
Journal of Mathematical Sciences, Vol. 246, No. 4, April, 2020

ON THE CHOICE OF THRESHOLDING
PARAMETERS FOR NON-GAUSSIAN NOISE
DISTRIBUTION

A. A. Kudryavtsev1 and O. V. Shestakov1,2

The paper considers the problem of estimating the signal function from noisy observations using
threshold processing of its wavelet expansion coefficients. Under general assumptions about the prop-
erties of the noise distribution, the asymptotic order of the optimal threshold is calculated, minimizing
the loss function, based on the probability that the maximum error in the wavelet coefficients exceeds
a given critical level.

1. Introduction

Wavelet methods are widely used in signal analysis and processing. Their main advantages are the
speed of algorithms and the ability to locally process the signal functions in both the time (space)
and frequency domain. It is usually assumed that the wavelet decomposition of the processed function
contains only a small number of wavelet coefficients, which are large in their absolute value. In the
problem of noise suppression, this assumption serves as a justification for the application of thresholding
methods in which all wavelet coefficients, the absolute value of which is less than a certain threshold, are
set to zero. The case where the noise in the signal is additive and Gaussian is well studied and expressions
are obtained for optimal or asymptotically optimal thresholds oriented to different loss functions [1–6].
In this paper, it is assumed that the signal function belongs to the Lipschitz class with a certain positive
exponent, and only the most general assumptions are made regarding the noise distribution. Relations
are obtained that allow to calculate the threshold, which provides the asymptotically optimal order of
the loss function, based on the probability that the maximum error in the wavelet coefficients exceeds
a given critical level. Examples of the calculation of the asymptotically optimal threshold for various
noise distributions are given.

2. Statement of the problem of finding an asymptotically optimal threshold

Let the signal function f be given on a finite interval [a, b] and f ∈ Lip(γ, L), where Lip(γ, L) is the
class of uniformly Lipschitz-regular functions on [a, b] with some exponent γ > 0 and Lipschitz constant
L > 0. In practice, f is given in N discrete samples. In this paper, it is assumed that N = 2J for some
J > 0. After applying a discrete wavelet transform, the form of which is determined by a certain wavelet
function ψ, we get a set of wavelet coefficients {μj,k}j=0,...,J−1, k=0,...,2j−1, in which the index j is called
the scale, and the index k is called the shift [7].

We impose some additional conditions on the wavelet function ψ: let ψ have M vanishing moments
(M � γ), be M times continuously differentiable, and for all 0 � k � M and any m ∈ N let there be a
constant Cm such that for all x ∈ R

∣
∣
∣ψ(k)(x)

∣
∣
∣ � Cm

1 + |x|m .
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Then there is a constant Cf > 0 such that [7]

|μj,k| � Cf · 2J/2
2j(γ+1/2)

. (1)

In real observations, there is always a noise due to imperfections of equipment, various interference
and other reasons. For empirical wavelet coefficients in this paper, the following noise signal model is
adopted:

Yj,k = μj,k +Wj,k, j = 0, . . . , J − 1, k = 0, . . . , 2j − 1,

where μj,k are discrete wavelet coefficients of the “pure” signal f , and Wj,k are the “noise” coefficients
which are assumed to be independent and have a symmetric absolutely continuous differentiable distri-
bution function P(Wj,k < x) = 1−H(x). We suppose that 0 < H(x) < 1 for all x ∈ R.

When applying the wavelet methods for noise suppression, the threshold processing method is most
frequently used. It sets to zero the coefficients whose absolute values do not exceed a given threshold
T , since it is believed that the main part of the useful signal is contained in a relatively small number
of relatively large coefficients. The threshold processing function ρT is applied to each coefficient. This

paper considers most commonly used functions of hard thresholding ρ
(h)
T (x) = x · 1(|x| > T ) and soft

thresholding ρ
(s)
T (x) = sign(x)(|x|−T )+. We denote by Ŷj,k the estimate of the wavelet coefficient, which

is obtained using the threshold processing: Ŷj,k = ρT (Yj,k).
Let some critical value ε > 0 be given. Consider the loss function of the following form:

lJ(f) = P

(

max
j,k

∣
∣
∣Ŷj,k − μj,k

∣
∣
∣ > ε

)

. (2)

This function is a generalization of the loss function proposed in [4]. In the same paper [4], it was
shown that the choice of thresholds, the purpose of which is to minimize the loss function based on the
error probabilities, gives comparable and sometimes better results than thresholds that minimize the
mean-square error.

With an unbounded increase of the number of samples, lJ(f) tends to unity. The asymptotically
optimal threshold should provide minimal losses in the sense that the speed of lJ(f) tending to unity
for the given threshold is the smallest. Due to the relation

1− P

(

max
j,k

∣
∣
∣Ŷj,k − μj,k

∣
∣
∣ > ε

)

=

J−1∏

j=0

2j−1∏

k=0

P
(∣
∣
∣Ŷj,k − μj,k

∣
∣
∣ � ε

)

it is equivalent to the fact that for the asymptotically optimal threshold, the speed of convergence to
infinity of the loss function of the form

rJ(f) =
J−1∑

j=0

2j−1∑

k=0

∣
∣
∣lnP

(∣
∣
∣Ŷj,k − μj,k

∣
∣
∣ � ε

)∣
∣
∣ (3)

is the slowest.
The goal of this paper is to derive relations that allow us to calculate the asymptotically optimal

threshold in the class Lip(γ, L) for the loss function, defined as

RJ = sup
f∈Lip(γ,L)

rJ(f), (4)

i.e., the threshold asymptotically optimal in the minimax sense. A detailed study of the behavior of the
asymptotically optimal threshold for the mean-square loss function in the model with additive Gaussian
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noise can be found in [2] and [3]. Also in [1], a method was proposed for finding an adaptive optimal
threshold with which one can estimate the mean-square error of the threshold processing of a specific
function. This method is based on minimizing the unbiased risk estimate, the statistical properties
of which are studied in detail in the papers [8] and [9]. Note that the “reasonable” threshold should
increase in J [3]. However, in order to simplify the notation, the dependence of the threshold on J will
not be explicitly indicated below.

In what follows, the symbol � denotes the order of the quantity in question in J , i.e., aJ � bJ if,
starting with some J , the inequalities C1 · bJ � aJ � C2 · bJ hold for some positive constants C1 and C2.
The notation aJ ∼ bJ will be used if lim

J→∞
aJ/bJ = 1.

3. Hard thresholding

Let the estimates of the wavelet coefficients be calculated using hard threshold processing: Ŷj,k =

= ρ
(h)
T (Yj,k).
Consider the loss function (4). Note that for an arbitrary ε > 0 there is a function f ∈ Lip(γ, L),

such that the inequality (1) turns to the equality for some jh such that |μjh,k| > ε. Therefore, there is
J0 > 0 such that for J > J0, |μjh,k| > ε, T − μjh,k > ε and −T − μjh,k < −ε. In this case

P
(∣
∣
∣Ŷjh,k − μjh,k

∣
∣
∣ � ε

)

= P(−ε � Yjh,k − μjh,k � ε, Yjh,k − μjh,k > T − μjh,k)+

+P(−ε � Yjh,k − μjh,k � ε, Yjh,k − μjh,k < −T − μjh,k) = 0,

and, hence, for J > J0

RJ = sup
f∈Lip(γ)

P

(

max
j,k

∣
∣
∣Ŷj,k − μj,k

∣
∣
∣ > ε

)

= 1.

This fact shows that the hard thresholding makes meaningless the estimation of the loss in the sense
of (4). It is an interesting observation, since this effect is not observed when estimating the mean-square
error.

4. Soft thresholding

Let us now consider the estimates of the wavelet coefficients obtained using the soft threshold pro-

cessing: Ŷj,k = ρ
(s)
T (Yj,k).

Let the function g1(J) > 0 arbitrarily slowly tend to zero, and the function g2(J) > 0 arbitrarily
slowly unboundedly increase in J .

Let the indices j1 and j2 (j1 < j2) be such that

|μj,k| � (g1(J))
−(γ+1/2) , j1 � j � j2 − 1;

|μj,k| � (g2(J))
−(γ+1/2), j2 � j � J − 1.

By virtue of (1)

ji =
J

2γ + 1
+ log2 gi(J), i = 1, 2. (5)

We split (3) into three sums:

J−1∑

j=0

2j−1∑

k=0

∣
∣
∣lnP

(∣
∣
∣Ŷj,k − μj,k

∣
∣
∣ � ε

)∣
∣
∣ =

j1−1
∑

j=0

2j−1∑

k=0

∣
∣
∣lnP

(∣
∣
∣Ŷj,k − μj,k

∣
∣
∣ � ε

)∣
∣
∣+

+

j2−1
∑

j=j1

2j−1∑

k=0

∣
∣
∣lnP

(∣
∣
∣Ŷj,k − μj,k

∣
∣
∣ � ε

)∣
∣
∣+

J−1∑

j=j2

2j−1∑

k=0

∣
∣
∣lnP

(∣
∣
∣Ŷj,k − μj,k

∣
∣
∣ � ε

)∣
∣
∣ ≡

≡ S1 + S2 + S3. (6)
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Consider S3. Note that for any fixed ε > 0 there exists J1 such that (g2(J))
−(γ+1/2) � ε for all

J > J1. Thus, |μj,k| � ε for j2 � j � J − 1. Consequently, for each term from S3 we have for J > J1

lnP
(∣
∣
∣Ŷj,k − μj,k

∣
∣
∣ � ε

)

= ln

[

P(|μj,k| � ε, |Yj,k| � T )+

+P(|Yj,k − μj,k − T | � ε, Yj,k > T ) + P(|Yj,k − μj,k + T | � ε, Yj,k < −T )

]

=

= ln [1− 2H(T + ε)] .

Since

ln(1− x) ∼ −x when x → 0,

we conclude that

S3 � 2JH(T + ε). (7)

To find the lower estimate of the optimal threshold, we note that the loss function (3) tends to
infinity the faster the more signal samples satisfy |μj,k| > ε. According to the definition (5), the
maximum number of such samples is of the order of 2j2 . Assuming that for all terms of the sums S1 and
S2 from (6) the relation |μj,k| > ε is satisfied, we get

S1 + S2 �
j2−1
∑

j=0

2j−1∑

k=0

∣
∣ln

[

P(T − ε � Yj,k − μj,k � T + ε, Yj,k > T )+

+P(−T − ε � Yj,k − μj,k � −T + ε, Yj,k < −T )
]∣
∣ =

=

j2−1
∑

j=0

2j−1∑

k=0

|ln [H(T − ε)−H(T + ε)]| �

� 2
J

2γ+1 g2(J)|ln [H(T − ε)−H(T + ε)] |.
Let us equate the orders of S1 + S2 and S3. The threshold T

(h)
m , satisfying the relation

H(T + ε)

|ln [H(T − ε)−H(T + ε)] | � 2
− 2γJ

2γ+1 g2(J), (8)

ensures equality of orders and, thus, is an asymptotic lower bound for the threshold that is optimal in
the sense of the loss function RJ .

Now let us find the upper bound for the optimal threshold. Note that for a constant Cf from the
inequality (1) there is a function f ∈ Lip(γ, L) such that this inequality turns to equality for 0 � j � j1−1
(see [7]). Therefore, since T increases, there is J2 > 0 such that for all ε > 0 and J > J2, the inequality
|μj,k| > ε holds for 0 � j � j1 − 1. Using the above argument, we get

S1 � 2
J

2γ+1 g1(J)|ln [H(T − ε)−H(T + ε)] |.

Let us equate the orders of S1 and S3. The threshold T
(h)
M , satisfying the relation

H(T + ε)

|ln [H(T − ε)−H(T + ε)] | � 2−
2γJ
2γ+1 g1(J), (9)

ensures equality of orders.
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Note that the sum S2 is not present in these arguments. This means that the true value of the

asymptotically optimal threshold T must be no greater than T
(h)
M .

The above considerations allow us to formulate the following statement.
Theorem. For an optimal soft threshold value that minimizes the rate at which the loss function

(4) tends to infinity, the following inequality holds, starting with some J :

T (s)
m � T � T

(s)
M ,

where T
(s)
m and T

(s)
M are defined by the relations (8) and (9) respectively.

5. Examples

Consider the class of noise distributions of the form

H(x) � xαe−θxβ
, α ∈ R, θ � 0, β > 0

(it is assumed that H(x) satisfies the requirements listed in Section 2). This class is quite wide and
includes distributions with various tails.

Let θ = 0, i.e., the tail of the noise distribution decays in a power-law manner. The thresholds T
(s)
M

and T
(s)
m are found from the relations

(T + ε)α

|ln [(T − ε)α − (T + ε)α] | � 2
− 2γJ

2γ+1 gi(J)

for i = 1, 2, respectively. Given that α < 0 and

ln

[
(T − ε)α

(T + ε)α
− 1

]

� ln
2ε

T + ε
� −lnT,

we get for T
(s)
M and T

(s)
m (for i = 1, 2)

Tα � 2−
2γJ
2γ+1 gi(J)lnT .

Hence,

T
(s)
M � 2

2γJ
|α|(2γ+1)J(g1(J))

−1/|α|, T (s)
m � 2

2γJ
|α|(2γ+1)J(g2(J))

−1/|α|.

This means that it is not possible to accurately determine the order of T using the described method,
since estimates are given with the use of arbitrarily slowly decreasing and increasing functions. In this
case, if

|α| < 2γ

γ + 1/2
,

then as seen from the inequality (1), all the useful signal is lost during the threshold processing.

Consider the case θ �= 0. The thresholds T
(s)
M and T

(s)
m are found from the relations

(T + ε)αe−θ(T+ε)β

∣
∣ln

[

(T − ε)αe−θ(T−ε)β − (T + ε)αe−θ(T+ε)β
]∣
∣
� 2−

2γJ
2γ+1 gi(J), i = 1, 2.

Note that (T ± ε)α � Tα,

ln
[

e−θ(T−ε)β − e−θ(T+ε)β
]

� −θT β + (β − 1)lnT for 0 < β < 1,

ln
[

e−θ(T−ε)β+θ(T+ε)β − 1
]

� C for β = 1,
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ln
[

e−θ(T−ε)β+θ(T+ε)β − 1
]

� −θ(T − ε)β+θ(T + ε)β for β > 1,

i.e., for all β > 0, we have

∣
∣
∣ln

[

(T − ε)αe−θ(T−ε)β − (T + ε)αe−θ(T+ε)β
]∣
∣
∣ � T β.

Therefore, for θ �= 0, the orders of the estimates of T
(h)
m and T

(h)
M are the same. Thus, when θ �= 0, for

the asymptotically optimal soft threshold we get the relation

T ∼
(

2γln2J

θ(2γ + 1)

)1/β

.

In particular, for α = −1, θ = 1/(2σ2), β = 2, the noise has a centered normal distribution with a
variance σ2, for which, as shown in [10], the asymptotically optimal soft threshold is of the order

T ∼ σ

√

4γ · ln2J
2γ + 1

.

Acknowledgments

This research is partly supported by the Russian Foundation for Basic Research (project No. 19–07–
00352).

REFERENCES

1. D. Donoho and I. Johnstone, “Adapting to unknown smoothness via wavelet shrinkage,” J. Am.
Stat. Assoc., 90, 1200–1224 (1995).

2. D. Donoho and I.M. Johnstone, “Minimax estimation via wavelet shrinkage,” Ann. Stat., 26, No. 3,
879–921 (1998).

3. M. Jansen, Noise Reduction by Wavelet Thresholding, Springer, Berlin (2001).

4. J. Sadasivan, S. Mukherjee, and C. S. Seelamantula, “An optimum shrinkage estimator based on
minimum-probability-of-error criterion and application to signal denoising,” in: IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, Piscataway, NJ (2014),
pp. 4249–4253.

5. A. A Kudryavtsev and O. V. Shestakov, “Asymptotic behavior of the threshold minimizing the
average probability of error in calculation of wavelet coefficients,” Dokl. Math., 93, No. 3, 295–299
(2016).

6. A. A. Kudryavtsev and O. V. Shestakov, “Asymptotically optimal wavelet thresholding in the models
with non-Gaussian noise distributions,” Dokl. Math., 94, No. 3, 615–619 (2016).

7. S. Mallat, A Wavelet Tour of Signal Processing, Academic Press, New York (1999).

8. A.V. Markin and O.V.Shestakov, “Consistency of risk estimation with thresholding of wavelet coef-
ficients,” Moscow Univ. Comput. Math. Cybern., 34, No. 1, 22–30 (2010).

9. O.V. Shestakov, “Asymptotic normality of adaptive wavelet thresholding risk estimation,” Dokl.
Math., 86, No. 1, 556–558 (2012).

10. A. Kudryavtsev and O. Shestakov, “The asymptotic behavior of the optimal threshold minimizing
the probability-of-error criterion,” J. Math. Sci., 234, No. 6, 810–815 (2018).


	Abstract
	1 Introduction
	2 Statement of the problem of finding an asymptotically optimal threshold
	3 Hard thresholding
	4 Soft thresholding
	5 Examples
	References

