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ALGEBRAS OF LIPSCHITZ-ANALYTIC MAPS 

M. V. Martsinkiv  UDC 517.98 

We study the class of Lipschitz-analytic maps.  The relationships between the classes of Lipschitz, Lip-
schitz-polynomial, and Lipschitz-analytic maps are clarified.  We consider the algebras of Lipschitz-
analytic functions and, in particular, establish some estimates for the bounds of the set of characters and 
the properties of these algebras. 

Introduction 

We consider nonempty metric spaces  X   and  Y   and a Lipschitz map  f : X → Y .  In the metric 
space  X ,  we fix a point  θX .  The space of all Lipschitz maps from the metric space  X   with a fixed 
point  θX   into the metric space  Y   with a fixed point  θY   that map  θX   into  θY   is denoted by  Lip0(X,Y ) .  
If  Y   is a linear space, then  θY = 0 .  It is known that any metric space  X   is normed with respect to the norm   

 α(x) = ρ(θX , x) ,   

where the function  α(x)   satisfies the condition  

 α(x1) − α(x2 )  ≤ ρ(x1, x2 ) ≤ α(x1) + α(x2 )   

for any elements  x1, x2 ∈X .  This space  (X,α)   is called a space with marked point or a normed set.  In  [2], 
Pestov proved that, for any metric space  X   with a marked point  θX   and the norm  α(x) ,  there exists  
a unique (to within isometric isomorphisms) Banach space  B(X)   such that the metric space  X   can be em-
bedded in the Banach space  B(X) , every map  f (x) ∈Lip0(X, E)   can be extended to a linear operator   

  
!f (x) : B(X)→ E    

for any normed space  E ,  and moreover,   
!f = L f .  The space  B(X)   is called a free Banach space.  Note 

that, in view of the construction of the space  B(X) ,  the elements of the form  λkk=1∑ xk ,  where  xk   are 
elements of the linear span of the space  X ,  are dense in  B(X) .  The general theory of Lipschitz maps can be 
found in the monographs [7, 16].  The theory of Lipschitz maps based on the use of free Banach spaces and the 
properties of these spaces are described in [3, 4, 8, 10, 12]. 
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A class   F (X,Y )   of nonlinear mappings from  X   into  Y   admits global linearization if there exist a lin-
ear space  W (X)   and an injective mapping  

 
UF (X ,Y ) : X →W (X)   such that, for any   F ∈F (X,Y ) ,  there 

exists a linear operator   LF ∈L(W (X), Y )   for which the diagram  

 

  

X →
UF (X ,Y )

W (X)

F↓ ↙LF

Y

 

is commutative.  In the case of Lipschitz maps, the free Banach space  B(X)   and a map  υ : X → B(X) ,  
υ(x) = x ,  specify the linearization of nonlinear functions from the class  Lip0(X, E) .  

In the present work, we continue our investigation of the Lipschitz maps performed with the use of free Ba-
nach spaces.  In particular, we consider a notion broader than the notion of Lipschitz maps, namely, the notion 
of Lipschitz-analytic maps.  

Consider metric spaces  X   and  Y .  By   P(
n X,Y )   we denote a set of maps from  X   into  Y   such that, 

for any map   F  ∈P(n X,Y ) ,  there exists an n -homogeneous continuous polynomial   PF  ∈P(n B(X), B(Y ))    

for which  PF (x) = F(x)   for any  x ∈ X .  In other words,   F  ∈P(n X,Y )   if the diagram 

 

X →
F
  Y

  υ↓ ↓υ  

B(X) →
PF
  B(Y )

 

is commutative for some    PF  ∈P(n B(X), B(Y )) . 

The elements from the class   P(
n X,Y )   are called n -homogeneous Lipschitz-polynomial maps from the 

space  X   into the space  Y .  Some properties of maps from this class are described in [1]. 
Let  X   be a normed set and let  E     be a normed space.  The map  F : X  → E   is called Lipschitz-

analytic if there exists a map   
!F : B(X)→ E ,   

!F  ∈ H (B(X), E)   such that   F(x) =
!F(x) .  If   

!F  ∈ H (B(X), E) ,  

i.e.,   !F   is a map of bounded type (bounded on bounded sets), then we say that  F   is a Lipschitz-analytic map 
of bounded type.  The set of all Lipschitz-analytic maps (resp., of bounded type) from  X   into  E   is denoted 
by   H(X, E)   (resp.,   Hb (X, E) ). 

Main Results 

Proposition 1.  Let  X   be a discrete normed set.  Then   Hb (X, E) = Lip(X, E) . 

Proof.  It is clear that   Hb (X, E) ⊃ Lip(X, E) .  It is sufficient to prove that  Lip0(X, E)   coincides with  
the subspace of mappings  f   from   Hb (X, E)   for which  f (θ) = 0 .  Let   f ∈Hb (X, E)   and  f (θ) = 0 .   
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Then the restriction of  f   to  X   is a bounded mapping.  In [8], it was proved that the restriction of  f   to  X   

belongs to the class  Lip0(X, E) .  Thus,   F = f ! v ∈Lip0(X, E)   and   
!F = f . 

The following example shows that   H(X, E) ≠ Lip(X, S)   even in the case of a discrete normed set: 

Example 1.  Let   X = Z+   with discrete metric.  The space  X   can be identified with the standard ba-
sis    {en} ⊂ ℓ1 ,  en = n .  In this case,   B(X) = ℓ1 .  On  B(X) ,  we define an analytic function   

 f
n=1

∞

∑anen
⎛

⎝⎜
⎞

⎠⎟
=

n=1

∞

∑(2an )n .   

It is known (see, e.g., [13]) that     f ∈H (ℓ1) = H (ℓ1,"")   but   f ∉Hb (ℓ1) .  On the other hand,  f (en ) = 2n ,  i.e.,  
f   is an unbounded function on  X .  Therefore,  f ∉Lip0(X)   and, thus,   H(X) ≠ Lip(X) . 

Every linear operator in a Banach space is a Lipschitz map.  However, the polynomial operators are not Lip-
schitz (if the degree of a polynomial is greater than 1) but are Lipschitz-polynomial.  Similarly, the class of Lip-
schitz-analytic maps in a Banach space differs from the class of Lipschitz-polynomial maps.  Thus, in the gen-
eral case, 

  Lip(X, E) ⊂ P(X, E) ⊂ Hb (X, E) ⊂ H (X, E) . 

Theorem 1.  Let  X   be a normed set. 

 (1°°) There exist a complex locally convex topological vector space  GX     and an embedding  τG : 
X → GX   such that  ′GX = H (B(X))   and, for any Lipschitz-analytic function   f ∈H(X) ,  there ex-
ists a linear functional    ϕ f : GX → !!   such that   f (x) = ϕ f (τG (x))   for every  x ∈X . 

 (2°°) There exist a complex locally convex topological vector space  Qx   obtained as the inductive limit of 
Banach spaces and an embedding  τQ : X → Qx   such that  ′QX = Hb (B(X))   and, for any complex 
normed space  E   and a map   F ∈H(X, E) ,  there exists a linear operator  Af : Qx → E   such that  

 AF (x) = F(τQ (x))   for any  x ∈X . 

Proof.  (1°°) According to [14], for any complex Banach space  U ,  there exist a locally convex space  
G(U )   and an embedding  δ : U → G(U )   such that  G(U )′ = H (U )   and, for any function  g ∈H (U ) ,  one 
can find a linear functional    ψ g : G(U )→ !!   for which the diagram 

 

    

U →
f
  !!

δ ↓ ↗ ψ g

G(U )

 

is commutative. 
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Assume that  U = B(X)   and  GX := G(U ) = G(B(X)) .  For any function    
!f ∈H(X) ,  there exists a func-

tion   
!f ∈H (B(X))   such that   f (x) =

!f (v(x)) .  We set  

 τG (x) := δ(v(x)) = δ(x) .  

Thus,   
 
ϕ f := g !f . 

(2°°)  In [11], it was shown that, for any complex Banach space  U ,  there exist a locally convex LB -space 
(i.e., the inductive limit of Banach spaces)  Q(U )   and an embedding  e : U → Q(U )   such that  (Q(U ) ′)  = 
Hb (U )   and, for any normed space  E   and every mapping  J  ∈Hb (U, E) ,  one can find a linear operator  

 Lj : Q(U )→ E   for which the diagram 

 

  

U →
f

E

e↓ ↗ L j

Q(U )

 

is commutative. 
Setting  U = B(X) ,  we get   

 Qx := Q(B(X)) ,  τQ = e(v(x)) , and  
  
AF ≡ L !F ,   

where   !F   is an analytic map from   Hb(B(X), E)    such that   F(x) =
!F(x)   for any  x ∈X .  

The theorem is proved.  

The space  X   is called a Fréchet algebra if  X   is a Fréchet space, i.e., a locally convex metrizable space 
with an associative operation of multiplication.  A topology in the space  X   can be defined by a countable sys-
tem of seminorms  pi ,  i.e.,  pi (xy) ≤ pi (x)pi (y)   for any  x, y ∈X ,  1 ≤ i ≤ ∞ . 

Let  X   be a normed set.  We consider the space of Lipschitz-analytic functions in     Hb (X) = H(X,!!) .  
Note that   Hb (X)    is an algebra with respect to pointwise multiplication.  For every function   f ∈H(X) ,  

by   
!f   we denote  a function from  Hb (B(X))   such that   

!f (x) = f (x) . According to the definition of   Hb (X) ,  
this function exists.  However, generally speaking, it is not unique.  

Proposition 2.  The mapping   j :
!f " f   is a continuous homomorphism of algebras. 

Proof. The proof follows from the fact that  j   is an operator of restriction to  X ⊂ B X( ) . 

Corollary 1.  The set of elements  ker j   is an ideal of the algebra  Hb (B(X))   and the algebra   Hb (X)   is 
isomorphic to   Hb (B(X))/ker j . 

Proof.  The proof follows from the general theory of topological algebras. 
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This corollary, in particular, implies that, in view of the fact that  Hb (B(X))   is a Fréchet algebra and 

the set  ker  j   is a closed ideal,   Hb (X)   is also a Fréchet algebra.  Since the set of characters   M(A) ⊂ A∗ ,   

we consider a  *-weak topology induced from  A∗   on   M(A) . 

Corollary 2.  The set of characters    M(Hb (X))   of the algebra   Hb (X)   is a subset of   M(B(X))   formed 
by the characters   ϕ ∈M(B(X))  such that  ϕ( f ) = 0   for every  f ∈ker   j . 

We recall that the Stone–Čech compactification  βX   of a metric space  X   is defined as a compact topo-
logical space that densely contains  X   with the property that every function  f   continuously bounded on  X   
can be extended to a continuous function  f   on  βX . 

Proposition 3.  Let  X   be a normed discrete set.  Then there exists a homeomorphism   x ! ϕx   from  βX   
into    M(Hb (X))   such that  ϕx ( f ) = f (x)   for any   f ∈Hb (X) . 

Proof.  It is clear that  ϕx   is a character for every  x ∈X .  Note that, for a discrete set  X ,  Hb (X)   coin-
cides with the algebra of Lipschitz functions (with respect to pointwise multiplication)  Lip0(X) ;  moreover, 
this algebra is isomorphic to the algebra   ℓ∞(X)   [8], which is, in this case, an algebra of all bounded continu-
ous functions on  X .  Therefore, the set of characters of this algebra coincides, to within a homeo-
morphism   x ! ϕx ,  with the Stone–Čech compactification  βX   of the set  X   [9]. 

For the Banach space  Z ,  by  Hbc(Z )  we denote  the smallest closed subalgebra in  Hb (Z )   that contains 
all linear functionals on  Z ,  their products, and their sums.  By  Hbw (Z )   we denote the subalgebra formed  
by the functions from  Hb (Z )   that are weakly continuous on bounded sets.  It is clear that  Hbc ⊂ Hbw (Z ) .  
For the normed set  X ,  by   Hbc(X)   and   Hbw (X)   we denote the restrictions to  X ⊂ B(X)   of  Hbc(B(X))   
and  Hbw (B(X)) ,  respectively.  

Example 2.  Let  X   be a sequence from   ℓ1     of the form  

   X = {mem}m=1
∞ ∪ {0}   

with a metric induced from   ℓ1 .  In [1], it was shown that   B(X) = ℓ1 .  Let   P ∈P(n X)   and let    
!P ∈P(n B(X))   

be the corresponding n -homogeneous polynomial on  B(X)   such that   
!P(x) = P(x) ,  x ∈X .  It is clear 

that   !P   is not unique. 
The equality  

  P(m) = !P(mem ) = mn !P(em )  

specifies the value of   !P   on the basis vectors  em .  In other words, both   
!Q   and    

!P ∈P(n B(X))   specify  

the same element   P ∈P(n X)   (we write   
!Q ∼ !P   or    [

!Q] ∼ [ !P])   if   
!P(em ) = !Q(em )   and both polynomials   !P   

and   
!Q   are n -homogeneous on   B(X) = ℓ1 . 
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In particular, the diagonal polynomial   

 
 
P0!

m
∑ cmem

⎛
⎝⎜

⎞
⎠⎟

:=
m
∑ cmn P(em )    

specifies P  and two different diagonal polynomials specify different elements from  P(
n X) .  Thus, the space  

 P(
n X)   is isomorphic to the space of diagonal n -homogeneous polynomials on   ℓ1 ,  i.e., polynomials of 

the form 

 
 

!P
m=1

∞

∑ cmem
⎛

⎝⎜
⎞

⎠⎟
=

m=1

∞

∑ cmn P(em ) . 

If    
!P ∈P(n X)   and    

!Q ∈P(n X) ,  then the pointwise product of the algebra   Hb (ℓ1)   under the map-

ping    
!P" [ !P]   turns into the product   

   [
!P][ !Q] = [ !R],      

 

!R
m
∑ cmem

⎛
⎝⎜

⎞
⎠⎟

=
m
∑ cmn+k !P(em ) !Q(em ) . 

Let   f ∈Hb (X) .  Then there exists a function   f ∈Hb (ℓ1)   such that  f (x) = f (x) ,  x ∈X ,  and   
!f   takes 

the diagonal form, i.e., 

 
 

!f (u) =
m=0

∞

∑ !Pm (u) =
m=0

∞

∑ !Pm
n=1

∞

∑ cnen
⎛

⎝⎜
⎞

⎠⎟
 

  =  
 m=0

∞

∑
n=1

∞

∑ cnm !Pm (en ) =
m=0

∞

∑ cnm !Pm (en ) =
n=1

∝

∑ fn (cn ) , 

where  fn   are entire functions of one variable,   

 fn (t) = tm !Pm (en )
m=0

∞

∑ ,  

and    { fn (1)} = { !f (en )}   is a bounded sequence.  Therefore, for any ultrafilter  U   on the set of natural numbers, 

the functional  
 
ϕU ( f ) = lim

U
!f (en )   is a character of the algebra   Hb (X) ,  i.e.,    M(Hb (X)) ⊃ βN .  On the other 

hand, if   {bn}   is a bounded sequence, then  
 
lim
U
!f (bnen )   is a also a character.  Thus,    M(Hb (X))   does not 

coincide with   βN . 
Hence, the set of characters of the algebra   Hb (X)   can be complicated even for simple spaces  X . 
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We now recall that any continuous n -linear mapping     B : X ×…× X → !!   can be extended to a continu-

ous n -linear mapping     
!B : ′′X ×…× ′′X → ""   as follows: 

 
  
!B( ′′x1,…, ′′xn ) = lim

α1
… lim

αn
B(xα1 ,…, xαn) . 

Here, for any  k ,  (xαk )   are the nets in  X  convergent in the ∗ -weak topology to  ′′xk . 

Let   P ∈P(n B(X))   and let  B   be an n -linear mapping associated with  P .  Then the Aron–Berner exten-

sion   !P   of a polynomial  P   is denoted by   
!P := !B(x,…, x)   [5].  The generalizations of the Aron–Berner ex-

tension were described in [15].  A Banach space  X   possesses a property of bounded approximation if, for any 
compact set  K ⊂ X   and any  ε > 0 ,  there exists a bounded operator with finite image  T : X  → X   such 
that  Tx − x < ε   for all  x ∈K . 

The following assertion establishes certain bounds for the set     M(Hbc(X)) : 

Theorem 2.  Let  X     be a complex Banach space. 

 (1°°) Every character of the algebra   Hbc(X)   has the form   ϕz ( f ) = !fAB(z) ,  where   f ∈Hb (X) ,   
!fAB   is 

the Aron–Berner extension of the function   
!f ∈Hbc(B(X))   to an element of the space  (B(X) ′′)   

and   
!f (x) = f (x) .  In this sense,    M(Hbc(X)) ⊂  (B(X) ′′) .  Moreover,    M(Hbc(X)) ⊃ X . 

 (2°°) If  X   has a property of bounded approximation, then    M(Hbw (X)) = M(Hbc(X)) . 

Proof.  (1°°) It is well known (see [2]) that    M(Hb“(E)) = ′′E  for any Banach space E .  Since   Hb“(X)  is 
the quotient algebra of Hbc(B(X)) , we conclude that   M(Hbc(X))  is a closed subset in Hbc(B(X)) = (B(X) ′′) .  
Since the functional   δx : f  ! f (x) ,  x ∈X ,  is a character, we get     M(Hb“(E)) ⊃ X . 

(2°°) According to [6], if the Banach space  E   has the property of bounded approximation, then   

 Hbc(E)  = Hbw (E) .   

In [12], Godefroy and Kalton showed that if a Banach space  X   has a property of bounded approximation, 
then  B(X)   also has the same property.  Combining these results, we complete the proof of the theorem. 

Hence, the algebras of Lipschitz-analytic maps obtained as a generalization of Lipschitz functions have 
common properties with the algebras of Lipschitz map but are characterized by a more complicated structure.  
Their construction is also more complicated.  
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