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Using algebraic-analytic methods, we establish numerous connections, in finite and in-

finite variants, between amplitudes, coefficients, and source functions of dynamical sys-

tems of elasticity theory. Bibliography: 18 titles.

The general identification problem consists in finding an object from its features and is connected

with pattern recognition and inverse problems. In identification problems for dynamical systems

of ordinary differential equations, it is preferable to have explicit formulas for solutions, which

should be specified. For multidimensional identification problems it is also desirable to have

representations of solutions and coefficients of partial differential equations that contain arbitrary

functions of one or many variables [1]–[5]. Applying analytic and constructive methods, it is

possible not only to establish the existence of solutions to identification problems, but often to

construct or approximate the solution [6]–[10]. Therefore, the range of problems related to the

search of new representations of solutions and coefficients of equations in mathematical physics,

their reproduction, and construction of multidimensional counterparts of classical algebraic-

differential transformations are of great interest in problems of identification.

∗ To whom the correspondence should be addressed.

Translated from Sibirskii Zhurnal Chistoi i Prikladnoi Matematiki 18, No. 1, 2018, pp. 11-27.

1072-3374/20/2466-0738 c© 2020 Springer Science+Business Media, LLC

738

DOI 10.1007/s10958-020-04777-2



The ray method has been known since the 50s of the last century and is a powerful tool for

solving wave problems [11]–[14]. We propose a new method for studying identification problems

for system of equations of the theory of elasticity. The method is based on the ray decomposition

of solutions in the case where the coefficients of the system depend not only on the spatial

variable, but also on the time variable, which is of practical interest. Using the algebraic-

analytic methods, we establish new numerous connections, in finite and infinite cases, between

amplitudes, coefficients, and source functions of the dynamical systems of the theory of elasticity

(cf. also [10, 15, 16]).

1 Ray Decomposition

Assume that w = (w1, w2, w3) is a vector-valued function of x ∈ D ⊂ R
3, t > 0, D is a

domain, λ = λ(x, t) and μ = μ(x, t) are the Lamé coefficients, and ρ = ρ(x, t) > 0 is the density

depending on x and t,

α =

⎛
⎝

α1 0 0

0 α2 0

0 0 α3

⎞
⎠ ,

where αi = αi(x, t) are some functions.

We consider the system of equations of the theory of elasticity [17, 18]

∂2w

∂t2
=

μ

ρ
Δw +

λ+ μ

ρ
grad divw +

1

ρ
divw gradλ+

1

ρ
Aw gradμ+

α

ρ

∂w

∂t
+

1

ρ
R(x, t), (1)

where

Aw =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2
∂w1

∂x1

∂w1

∂x2
+

∂w2

∂x1

∂w1

∂x3
+

∂w3

∂x1

∂w2

∂x1
+

∂w1

∂x2
2
∂w2

∂x2

∂w2

∂x3
+

∂w3

∂x2

∂w3

∂x1
+

∂w1

∂x3

∂w3

∂x2
+

∂w2

∂x3
2
∂w3

∂x3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We look for a solution to the system (1) in the form of a ray series

w(x, t) =
∞∑
k=0

wk(x, t)fk(t, τ(x, t)), (2)

assuming that all functions in the decomposition are sufficiently many times differentiable and

possess the required properties. The following algebraic theorem holds.

Theorem 1. Assume that the following conditions hold:

1) wk = (w1
k, w

2
k, w

3
k)(x, t) are vector-valued functions of the variables (x, t), k = 0, 1, 2, . . . ,

and w−1 = w−2 = . . . = 0,

2) τ(x, t) is a function of the variables (x, t),

3) fk(t, y) are arbitrary functions of the variables (t, y), y ∈ R, connected by the identities

∂fk
∂y

= fk−1(t, y), k ∈ Z, (3)
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4) the functions Si
k(x, t), P

i
k(x, t), Q

i
k(x, t), k = 0, 1, 2, . . . , i = 1, 2, 3, are defined by

Si
k =

∂2wi
k

∂t2
− μ

ρ
Δwi

k −
λ+ μ

ρ

∂

∂xi

(
divwk

)

− 1

ρ

[
divwk

∂λ

∂xi
+

(
gradwi

k, gradμ
)
+

(∂wk

∂xi
, gradμ

)
+ αi

∂wi
k

∂t

]
, (4)

P i
k = 2

∂wi
k

∂t

∂τ

∂t
+ wi

k

∂2τ

∂t2
− μ

ρ

[
2
(
gradwi

k, grad τ
)
+ wi

kΔτ
]

− λ+ μ

ρ

[
divwk

∂τ

∂xi
+

(∂wk

∂xi
, grad τ

)
+

(
wk, grad

∂τ

∂xi

)]

− 1

ρ

[(
wk, grad τ

) ∂λ
∂xi

+ wi
k

(
grad τ, gradμ

)
+

∂τ

∂xi

(
wk, gradμ

)
+ αiw

i
k

∂τ

∂t

]
, (5)

Qi
k = wi

k

[(∂τ
∂t

)2 − μ

ρ
| grad τ |2

]
− λ+ μ

ρ

(
wk, grad τ

) ∂τ
∂xi

. (6)

If the vector-valued source function R = (R1, R2, R3) admits the representation

1

ρ
Ri(x, t) =

∞∑
k=0

[
2
∂wi

k

∂t

∂fk
∂t

+ 2wi
k

∂fk−1

∂t

∂τ

∂t
+ wi

k

∂2fk
∂t2

− αi

ρ
wi
k

∂fk
∂t

]
+

∞∑
k=0

Bi
kfk−2, (7)

where i = 1, 2, 3, and

Bi
k = Qi

k + Si
k−2 + P i

k−1, k = 0, 1, . . . , (8)

where S−2 = S−1 = P−1 = 0, k = 0, 1, 2, . . . , i = 1, 2, 3, then the vector-valued function w(x, t)

represented as a formal ray series (2) is a solution to the system (1).

Proof. We find the derivatives of the function w represented in the form (2):

∂w

∂t
=

∞∑
k=0

[∂wk

∂t
fk + wk

∂fk
∂t

+ wkfk−1
∂τ

∂t

]
,

∂2w

∂t2
=

∞∑
k=0

[∂2wk

∂t2
fk + 2

∂wk

∂t

∂fk
∂t

+ 2
∂wk

∂t
fk−1

∂τ

∂t
+ 2wk

∂fk−1

∂t

∂τ

∂t

+ wk
∂2fk
∂t2

+ wkfk−2

(
∂τ

∂t

)2

+ wkfk−1
∂2τ

∂t2

]
,

∂w

∂xi
=

∞∑
k=0

[∂wk

∂xi
fk + wkfk−1

∂τ

∂xi

]
,

∂2w

∂xi∂xj
=

∞∑
k=0

[ ∂2wk

∂xi∂xj
fk +

(∂wk

∂xi

∂τ

∂xj
+

∂wk

∂xj

∂τ

∂xi
+ wk

∂2τ

∂xi∂xj

)
fk−1 + wk

∂τ

∂xi

∂τ

∂xj
fk−2

]
.

We substitute the found derivatives into the system (1). Using the notation (4)–(6) and repre-

sentation (7), we obtain the equality

∞∑
k=0

Si
kfk +

∞∑
k=0

P i
kfk−1 +

∞∑
k=0

Qi
kfk−2 −

∞∑
k=0

Bi
kfk−2 = 0. (9)
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Since w−1 = 0, we have S−1 = 0 and

∞∑
k=0

Si
kfk =

∞∑
k=0

Si
k−1fk−1.

Therefore, the equality (9) can be written as

∞∑
k=0

(
Si
k−1 + P i

k

)
fk−1 +

∞∑
k=0

(
Qi

k −Bi
k

)
fk−2 = 0.

Since fk are arbitrary, we obtain (8). The theorem is proved.

If wk = wk(x), fk = fk(t−τ(x)), the Lamé coefficients, density, and entries of the absorption

matrix α depend only on the variables x, then we obtain the classical ray decomposition.

Corollary 1. Let the Lamé coefficients, density, and entries of the matrix α depend only on

the variables x, λ = λ(x), μ = μ(x), ρ = ρ(x), αi = αi(x), i = 1, 2, 3. Assume that

1) wk = (w1
k, w

2
k, w

3
k)(x) are vector-valued functions of the variables x, k = 0, 1, 2, . . . , and

w−1 = w−2 = . . . = 0,

2) τ(x) is a function of the variables x,

3) fk(y) are arbitrary functions of the variable y ∈ R, connected by

dfk
dy

= fk−1(y), k ∈ Z,

4) the functions Si
k(x), P

i
k(x), Q

i
k(x), k = 0, 1, 2, . . . , i = 1, 2, 3, are defined by

Si
k = −μ

ρ
Δwi

k −
λ+ μ

ρ

∂

∂xi
(divwk)− 1

ρ

[
divwk

∂λ

∂xi
+ (gradwi

k, gradμ) +
(∂wk

∂xi
, gradμ

)]
,

P i
k =

μ

ρ
[2(gradwi

k, grad τ) + wi
kΔτ ]

+
λ+ μ

ρ

[
divwk

∂τ

∂xi
+

(
∂wk

∂xi
, grad τ

)
+

(
wk, grad

∂τ

∂xi

)]

+
1

ρ

[
(wk, grad τ)

∂λ

∂xi
+ wi

k(grad τ, gradμ) +
∂τ

∂xi
(wk, gradμ)− αiw

i
k

]
,

Qi
k = wi

k

[
1− μ

ρ
| grad τ |2

]
− λ+ μ

ρ

(
wk, grad τ

) ∂τ
∂xi

.

If the vector-valued source function R = (R1, R2, R3) admits the representation

1

ρ
Ri(x, t) =

∞∑
k=0

Bi
kfk−2(t− τ(x)), i = 1, 2, 3,

where Bi
k = Qi

k + Si
k−2 + P i

k−1, k = 0, 1, . . . , S−2 = S−1 = P−1 = 0, k = 0, 1, 2, . . . , i = 1, 2, 3,

then the vector-valued function w(x, t) represented as a formal ray series

w(x, t) =
∞∑
k=0

wk(x)fk(t− τ(x)),

is a solution to the system (1).
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Remark 1. By Theorem 1, the amplitudes wk = (w1
k, w

2
k, w

3
k)(x, t), density ρ = ρ(x, t),

Lamé coefficients λ = λ(x, t), μ = μ(x, t), function τ(x, t), and absorption α = (α1, α2, α3)(x, t)

are connected with the source function R = (R1, R2, R3)(x, t) by the recurrent relations (8) for

given fk(t, y). This fact is fundamental in the theory of identifications problems for equations

of elasticity and will be used below. We will see that the ray decomposition (2) yields different

type waves, in particular, longitudinal, transverse, and surface ones.

2 Systems of Linear Equations Connected
with Equations of Elasticity

In this section, we consider the solvability conditions and general solutions to systems of

linear algebraic equations connected with the algebraic expression Qk and ray decompositions.

Theorem 2. Let Z = (z1, z2, z3) be a set of variables. The system of linear equations

Z
[μ
ρ
| grad τ |2 −

(
∂τ

∂t

)2]
+

λ+ μ

ρ
(Z, grad τ) grad τ = 0 (10)

for Z has a nontrivial solution if and only if one of the following identities holds:

μ

ρ
| grad τ |2 =

(
∂τ

∂t

)2

, (11)

λ+ 2μ

ρ
| grad τ |2 =

(
∂τ

∂t

)2

. (12)

Proof. The linear equations (10) for components of the vector Z are homogeneous. Conse-

quently, the determinant of the matrix

P =

⎛
⎜⎜⎜⎜⎝

θ + λ+μ
ρ

(
∂τ
∂x1

)2
λ+μ
ρ

∂τ
∂x1

∂τ
∂x2

λ+μ
ρ

∂τ
∂x1

∂τ
∂x3

λ+μ
ρ

∂τ
∂x1

∂τ
∂x2

θ + λ+μ
ρ

(
∂τ
∂x2

)2
λ+μ
ρ

∂τ
∂x2

∂τ
∂x3

λ+μ
ρ

∂τ
∂x1

∂τ
∂x3

λ+μ
ρ

∂τ
∂x2

∂τ
∂x3

θ + λ+μ
ρ

(
∂τ
∂x3

)2

⎞
⎟⎟⎟⎟⎠

(13)

with the variables Z, where

θ =
μ

ρ
| grad τ |2 −

(∂τ
∂t

)2
,

vanishes. We have detP = λ1λ2λ3, where λ1, λ2, λ3 are eigenvalues of the matrix P . It is easy

to see that rank[P − θE] = 1. Since P is a symmetric matrix, we have λ1 = λ2 = θ. Since

λ1 + λ2 + λ3 = trP,

we find

2θ + λ3 = 3θ +
λ+ μ

ρ
| grad τ |2.

In other words,

λ3 = θ +
λ+ μ

ρ
| grad τ |2 = λ+ 2μ

ρ
| grad τ |2 −

(
∂τ

∂t

)2

.
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Therefore,

detP = λ1λ2λ3 =
(μ
ρ
| grad τ |2 −

(∂τ
∂t

)2)2(λ+ 2μ

ρ
| grad τ |2 −

(∂τ
∂t

)2)
.

Thus, the determinant of the matrix vanishes in the case (11) or (12). The theorem is proved.

Remark 2. 1. The case (11) corresponds to transverse waves for Z = wk. Moreover, the

vector Z = wk is orthogonal to the vector grad τ , i.e., (Z, grad τ) = 0.

2. The case (12) corresponds to longitudinal waves. Moreover, the vector Z = wk is propor-

tional to the vector grad τ .

The relations (11) and (12) will be used for removing the density ρ.

Remark 3. Under the assumptions of Corollary 1, the relations (11) and (12) take the form

ρ = μ| grad τ |2 and ρ = (λ+ 2μ)| grad τ |2 respectively.

We formulate the general result about the formula for the inverse matrix of a special form.

Lemma 1. Assume that the following conditions hold:

1) μ, ω ∈ C are complex numbers,

2) m = (m1, . . . ,mn) ∈ C
n is an arbitrary fixed vector,

3) m⊗m is an (n×n)-matrix such that (m⊗m)ij = mimj, i, j = 1, . . . , n, i.e., m⊗m = mTm

is the product of column mT and row m.

If the matrix M = μE + ωm⊗m, where E is the identity matrix of order n, is nonsingular,

then

M−1 =
1

μ
E − ωm⊗m

μ(μ+ ω|m|2) , |m|2 = m2
1 + . . .+m2

n.

Proof. Eigenvalues of the matrix M are equal to μ (of multiplicity n− 1) and μ+ω|m|2 (of

multiplicity 1). Since M is nonsingular, we have μ, μ + ω|m|2 �= 0. A direct verification of the

identity MM−1 = E and the relation (m⊗m)2 = |m|2m⊗m complete the proof.

We note that the matrix P can be represented as

P = θE + γ grad τ ⊗ grad τ,

where γ = (λ+ μ)/ρ. Therefore if the relations (11) and (12) fail, then the matrix P is invertible

and

P−1 =
1

θ
E − γ

θ(θ + γ| grad τ |2) grad τ ⊗ grad τ.

Hence the following assertion holds.

Lemma 2. 1. If the matrix P defined by (13) is nonsingular, then the solution Z = (z1, z2, z3)

to the system

Z
[μ
ρ
| grad τ |2 −

(∂τ
∂t

)2]
+ γ(Z, grad τ) grad τ = Y, (14)

where Y = (y1, y2, y3), is found by

Z =
Y

θ
− γ

θ(θ + γ| grad τ |2)
(
Y, grad τ

)
grad τ.
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2. Let (11) hold. Then the system (14) has a solution if and only if the right-hand side Y is

proportional to the vector grad τ , i.e., Y = γβ grad τ , where β = β(x, t) is some function. In

this case, the solution Z is found from the relation

(Z, grad τ) = β.

3. Let (12) hold. Then the system (14) has a solution if and only the right-hand side Y is

orthogonal to the vector grad τ , i.e., (Y, grad τ) = 0. In this case, the solution Z is found by

Z = ν grad τ − 1

γ| grad τ |2Y,

where ν = ν(x, t) is an arbitrary function.

Corollary 2. 1. If the matrix P defined by (13) is nonsingular and the vector Y is propor-

tional to the vector grad τ , i.e., Y = β grad τ for some function β = β(x, t), then the solution Z

to the system (14) has the form

Z =
β

θ + γ| grad τ |2 grad τ.

2. If the matrix P defined by (13) is nonsingular and the vector Y is orthogonal to the vector

grad τ , i.e., (Y, grad τ) = 0, then the solution Z to the system (14) has the form

Z =
Y

θ
.

Remark 4. By the results of Section 2, the ray decomposition in Theorem 1 yields different

type waves (not only longitudinal and transverse ones) depending on the matrix P .

3 Case w = w0(x, t)f0(t, τ(x, t))

In the case w = w0(x, t)f0(t, τ(x, t)), the system (8) consists of the nine equations

Qi
0 = Bi

0, P i
0 = Bi

1, Si
0 = Bi

2, i = 1, 2, 3. (15)

Proposition 1. Assume that the following conditions hold:

1) the matrix P defined by (13) is nonsingular,

2) B0 =
(
B1

0 , B
2
0 , B

3
0

)
(x, t) is orthogonal to the vector grad τ, B0 = −θb, (b, grad τ) = 0,

3) B1 =
(
B1

1 , B
2
1 , B

3
1

)
(x, t) and B2 =

(
B1

2 , B
2
2 , B

3
2

)
(x, t) are given vector-valued functions,

4) the vector-valued function b = (b1, b2, b3)(x, t) and scalar functions λ = λ(x, t), μ = μ(x, t),

ρ = ρ(x, t), τ = τ(x, t) satisfy the system of equations (i = 1, 2, 3)

2
∂bi
∂t

∂τ

∂t
+ bi

∂2τ

∂t2
− μ

ρ

[
2(grad bi, grad τ) + biΔτ

]
− γ

∂τ

∂xi
div b

− 1

ρ

[
bi(grad τ, gradμ) +

∂τ

∂xi
(b, gradμ) + αibi

∂τ

∂t

]
= Bi

1, (16)

∂2bi
∂t2

− μ

ρ
Δbi − γ

∂(div b)

∂xi

− 1

ρ

[
div b

∂λ

∂xi
+ (grad bi, gradμ) +

( ∂b

∂xi
, gradμ

)
+ αi

∂bi
∂t

]
= Bi

2. (17)
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Then the vector-valued function w = w0(x, t)f0(t, τ(x, t)) with w0(x, t) = b(x, t) is a solution to

the system (1).

Remark 5. Since (b, grad τ) = 0, the vector-valued function b is determined by two arbitrary

scalar functions. For example, if
∂τ

∂x1
�= 0, then

b = β1

( ∂τ

∂x2
,− ∂τ

∂x1
, 0
)
+ β2

( ∂τ

∂x3
, 0,− ∂τ

∂x1

)
,

where β1 = β1(x, t) and β2 = β2(x, t) are scalar functions. Hence the system (16), (17) is well

defined since it consists of six equations for the six unknown functions λ(x, t), μ(x, t), ρ(x, t),

τ(x, t), β1(x, t), β2(x, t).

Proposition 2. Assume that the following conditions hold:

1) the matrix P defined by (13) is nonsingular,

2) the vector B0 = (B1
0 , B

2
0 , B

3
0)(x, t) is proportional to the vector grad τ :

B0 = −(θ + γ| grad τ |2)β grad τ,

3) B1 = (B1
1 , B

2
1 , B

3
1)(x, t) and B2 = (B1

2 , B
2
2 , B

3
2)(x, t) are given vector-valued functions,

4) the scalar functions λ = λ(x, t), μ = μ(x, t), ρ = ρ(x, t), τ = τ(x, t), β = β(x, t) satisfy the

system of equations (i = 1, 2, 3)

2
∂

∂t

(
β
∂τ

∂xi

)∂τ
∂t

+ β
∂τ

∂xi

∂2τ

∂t2
− μ

ρ

[
2(grad

(
β
∂τ

∂xi

)
, grad τ) + β

∂τ

∂xi
Δτ

]

− γ
[
div(β grad τ)

∂τ

∂xi
+

∂

∂xi

(
β| grad τ |2

)]

− 1

ρ

[
β| grad τ |2 ∂λ

∂xi
+ 2β

∂τ

∂xi
(grad τ, gradμ) + αiβ

∂τ

∂xi

∂τ

∂t

]
= Bi

1, (18)

∂2

∂t2

(
β
∂τ

∂xi

)
− μ

ρ
Δ
(
β
∂τ

∂xi

)
− γ

∂

∂xi
div(β grad τ)

− 1

ρ

[
div(β grad τ)

∂λ

∂xi
+ (grad

(
β
∂τ

∂xi

)
, gradμ)

+
( ∂

∂xi
(β grad τ), gradμ

)
+ αi

∂

∂t

(
β
∂τ

∂xi

)]
= Bi

2. (19)

Then the vector-valued function w = w0(x, t)f0(t, τ(x, t)) with w0(x, t) = β(x, t) grad τ is a

solution to the system (1).

Remark 6. The system (18), (19) is overdetermined since it consists of six equations for

the five unknown functions λ(x, t), μ(x, t), ρ(x, t), τ(x, t), β(x, t).

If α1(x, t) = α2(x, t) = α3(x, t) = α(x, t), then the function α(x, t) can be added to the

system (18), (19), which makes the system determined.

Based on Propositions 1 and 2, it is possible to construct solutions of general form (2) to the

system (1) by using the following lemma.
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Lemma 3. Assume that we are given

1) functions λ = λ(x, t), μ = μ(x, t), ρ = ρ(x, t), τ = τ(x, t), αi = αi(x, t), i = 1, 2, 3,

2) vector-valued functions Bk = (B1
k, B

2
k, B

3
k)(x, t), k = 0, 1, 2, . . .,

3) vector-valued functions wk = (w1
k, w

2
k, w

3
k), k = 0, 1, 2, . . . ,m, where m � 0 is a fixed integer,

4) a nonsingular matrix P .

Then the vector-valued functions wk = (w1
k, w

2
k, w

3
k), k � m + 1, are uniquely found from the

system (8).

Proof. The vector-valued functions wk, k � m+ 1, are included in the system (8)

Bk = Qk + Sk−2 + Pk−1, k � m+ 1.

Since wm and wm−1 are known, Pm, Sm−1, and Sm are also known. Therefore, from the relation

Qm+1 = Bm+1 − Pm − Sm−1

we find

wm+1 = P−1(Bm+1 − Pm − Sm−1)

by formula (14) in Lemma 2. Consequently, we find Pm+1. Therefore, from the relation

Qm+2 = Bm+2 − Pm+1 − Sm

we find

wm+2 = P−1(Bm+2 − Pm+1 − Sm).

To complete the proof of the lemma, we apply induction on k � m+ 1.

The following two assertions deal with a singular matrix P , i.e., (11) or (12) holds.

Proposition 3. Assume that the following conditions hold:

1) the identity (11) holds,

2) the vector B0 = (B1
0 , B

2
0 , B

3
0)(x, t) is proportional to the vector grad τ ,

B0 = −γ
β

| grad τ |2 grad τ, β = β(x, t),

3) B1 = (B1
1 , B

2
1 , B

3
1)(x, t) and B2 = (B1

2 , B
2
2 , B

3
2)(x, t) are given vector-valued functions,

4) the scalar functions λ = λ(x, t), μ = μ(x, t), τ = τ(x, t), β = β(x, t) and the vector

w0 = (w1
0, w

2
0, w

3
0)(x, t) satisfy the system of equations (i = 1, 2, 3)

(w0, grad τ) = β, (20)

2
∂wi

0

∂t

∂τ

∂t
+ wi

0

∂2τ

∂t2
− μ

ρ
[2(gradwi

0, grad τ) + wi
0Δτ ]− γ

[
divwk

∂τ

∂xi
+

∂β

∂xi

]

− 1

ρ

[ ∂β
∂xi

∂λ

∂xi
+ wi

0(grad τ, gradμ) +
∂τ

∂xi
(w0, gradμ) + αiw

i
0

∂τ

∂t

]
= Bi

1, (21)

∂2wi
0

∂t2
− μ

ρ
Δwi

0 − γ
∂

∂xi
(divw0)

746



− 1

ρ

[
divw0

∂λ

∂xi
+ (gradwi

0, gradμ) +
(∂w0

∂xi
, gradμ

)
+ αi

∂wi
0

∂t

]
= Bi

2, (22)

Then the vector-valued function w = w0(x, t)f0(t, τ(x, t)) is a solution to the system (1).

Remark 7. If, for example,
∂τ

∂x1
�= 0, then the equality (w0, grad τ) = β can be written in

the form

w0 = β1

(
∂τ

∂x2
,− ∂τ

∂x1
, 0

)
+ β2

(
∂τ

∂x3
, 0,− ∂τ

∂x1

)
+ β

grad τ

| grad τ |2 ,

where β1 = β1(x, t) and β2 = β2(x, t) are scalar functions. We can express ρ from (11) and

substitute into (21) and (22). Then the system (21), (22) is completely determined since it

consists of six equations for the six unknown functions λ(x, t), μ(x, t), τ(x, t), β1(x, t), β2(x, t),

β(x, t).

Based on the formulas in Proposition 3, it is possible to construct a solution of general form

(2) to the system (1) by using the following lemma.

Lemma 4. Assume that we are given

1) functions λ = λ(x, t), μ = μ(x, t), ρ = ρ(x, t), τ = τ(x, t), αi = αi(x, t), i = 1, 2, 3, and

(11) holds,

2) vector-valued functions Bk = (B1
k, B

2
k, B

3
k)(x, t), k = 0, . . . ,m, where m � 0 is a fixed

integer,

3) vector-valued functions wk = (w1
k, w

2
k, w

3
k), k = 0, 1, 2, . . . ,m.

Then the vector-valued functions wk = (w1
k, w

2
k, w

3
k), Bk = (B1

k, B
2
k, B

3
k), k � m + 1, can be

successively found from the system (7) by using formulas in Lemma 2.

Proof. We consider the relation (7) with k = m+ 1

Qm+1 = Bm+1 − Pm − Sm−1.

Here, the vector-valued functions Pm and Sm−1 are known. By assertion 3 of Lemma 2, we have

Bm+1 = Pm + Sm−1 − γβm+1 grad τ

for some function βm+1 = βm+1(x, t). In this case, the vector-valued function wm+1 is also found

from the relation

(wm+1, grad τ) = βm+1.

Then we apply induction on k � m + 1. If wk, Bk, m + 1 � k � M are already constructed,

then BM+1 is found by

BM+1 = PM + SM−1 − γβM+1 grad τ

for some function βM+1 = βm+1(x, t) and the vector-valued function wM+1 is found from the

relation

(wM+1, grad τ) = βM+1.

We note that wk, Bk, k � m + 1, are found at each step with a certain arbitrariness in three

scalar functions.
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Proposition 4. Assume that the following conditions hold:

1) the identity (12) holds,

2) the vector B0 = (B1
0 , B

2
0 , B

3
0)(x, t) is orthogonal to the vector grad τ ;

3) B1 = (B1
1 , B

2
1 , B

3
1)(x, t) and B2 = (B1

2 , B
2
2 , B

3
2)(x, t) are given vector-valued functions,

4) the scalar functions λ = λ(x, t), μ = μ(x, t), ρ = ρ(x, t)) τ = τ(x, t), ν = ν(x, t) and the

vector

w0 = (w1
0, w

2
0, w

3
0) ≡

1

γ| grad τ |2B0 − ν grad τ (23)

satisfy the system of equations (i = 1, 2, 3)

2
∂wi

0

∂t

∂τ

∂t
+ wi

0

∂2τ

∂t2
− μ

ρ
[2(gradwi

0, grad τ) + wi
0Δτ ]

− λ+ μ

ρ

[
divw0

∂τ

∂xi
+

(∂w0

∂xi
, grad τ

)
+

(
w0, grad

∂τ

∂xi

)]

− 1

ρ

[
(w0, grad τ)

∂λ

∂xi
+ wi

0(grad τ, gradμ) +
∂τ

∂xi
(w0, gradμ) + αiw

i
0

∂τ

∂t

]
= Bi

1, (24)

∂2wi
0

∂t2
− μ

ρ
Δwi

0 − γ
∂

∂xi
(divw0)

− 1

ρ

[
divw0

∂λ

∂xi
+ (gradwi

0, gradμ) +
(∂w0

∂xi
, gradμ

)
+ αi

∂wi
0

∂t

]
= Bi

2. (25)

Then the vector-valued function w = w0(x, t)f0(t, τ(x, t)) is a solution to the system (1).

Remark 8. We can express ρ from (12) and substitute into (23)–(25). Then, in view of

(23) and the relation (B0, grad τ) = 0, the system (24), (25) consists of seven equations for the

seven unknown functions λ(x, t), μ(x, t), τ(x, t), ν(x, t), B0 = (B1
0 , B

2
0 , B

3
0)(x, t).

Based on the formulas in Proposition 4, it is possible to construct solutions of more general

form (2) to the system (1) by using the following lemma.

Lemma 5. Assume that we are given

1) functions λ = λ(x, t), μ = μ(x, t), ρ = ρ(x, t), τ = τ(x, t), αi = αi(x, t), i = 1, 2, 3, and the

relation (12) holds,

2) vector-valued functions Bk = (B1
k, B

2
k, B

3
k)(x, t), k = 0, . . . ,m, where m � 0 is a fixed

integer,

3) vector-valued functions wk = (w1
k, w

2
k, w

3
k), k = 0, 1, 2, . . . ,m.

Then the vector-valued functions wk = (w1
k, w

2
k, w

3
k), Bk = (B1

k, B
2
k, B

3
k), k � m + 1, can be

successively found from the system (8) by using formulas in Lemma 2.

Proof. We consider the relation in (8) with k = m+ 1

Qm+1 = Bm+1 − Pm − Sm−1.
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Here, the vector-valued functions Pm and Sm−1 are known. By assertion 3) of Lemma 2,

(Bm+1 − Pm − Sm−1, grad τ) = 0.

and, in this case, the vector-valued function wm+1 is found by the formula

wm+1 = νm+1 grad τ +
1

γ| grad τ |2
(
Bm+1 − Pm − Sm−1

)

for some function νm+1 = νm+1(x, t).

Then we use induction on k � m + 1. If wk, Bk, m + 1 � k � M , are already constructed,

then BM+1 is found from the relation

(BM+1 − PM − SM−1, grad τ) = 0

and the vector-valued function wM+1 is found from the formula

wM+1 = νM+1 grad τ +
1

γ| grad τ |2
(
BM+1 − PM − SM−1

)

for some function νM+1 = νM+1(x, t).

We note that wk, Bk, k � m+1, are found at each step with a certain arbitrariness in three

scalar functions.

The above identification systems of equations with respect to w0(x, t), λ(x, t), μ(x, t), ρ(x, t),

τ(x, t), αi(x, t), i = 1, 2, 3, for different type waves should be further studied, and the authors

hope to discuss them in forthcoming works.

4 Solutions of General Form

The assertions of this section are based on the fact that if the relation in (8))

Qk = Bk − Pk−1 − Sk−2

is resolved with respect to wk, then the series (2) can be successively constructed by using

recurrent formulas expressing wk in terms of wk−1 and wk−2.

Theorem 3. Assume that the matrix P is nonsingular and the following conditions hold:

1) Bk = (B1
k, B

2
k, B

3
k), k = 0, 1, 2, . . . , are arbitrary vector-valued functions,

2) the vector-valued functions wk = (w1
k, w

2
k, w

3
k), Pk = (P 1

k , P
2
k , P

3
k ), Sk = (S1

k , S
2
k , S

3
k), k =

0, 1, 2, . . . , are defined by the recurrent formulas (4), (5) and

wi
k =

γ

θ(θ + γ| grad τ |2)(Bk − Pk−1 − Sk−2, grad τ)
∂τ

∂xi
− 1

θ
(Bi

k − P i
k−1 − Si

k−2),

where i = 1, 2, 3 and wi
k = P i

k = Si
k = 0 for k � −1.

Then the vector-valued function w(x, t) represented as the ray series (2) is a solution to the

system (1) with the vector-valued source function R = (R1, R2, R3) admitting the representa-

tion (7).
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Below, we indicate cases of the existence of solutions subject to the conditions (w, grad τ) = 0

and w × grad τ = 0. Here, the symbol × denotes the vector product in R
3.

4.1. Waves with property (w, grad τ) = 0.

Theorem 4. Assume that the following conditions hold:

1) λ = λ(x, t), μ = μ(x, t), ρ = ρ(x, t), τ = τ(x, t), αi = αi(x, t), i = 1, 2, 3, are scalar

functions such that (
∂τ

∂t

)2

− μ

ρ
| grad τ |2 �= 0,

2) the vector-valued functions wk = (w1
k, w

2
k, w

3
k), Pk = (P 1

k , P
2
k , P

3
k ), Sk=(S1

k , S
2
k , S

3
k), Bk =

(B1
k, B

2
k, B

3
k), k = 0, 1, 2, . . . , are defined by the recurrent formulas

(Bk − Pk−1 − Sk−2, grad τ) = 0,

wk =
Bk − Pk−1 − Sk−2

(∂τ∂t )
2 − μ

ρ | grad τ |2
,

P i
k = 2

∂wi
k

∂t

∂τ

∂t
+ wi

k

∂2τ

∂t2
− μ

ρ
[2(gradwi

k, grad τ) + wi
kΔτ ]

− λ+ μ

ρ
divwk

∂τ

∂xi
− 1

ρ

[
wi
k(grad τ, gradμ) +

∂τ

∂xi
(wk, gradμ) + αiw

i
k

∂τ

∂t

]
, (26)

Si
k is expressed by formula (4), i = 1, 2, 3.

Then the vector-valued function w(x, t) represented as the formal ray series (2) is a solution to

the system (1) with the source function (7); moreover, (w, grad τ) = 0.

Remark 9. If, for example,
∂τ

∂x1
�= 0, then the vector-valued function Bk is represented as

Bk = βk1

( ∂τ

∂x2
,− ∂τ

∂x1
, 0
)
+ βk2

( ∂τ

∂x3
, 0,− ∂τ

∂x1

)
+ β grad τ,

where βk1 = βk1(x, t) and βk2 = βk2(x, t) are arbitrary scalar functions and the function βk =

βk(x, t) is given by

βk =
1

| grad τ |2 (Pk−1 + Sk−2, grad τ).

Setting βk1 = βk2 = 0, we arrive at the following assertion.

Corollary 3. Assume that the following conditions hold:

1) λ = λ(x, t), μ = μ(x, t), ρ = ρ(x, t)) τ = τ(x, t), αi = αi(x, t), i = 1, 2, 3, are scalar

functions such that (
∂τ

∂t

)2

− μ

ρ
| grad τ |2 �= 0,

2) B0 = (B1
0 , B

2
0 , B

3
0) is a nonzero vector-valued function orthogonal to the vector grad τ ,

(B0, grad τ) = 0,
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3) the vector-valued functions wk = (w1
k, w

2
k, w

3
k), Pk = (P 1

k , P
2
k , P

3
k ), Sk = (S1

k , S
2
k , S

3
k), k =

0, 1, 2, . . . , and Bk = (B1
k, B

2
k, B

3
k), k = 1, 2, . . . , are defined by the recurrent formulas (26),

(4), and

Bk = βk grad τ, βk =
1

| grad τ |2 (Pk−1 + Sk−2, grad τ), wk =
βk grad τ − Pk−1 − Sk−2(

∂τ
∂t

)2 − μ
ρ | grad τ |2

.

Then the series (2) is a solution to the system (1) with the source function (7); moreover,

(w, grad τ) = 0.

We note that the term ∞∑
k=0

Bk(x, t)fk−2(t, τ(x, t))

in the source function (7) is the sum of the term B0(x, t)f−2(t, τ(x, t)) orthogonal to the vector

grad τ and the term
∞∑
k=1

Bk(x, t)fk−2(t, τ(x, t))

proportional to the vector grad τ .

We clarify whether there exist waves such that (w, grad τ) = 0 provided that (11) holds.

Theorem 5. Assume that the following conditions hold:

1) λ = λ(x, t), μ = μ(x, t), ρ = ρ(x, t)) τ = τ(x, t), αi = αi(x, t), i = 1, 2, 3, are scalar

functions such that (
∂τ

∂t

)2

− μ

ρ
| grad τ |2 = 0,

2) wk = (w1
k, w

2
k, w

3
k), k = 0, 1, 2, . . . , are arbitrary vector-valued functions orthogonal to the

vector grad τ , (wk, grad τ) = 0,

3) the vector-valued functions Pk = (P 1
k , P

2
k , P

3
k ), Sk = (S1

k , S
2
k , S

3
k), k = 0, 1, 2, . . . , are defined

by (26) and (4),

4) the vector-valued functions Bk = (B1
k, B

2
k, B

3
k), k = 0, 1, 2, . . . , are defined by

Bk = Pk−1 + Sk−2.

Then the vector-valued function w(x, t) represented as the formal ray series (2) is a solution to

the system (1) with the source function (7); moreover, (w, grad τ) = 0.

4.2. Waves with property w × grad τ = 0.

Theorem 6. Assume that the following conditions hold:

1) λ = λ(x, t), μ = μ(x, t), ρ = ρ(x, t)) τ = τ(x, t), αi = αi(x, t), i = 1, 2, 3, are scalar

functions such that (∂τ
∂t

)2 − λ+ 2μ

ρ
| grad τ |2 �= 0,
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2) the vector-valued function B0 = (B1
0 , B

2
0 , B

3
0)(x, t) admits the representation

B0 = β0

((∂τ
∂t

)2 − λ+ 2μ

ρ
| grad τ |2

)
grad τ,

3) the vector-valued function w0 = (w1
0, w

2
0, w

3
0)(x, t) admits the representation

w0 = β0 grad τ,

4) the scalar functions βk = βk(x, t), vector-valued functions wk = (w1
k, w

2
k, w

3
k)(x, t), k =

1, 2, . . ., and vector-valued functions Pk = (P 1
k , P

2
k , P

3
k )(x, t), Sk = (S1

k , S
2
k , S

3
k)(x, t), Qk =

(Q1
k, Q

2
k, Q

3
k)(x, t), k = 0, 1, 2, . . . , are defined by (5), (4), and

βk = − (Pk−1 + Sk−2, grad τ)

| grad τ |2
(
∂τ
∂t

)2 − λ+2μ
ρ | grad τ |2

, wk = βk grad τ,

Qk = βk

((∂τ
∂t

)2 − λ+ 2μ

ρ
| grad τ |2

)
grad τ,

5) the vector-valued functions Bk = (B1
k, B

2
k, B

3
k)(x, t), k = 0, 1, 2, . . . , are defined by

Bk = Qk + Pk−1 + Sk−2.

Then the vector-valued function w(x, t) represented as the formal ray series (2) is a solution to

the system (1) with the source function (7); moreover, w × grad τ = 0.

We note that the term
∞∑
k=0

Bi
kfk−2

in the source function (7) is orthogonal to the vector grad τ since (Bk, grad τ) = 0, k = 0, 1, 2, . . . .

Remark 10. The representation

B0 = β0

((∂τ
∂t

)2 − λ+ 2μ

ρ
| grad τ |2

)
grad τ

in Theorem 6 can be replaced with the relation

(B0, rotB0) = 0

which implies that the vector B0 is proportional to the gradient of some function τ(x, t); more-

over, the proportionality coefficient is found up to a factor which is a function of t.

Apparently, it is reasonable to add a vector-valued function w̃(x, t) to the ray decomposition,

assuming that w̃(x, t) is an arbitrary solution to the homogeneous system of elasticity theory

(1), so that the ray decomposition (2) is a partial solution to the problem (1).
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