becomes stronger and, respectively, the inequality (1) presents a rather rough estimate. The above raises a question about distribution of the random variable [|]A−1*s*|.

1 The Random Variable L

1.1. We write the expression for the length **L** of the radius vector of the point $e = A^{-1}s \in E$

$$
\mathbf{L} := |A^{-1}\mathbf{s}| = (A^{-1}\mathbf{s} \cdot A^{-1}\mathbf{s})^{1/2} = (\mathbf{s} \cdot (A^{-1})^*A^{-1}\mathbf{s})^{1/2} = ((A^*A)^{-1}\mathbf{s} \cdot \mathbf{s})^{1/2}.
$$

Here, *s* is a random point and, consequently, **L** is a random variable.

Let $\lambda_1^2 > \ldots > \lambda_n^2 > 0$ be eigenvalues of the matrix $(A^*A)^{-1}$. We have [1]

$$
\frac{1}{\|A\|} = \lambda_n \leqslant \mathbf{L} = \left(\sum_{k=1}^n \lambda_k^2 s_k^2\right)^{1/2} \leqslant \lambda_1 = \|A^{-1}\|.
$$
 (5)

1.2. Since *s* is a random point, the inequality (3) is an estimate for the random variable $|A^{-1}s|$ and is satisfied with probability 1. We write this inequality in the equivalent probabilistic form

$$
P(\mathbf{L} < \lambda_1) = 1. \tag{6}
$$

In turn, (6) can be generalized as follows. Let F be a distribution [2] of a random variable **L**. Then $P(\mathbf{L} < t) = F(t)$ is a generalization of (6).

1.3. We consider calculations of the values of the function F . Let μ be the Lebesgue measure on the sphere S^{n-1} . Since the point *s* is uniformly distributed on S^{n-1} (cf. Subsection 0.2), for any (measurable) set $M \subset S^{n-1}$

$$
P(\mathbf{s} \in M) = \mu(M)/\mu(S^{n-1}).\tag{7}
$$

Thus,

$$
F(t) = \begin{cases} 0, & t \le \lambda_n, \\ \frac{\mu(\mathbf{L} < t)}{\mu(S^{n-1})}, & \lambda_n < t < \lambda_1, \\ 1, & t \ge \lambda_1. \end{cases} \tag{8}
$$

We cannot analytically determine $\mu(L < t)$ in (8) (together with the function F). Therefore, we calculate a sample distribution function for **L** by the Monte–Carlo method. For this purpose we simulate a sequence of random points s_k , $k = 1, 2, \ldots$, uniformly on S^{n-1} with the help of known formulas. For each point s_k we calculate $t_k = |A^{-1}s_k|$. The numbers t_k , $k = 1, 2, \ldots$, form a sequence of sample values of the random variable **L**. If the number N_s of points s_k is sufficiently large, then we construct the approximate distribution function.

Note that t_k for every $k = 1, 2, ..., N_s$ satisfies the inequalities $\lambda_N \leq t_k \leq \lambda_1$. For every t_i we calculate the number N_i of t_k such that $t_k < t_i$. We define the function F_{N_s} at the nodes t_k , $k = 1, 2, \ldots, N_s$, by the formula

$$
F_{N_s}(t_k) = \frac{N_i}{N_s}.
$$

The piecewise constant approximation of the function F_{N_s} between neighboring nodes yields the sample function of distribution. Below, we will consider piecewise linear approximation in order to obtain convenient graphs.

The random variable **L** and its distribution function F are determined by the choice of a finite sequence $\Lambda(1:n) = {\lambda_k, k = 1, ..., n}.$ Therefore, we use the notation $\mathbf{L} \equiv \mathbf{L}_{\Lambda(1:n)}$ and $F \equiv F_{\Lambda(1;n)}$.

Further, we will consider only number sequences $\Lambda(1:n)$, where n is large and λ_n/λ_1 is small, without mention matrices from which they are obtained.

FIGURE 2. (a) $\Lambda^1 = {\lambda_k = 2^{10}, 2^9, \ldots, 1}$ and (b) $\Lambda^2 = {\lambda_k = 1.01^0, 1.01^{-1}, \ldots, 1.01^{-300}}$.

For two such sequences Λ^1 and Λ^2 we present the graphs of the corresponding functions F_{Λ^1} and F_{Λ^2} . They look like the graph of the Heaviside function χ . This fact will be explained in the theorem proved in the following section.

2 Convergence Theorem

We show that for finite number sequences $\Lambda(1:n)$ (cf. Section 1) $F_{\Lambda(1:n)} \simeq \chi$. To prove the corresponding limit relation, we form the auxiliary normed sequence $\overline{\Lambda}(1:n) = {\overline{\lambda}_k = \lambda_k/\lambda_1}$, $k = 1, \ldots, n$. Here, $\overline{\lambda}_1 = 1$ and $\overline{\lambda}_n \simeq 0$. The finite normed sequence $\overline{\Lambda}(1:n)$ can be regarded as a part of the infinite sequence $\{\overline{\lambda}_k, k = 1, 2, ...\}$, where $\overline{\lambda}_k \to 0$. For such sequences the following assertion holds.

Theorem. Assume that $\overline{\lambda}_k \to 0$ and $s^n = (s_1^n, \ldots, s_n^n)$ is a random point uniformly dis*tributed on the unit sphere* S^{n-1} ; $\mathbf{L}_{\overline{\Lambda}(1:n)} = (\overline{\lambda}_1^2(s_1^n)^2 + \ldots + \overline{\lambda}_n^2(s_n^n)^2)^{1/2}$. Then for all $t \in R$

$$
\lim_{n \to \infty} F_{\overline{\Lambda}(1:n)}(t) = \chi(t),\tag{9}
$$

Moreover, the convergence $F_{\overline{\Lambda}(1:n)} \to \chi$ *for any* $\varepsilon > 0$ *is uniform on the set* $R \setminus (0, \varepsilon)$ *.*

Proof. Below, all formulas with the Γ-function are taken from [3]. We first transform the relation (9).

2.1. By (5), we have

$$
0 < \overline{\lambda}_n \leqslant \mathbf{L}_{\overline{\Lambda}(1:n)} \leqslant \overline{\lambda}_1 = 1.
$$

Consequently,

$$
F_{\overline{\Lambda}(1:n)}(t) \equiv \begin{cases} 0, & t \in (-\infty, \overline{\lambda}_n], \\ 1, & t \in [1, +\infty), \end{cases}
$$

i.e., $F_{\Lambda(1:n)}(t) \equiv \chi(t)$ for $t \in (-\infty, 0] \cup [1, +\infty)$. Now, instead of (9), it suffices to prove that for $t \in (0, 1)$

$$
\lim_{n \to \infty} F_{\overline{\Lambda}(1:n)} = 1; \tag{10}
$$

moreover, the convergence is uniform on the set $[\varepsilon, 1]$ for any $\varepsilon \in (0, 1)$.

2.2. Since

$$
F_{\overline{\Lambda}(1:n)}(t) = P(\mathbf{L}_{\overline{\Lambda}(1:n)} < t) = 1 - P(\mathbf{L}_{\overline{\Lambda}(1:n)} \geq t),
$$

(10) is equivalent to the relation

$$
P(\mathbf{L}_{\overline{\Lambda}(1:n)}\geqslant t)\stackrel{(7)}{=}\frac{\mu(\mathbf{L}_{\overline{\Lambda}(1:n)}\geqslant t)}{\mu(S^{n-1})}=\frac{\mu\left(\sum\limits_{k=1}^{n}\overline{\lambda}_{k}^{2}(s_{k}^{n})^{2}\geqslant t^{2}\right)}{\mu(S^{n-1})}\to 0.
$$

Thus, instead of (9), we have the equivalent relation

$$
\frac{\mu\left(\sum_{k=1}^{n} \overline{\lambda}_k^2 (s_k^n)^2 \geq t^2\right)}{\mu(S^{n-1})} \to 0.
$$
\n(11)

2.3. We prove an auxiliary inequality. Let a function $f \geq 0$ be defined on the set S, and let $h > 0$. Then

$$
\int_{S} f = \int_{f(\mathbf{x}) < h} + \int_{f(\mathbf{x}) \geq h} \geq h \cdot \mu\{f(\mathbf{x}) \geq h\}.
$$

Hence

$$
\mu\{f(\boldsymbol{x}) \geqslant h\} \leqslant \frac{1}{h} \cdot \int\limits_{S} f. \tag{12}
$$

2.4. Assume that

$$
f(\mathbf{s}) = \sum \overline{\lambda}_k^2 (s_k^n)^2, \quad h = t^2,
$$

in (12) . We estimate the numerator of the fraction in (11) :

$$
\mu\left(\sum_{k=1}^{n} \overline{\lambda}_{k}^{2}(s_{k}^{n})^{2} \geq t^{2}\right) \leq \frac{1}{t^{2}} \int_{S^{n-1}} \sum_{k=1}^{n} \overline{\lambda}_{k}^{2}(s_{k}^{n})^{2} ds^{n} = \left(\frac{1}{t^{2}} \sum_{k=1}^{n} \overline{\lambda}_{k}^{2}\right) \cdot \int_{S^{n-1}} (s_{k}^{n})^{2} ds^{n}.
$$
 (13)

Since the integral on the right-hand side of (13) is independent of k, we can interchange summation and integration if $1 \leq k \leq n$ is arbitrary.

2.5. We calculate the integral on the right-hand side of (13):

$$
\int_{S^{n-1}} (s_k^n)^2 ds^n = 2 \frac{\pi^{(n-1)/2}}{\Gamma((n-1)/2)} \cdot \int_0^{\pi} \cos^2 \varphi \sin^{n-2} \varphi d\varphi = \frac{\pi^{(n-1)/2}}{\Gamma((n-1)/2)} \int_0^{\pi} (\sin^{n-2} \varphi - \sin^n \varphi) d\varphi.
$$

Here,

$$
\int_{0}^{\pi} \sin^{n} \varphi \, d\varphi = \sqrt{\pi} \cdot \frac{\Gamma(\frac{n+1}{2})}{\Gamma(\frac{n+2}{2})}.
$$

We use the following two simple assertions [3].

2.6.1. If $c_n \to 0$, then $\frac{1}{n} \sum_{k=1}^n$ $\sum_{k=1}^{\infty} c_k \to 0.$ **2.6.2.** If $\lim_{k \to \infty} a_k = 0$ and $a_k \geq b_k \geq 0$ for all k, then $\lim_{k \to \infty} b_k = 0$. **2.7.** We return to the proof of (11):

$$
0 \leqslant \frac{\mu\left(\sum\limits_{k=1}^n \overline{\lambda}_k^2 (s_k^n)^2 \geqslant t^2\right)}{\mu(S^{n-1})} \leqslant \dots.
$$

Taking into account Subsections 2.4 and 2.5 and the formula

$$
\mu(S^{n-1})=2\frac{\pi^{n/2}}{\Gamma(n/2)},
$$

we have

$$
\ldots \leqslant \left(\frac{1}{t^2} \sum_{k=1}^n \overline{\lambda}_k^2\right) \cdot \frac{2 \frac{\pi^{(n-1)/2}}{\Gamma(\frac{n-1}{2})}}{2 \frac{\pi^{n/2}}{\Gamma(\frac{n}{2})}} \cdot \sqrt{\pi} \cdot \left(\frac{\Gamma(\frac{n-1}{2})}{\Gamma(\frac{n}{2})} - \frac{\Gamma(\frac{n+1}{2})}{\Gamma(\frac{n+2}{2})}\right)
$$

$$
= \left(\frac{1}{t^2} \sum_{k=1}^n \overline{\lambda}_k^2\right) \cdot \left(1 - \frac{\Gamma(\frac{n}{2}) \cdot \Gamma(\frac{n+1}{2})}{\Gamma(\frac{n-1}{2}) \cdot \Gamma(\frac{n+2}{2})}\right) = \ldots
$$

Using the formula

$$
\Gamma(x+1) = x \cdot \Gamma(x), \quad x = (n-1)/2, \ x = n/2,
$$

and taking into account that $t \geq \varepsilon$, we continue as follows:

$$
\ldots = \left(\frac{1}{t^2} \sum_{k=1}^n \overline{\lambda}_k^2\right) \cdot \left(1 - \frac{\Gamma\left(\frac{n}{2}\right) \cdot \Gamma\left(\frac{n-1}{2}\right) \cdot \left(\frac{n-1}{2}\right)}{\Gamma\left(\frac{n-1}{2}\right) \cdot \Gamma\left(\frac{n}{2}\right) \cdot \left(\frac{n}{2}\right)}\right) = \frac{1}{t^2} \cdot \frac{1}{n} \sum_{k=1}^n \overline{\lambda}_k^2 \leq \frac{1}{\varepsilon^2} \left[\frac{1}{n} \sum_{k=1}^n \overline{\lambda}_k\right].
$$

Returning to the beginning of Subsection 2.7, we see that

$$
0 \leqslant \frac{\mu\left(\sum\limits_{k=1}^{n} \overline{\lambda}_k^2 (s_k^n)^2 \geqslant t^2\right)}{\mu(S^{n-1})} \leqslant \frac{1}{\varepsilon^2} \Big[\frac{1}{n} \sum\limits_{k=1}^{n} \overline{\lambda}_k\Big];\tag{14}
$$

moreover,

$$
\frac{1}{\varepsilon^2} \Big[\frac{1}{n} \sum_{k=1}^n \overline{\lambda}_k \Big] \to 0
$$

by Subsection 2.6.1 and

$$
\frac{\mu\left(\sum\limits_{k=1}^{n}\overline{\lambda}_{k}^{2}(s_{k}^{n})^{2}\geqslant t^{2}\right)}{\mu(S^{n-1})}\rightarrow0
$$

by Subsection 2.6.2. The convergence is uniform since the majorant in (14) is independent of t. The theorem is proved. \Box

We return to the finite sequence $\Lambda(1:n) = {\lambda_k > 0, k = 1,...,n}$, where n is large and λ_n/λ_1 is small. With this sequence we associate the auxiliary sequence $\overline{\Lambda}(1:n)$. Since $\mathbf{L}_{\Lambda(1:n)}$ and $\mathbf{L}_{\overline{\Lambda}(1:n)}$ are connected by

$$
\mathbf{L}_{\Lambda(1:n)} = (\lambda_1^2(s_1^n)^2 + \ldots + \lambda_n^2(s_n^n)^2)^{1/2} = \lambda_1 \cdot (\overline{\lambda}_1^2(s_1^n)^2 + \ldots + \overline{\lambda}_n^2(s_n^n)^2)^{1/2} = \lambda_1 \mathbf{L}_{\overline{\Lambda}(1:n)},
$$

the functions $F_{\Lambda(1:n)}$ and $F_{\overline{\Lambda}(1:n)}$ are connected by the equality

$$
F_{\Lambda(1:n)}(t) = F_{\overline{\Lambda}(1:n)}(t/\lambda_1).
$$

By the above theorem, $F_{\overline{\Lambda}(1:n)} \simeq \chi$ for large n outside the interval $(0, \varepsilon)$. Consequently, $F_{\Lambda(1:n)} \simeq$ χ outside the interval $(0, \lambda_1 \varepsilon)$.

In the following section, we show how to use the above-obtained results.

3 Replacement of ν with ν_{ε}

By definition and notation, the condition coefficient $\nu(A)$ is the least number satisfying (with probability 1) the inequality $\mathbf{L} \cdot ||A|| \leq \nu$.

We choose a sufficiently small $\varepsilon > 0$ such that it is possible to ignore some random event in calculations provided that the probability of this event is less than ε . We find a numerical solution to Equation $F_{\overline{\Lambda}(1:n)}(L_{\varepsilon})=1-\varepsilon$ (cf. Figure 3; a fragment of Figure 2).

FIGURE 3. The graphical solution of the equations $F_{\Lambda^k}(L_{\varepsilon})=1-\varepsilon$ ($k=1,2$).

Since $P(\mathbf{L} < L_{\varepsilon}) \equiv F_{\overline{\Lambda}(1:n)}(L_{\varepsilon}) = 1 - \varepsilon$, we have $P(\mathbf{L} \geq L_{\varepsilon}) = 1 - P(\mathbf{L} < L_{\varepsilon}) = \varepsilon$. In other words, the event ${\{\mathbf L \geqslant L_\varepsilon\}}$ is so improbable that it can be ignored in calculations.

Let $\nu_{\varepsilon} = L_{\varepsilon} \cdot ||A||$. Then the following relation holds with probability $1 - \varepsilon$:

$$
\frac{|\Delta x|}{|\Delta b|} \cdot ||A|| \equiv \mathbf{L} \cdot ||A|| \leq \nu_{\varepsilon}.
$$

Thus, the coefficient ν can be replaced with ν_{ε} (although, cf. below $\nu_{\varepsilon}/\nu \ll 1$).

The ratio of ν_{ε} and ν is expressed as follows:

$$
\frac{\nu_{\varepsilon}}{\nu} = \frac{L_{\varepsilon} \|A\|}{\lambda_1 \|A\|} = \frac{L_{\varepsilon}}{\lambda_1}
$$

.

We compute ν_{ε}/ν for the sequences Λ^1 and Λ^2 (cf. Figure 2) with $\varepsilon = 0, 01$:

$$
\Lambda^1
$$
: $L_{\varepsilon} = 0,2481$, $\lambda = 1024$, $\frac{\nu_{\varepsilon}}{\nu} = 0,00024$,
\n Λ^2 : $L_{\varepsilon} = 0,1411$, $\lambda = 1$, $\frac{\nu_{\varepsilon}}{\nu} = 0,14$.

The values of $\frac{\nu_{\varepsilon}}{\nu}$ in the first and second cases are essentially different, which could be caused by the fact that the sequence $1, 01^{-k}$ (Λ^2) converges to zero much slower than 2^{-k} (Λ^1).

References

- 1. R. Bellman, *Introduction to Matrix Analysis*, McGrow-Hill, New York etc. (1960).
- 2. W. Feller, *An Introduction to Probability Theory and Its Applications*, John Wiley and Sons, New York etc. (1970).
- 3. G. M. Fikhtengolts, *Course of Differential and Integral Calculus* [in Russian], Nauka, Moscow (1977).

Submitted on January 18, 2017