Journal of Mathematical Sciences, Vol. 246, No. 2, April, 2020

ALGEBRAS OF LIPSCHITZ-ANALYTIC MAPS

M. V. Martsinkiv

We study the class of Lipschitz-analytic maps. The relationships between the classes of Lipschitz, Lipschitz-polynomial, and Lipschitz-analytic maps are clarified. We consider the algebras of Lipschitz-analytic functions and, in particular, establish some estimates for the bounds of the set of characters and the properties of these algebras.

Introduction

We consider nonempty metric spaces X and Y and a Lipschitz map $f: X \to Y$. In the metric space X, we fix a point θ_X . The space of all Lipschitz maps from the metric space X with a fixed point θ_X into the metric space Y with a fixed point θ_Y that map θ_X into θ_Y is denoted by $\text{Lip}_0(X,Y)$. If Y is a linear space, then $\theta_Y = 0$. It is known that any metric space X is normed with respect to the norm

$$\alpha(x) = \rho(\theta_X, x),$$

where the function $\alpha(x)$ satisfies the condition

 $\left|\alpha(x_1) - \alpha(x_2)\right| \le \rho(x_1, x_2) \le \alpha(x_1) + \alpha(x_2)$

for any elements $x_1, x_2 \in X$. This space (X, α) is called a *space with marked point* or a *normed set*. In [2], Pestov proved that, for any metric space X with a marked point θ_X and the norm $\alpha(x)$, there exists a unique (to within isometric isomorphisms) Banach space B(X) such that the metric space X can be embedded in the Banach space B(X), every map $f(x) \in \text{Lip}_0(X, E)$ can be extended to a linear operator

$$\tilde{f}(x): B(X) \to E$$

for any normed space E, and moreover, $\|\tilde{f}\| = L_f$. The space B(X) is called a *free Banach space*. Note that, in view of the construction of the space B(X), the elements of the form $\sum_{k=1} \lambda_k \underline{x}_k$, where \underline{x}_k are elements of the linear span of the space X, are dense in B(X). The general theory of Lipschitz maps can be found in the monographs [7, 16]. The theory of Lipschitz maps based on the use of free Banach spaces and the properties of these spaces are described in [3, 4, 8, 10, 12].

UDC 517.98

Stefanyk Pre-Carpathian National University, Ivano-Frankivs'k, Ukraine.

Translated from Matematychni Metody ta Fizyko-Mekhanichni Polya, Vol. 60, No. 3, pp. 138–144, August–October, 2017. Original article submitted October 19, 2016.

A class $\mathcal{F}(X,Y)$ of nonlinear mappings from X into Y admits global linearization if there exist a linear space W(X) and an injective mapping $U_{\mathcal{F}(X,Y)}: X \to W(X)$ such that, for any $F \in \mathcal{F}(X,Y)$, there exists a linear operator $L_F \in \mathcal{L}(W(X), Y)$ for which the diagram

$$\begin{array}{ccc} X & \stackrel{U_{\mathcal{F}(X,Y)}}{\to} & W(X) \\ F \downarrow & \swarrow L_F \\ Y & \end{array}$$

is commutative. In the case of Lipschitz maps, the free Banach space B(X) and a map $\upsilon: X \to B(X)$, $\upsilon(x) = \underline{x}$, specify the linearization of nonlinear functions from the class $\operatorname{Lip}_0(X, E)$.

In the present work, we continue our investigation of the Lipschitz maps performed with the use of free Banach spaces. In particular, we consider a notion broader than the notion of Lipschitz maps, namely, the notion of Lipschitz-analytic maps.

Consider metric spaces X and Y. By $\mathbb{P}({}^{n}X,Y)$ we denote a set of maps from X into Y such that, for any map $F \in \mathbb{P}({}^{n}X,Y)$, there exists an *n*-homogeneous continuous polynomial $P_{F} \in \mathcal{P}({}^{n}B(X), B(Y))$ for which $P_{F}(\underline{x}) = F(x)$ for any $x \in X$. In other words, $F \in \mathbb{P}({}^{n}X,Y)$ if the diagram

$$\begin{array}{cccc} X & \stackrel{F}{\to} & Y \\ \upsilon \downarrow & & \downarrow \upsilon \\ B(X) & \stackrel{P_F}{\to} & B(Y) \end{array}$$

is commutative for some $P_F \in \mathcal{P}(^n B(X), B(Y))$.

The elements from the class $\mathbb{P}(^{n}X,Y)$ are called *n*-homogeneous Lipschitz-polynomial maps from the space X into the space Y. Some properties of maps from this class are described in [1].

Let X be a normed set and let E be a normed space. The map $F: X \to E$ is called *Lipschitz*analytic if there exists a map $\tilde{F}: B(X) \to E$, $\tilde{F} \in H(B(X), E)$ such that $F(x) = \tilde{F}(\underline{x})$. If $\tilde{F} \in H(B(X), E)$, i.e., \tilde{F} is a map of bounded type (bounded on bounded sets), then we say that F is a *Lipschitz-analytic map* of bounded type. The set of all Lipschitz-analytic maps (resp., of bounded type) from X into E is denoted by $\mathbb{H}(X, E)$ (resp., $\mathbb{H}_b(X, E)$).

Main Results

Proposition 1. Let X be a discrete normed set. Then $\mathbb{H}_b(X, E) = \text{Lip}(X, E)$.

Proof. It is clear that $\mathbb{H}_b(X, E) \supset \operatorname{Lip}(X, E)$. It is sufficient to prove that $\operatorname{Lip}_0(X, E)$ coincides with the subspace of mappings f from $\mathbb{H}_b(X, E)$ for which $f(\theta) = 0$. Let $f \in \mathbb{H}_b(X, E)$ and $f(\theta) = 0$.

Then the restriction of f to \underline{X} is a bounded mapping. In [8], it was proved that the restriction of f to \underline{X} belongs to the class $\operatorname{Lip}_0(\underline{X}, E)$. Thus, $F = f \circ v \in \operatorname{Lip}_0(X, E)$ and $\tilde{F} = f$.

The following example shows that $\mathbb{H}(X, E) \neq \text{Lip}(X, S)$ even in the case of a discrete normed set:

Example 1. Let $X = \mathbb{Z}_+$ with discrete metric. The space \underline{X} can be identified with the standard basis $\{e_n\} \subset \ell_1$, $e_n = \underline{n}$. In this case, $B(X) = \ell_1$. On B(X), we define an analytic function

$$f\left(\sum_{n=1}^{\infty} a_n e_n\right) = \sum_{n=1}^{\infty} (2a_n)^n \, .$$

It is known (see, e.g., [13]) that $f \in H(\ell_1) = H(\ell_1, \mathbb{C})$ but $f \notin H_b(\ell_1)$. On the other hand, $f(e_n) = 2^n$, i.e., f is an unbounded function on X. Therefore, $f \notin \text{Lip}_0(X)$ and, thus, $\mathbb{H}(X) \neq \text{Lip}(X)$.

Every linear operator in a Banach space is a Lipschitz map. However, the polynomial operators are not Lipschitz (if the degree of a polynomial is greater than 1) but are Lipschitz-polynomial. Similarly, the class of Lipschitz-analytic maps in a Banach space differs from the class of Lipschitz-polynomial maps. Thus, in the general case,

$$\operatorname{Lip}(X, E) \subset \mathbb{P}(X, E) \subset \mathbb{H}_b(X, E) \subset H(X, E).$$

Theorem 1. Let X be a normed set.

- (1°) There exist a complex locally convex topological vector space G_X and an embedding τ_G : $X \to G_X$ such that $G'_X = H(B(X))$ and, for any Lipschitz-analytic function $f \in \mathbb{H}(X)$, there exists a linear functional $\varphi_f : G_X \to \mathbb{C}$ such that $f(x) = \varphi_f(\tau_G(x))$ for every $x \in X$.
- (2°) There exist a complex locally convex topological vector space Q_x obtained as the inductive limit of Banach spaces and an embedding $\tau_Q \colon X \to Q_x$ such that $Q'_X = H_b(B(X))$ and, for any complex normed space E and a map $F \in \mathbb{H}(X, E)$, there exists a linear operator $A_f \colon Q_x \to E$ such that $A_F(x) = F(\tau_Q(x))$ for any $x \in X$.

Proof. (1°) According to [14], for any complex Banach space U, there exist a locally convex space G(U) and an embedding $\delta: U \to G(U)$ such that G(U)' = H(U) and, for any function $g \in H(U)$, one can find a linear functional $\psi_g: G(U) \to \mathbb{C}$ for which the diagram

$$\begin{array}{ccc} U & \stackrel{f}{\to} & \mathbb{C} \\ \delta \downarrow & \nearrow \psi_g \\ & G(U) \end{array}$$

is commutative.

Assume that U = B(X) and $G_X := G(U) = G(B(X))$. For any function $\tilde{f} \in \mathbb{H}(X)$, there exists a function $\tilde{f} \in H(B(X))$ such that $f(x) = \tilde{f}(v(x))$. We set

$$\tau_G(x) := \delta(v(x)) = \delta(x)$$

Thus, $\phi_f := g_{\tilde{f}}$.

(2°) In [11], it was shown that, for any complex Banach space U, there exist a locally convex *LB*-space (i.e., the inductive limit of Banach spaces) Q(U) and an embedding $e: U \to Q(U)$ such that $(Q(U))' = H_b(U)$ and, for any normed space E and every mapping $J \in H_b(U, E)$, one can find a linear operator $\mathcal{L}_i: Q(U) \to E$ for which the diagram

$$\begin{array}{ccc} U & \stackrel{f}{\to} & E \\ e \downarrow & \nearrow_{\mathcal{L}_j} \\ Q(U) \end{array}$$

is commutative.

Setting U = B(X), we get

$$Q_x := Q(B(X)), \ \tau_O = e(v(x)), \text{ and } A_F \equiv \mathcal{L}_{\tilde{F}}$$

where \tilde{F} is an analytic map from $H_b(B(X), E)$ such that $F(x) = \tilde{F}(x)$ for any $x \in X$.

The theorem is proved.

The space X is called a *Fréchet algebra* if X is a Fréchet space, i.e., a locally convex metrizable space with an associative operation of multiplication. A topology in the space X can be defined by a countable system of seminorms p_i , i.e., $p_i(xy) \le p_i(x)p_i(y)$ for any $x, y \in X$, $1 \le i \le \infty$.

Let X be a normed set. We consider the space of Lipschitz-analytic functions in $\mathbb{H}_b(X) = \mathbb{H}(X, \mathbb{C})$. Note that $\mathbb{H}_b(X)$ is an algebra with respect to pointwise multiplication. For every function $f \in \mathbb{H}(X)$, by \tilde{f} we denote a function from $H_b(B(X))$ such that $\tilde{f}(\underline{x}) = f(x)$. According to the definition of $\mathbb{H}_b(X)$, this function exists. However, generally speaking, it is not unique.

Proposition 2. The mapping $j: \tilde{f} \mapsto f$ is a continuous homomorphism of algebras.

Proof. The proof follows from the fact that j is an operator of restriction to $\underline{X} \subset B(X)$.

Corollary 1. The set of elements ker j is an ideal of the algebra $H_b(B(X))$ and the algebra $\mathbb{H}_b(X)$ is isomorphic to $H_b(B(X))/\text{ker } j$.

Proof. The proof follows from the general theory of topological algebras.

This corollary, in particular, implies that, in view of the fact that $H_b(B(X))$ is a Fréchet algebra and the set ker *j* is a closed ideal, $\mathbb{H}_b(X)$ is also a Fréchet algebra. Since the set of characters $\mathcal{M}(A) \subset A^*$, we consider a *-weak topology induced from A^* on $\mathcal{M}(A)$.

Corollary 2. The set of characters $\mathcal{M}(\mathbb{H}_b(X))$ of the algebra $\mathbb{H}_b(X)$ is a subset of $\mathcal{M}(B(X))$ formed by the characters $\varphi \in \mathcal{M}(B(X))$ such that $\varphi(f) = 0$ for every $f \in \ker j$.

We recall that the *Stone–Čech compactification* βX of a metric space X is defined as a compact topological space that densely contains X with the property that every function f continuously bounded on X can be extended to a continuous function \overline{f} on βX .

Proposition 3. Let X be a normed discrete set. Then there exists a homeomorphism $x \mapsto \varphi_x$ from βX into $\mathcal{M}(\mathbb{H}_b(X))$ such that $\varphi_x(f) = \overline{f}(x)$ for any $f \in \mathbb{H}_b(X)$.

Proof. It is clear that φ_x is a character for every $x \in X$. Note that, for a discrete set X, $H_b(X)$ coincides with the algebra of Lipschitz functions (with respect to pointwise multiplication) $\operatorname{Lip}_0(X)$; moreover, this algebra is isomorphic to the algebra $\ell_{\infty}(X)$ [8], which is, in this case, an algebra of all bounded continuous functions on X. Therefore, the set of characters of this algebra coincides, to within a homeomorphism $x \mapsto \varphi_x$, with the Stone-Čech compactification βX of the set X [9].

For the Banach space Z, by $H_{bc}(Z)$ we denote the smallest closed subalgebra in $H_b(Z)$ that contains all linear functionals on Z, their products, and their sums. By $H_{bw}(Z)$ we denote the subalgebra formed by the functions from $H_b(Z)$ that are weakly continuous on bounded sets. It is clear that $H_{bc} \subset H_{bw}(Z)$. For the normed set X, by $\mathbb{H}_{bc}(X)$ and $\mathbb{H}_{bw}(X)$ we denote the restrictions to $\underline{X} \subset B(X)$ of $H_{bc}(B(X))$ and $H_{bw}(B(X))$, respectively.

Example 2. Let X be a sequence from ℓ_1 of the form

$$X = \{me_m\}_{m=1}^{\infty} \cup \{0\}$$

with a metric induced from ℓ_1 . In [1], it was shown that $B(X) = \ell_1$. Let $P \in \mathbb{P}(^n X)$ and let $\tilde{P} \in \mathcal{P}(^n B(X))$ be the corresponding *n*-homogeneous polynomial on B(X) such that $\tilde{P}(\underline{x}) = P(x)$, $x \in X$. It is clear that \tilde{P} is not unique.

The equality

$$P(m) = \tilde{P}(me_m) = m^n \tilde{P}(e_m)$$

specifies the value of \tilde{P} on the basis vectors e_m . In other words, both \tilde{Q} and $\tilde{P} \in \mathcal{P}({}^n B(X))$ specify the same element $P \in \mathbb{P}({}^n X)$ (we write $\tilde{Q} \sim \tilde{P}$ or $[\tilde{Q}] \sim [\tilde{P}]$) if $\tilde{P}(e_m) = \tilde{Q}(e_m)$ and both polynomials \tilde{P} and \tilde{Q} are *n*-homogeneous on $B(X) = \ell_1$. In particular, the diagonal polynomial

$$\widetilde{P_0}\left(\sum_m c_m e_m\right) := \sum_m c_m^n P(e_m)$$

specifies *P* and two different diagonal polynomials specify different elements from $\mathbb{P}(^{n}X)$. Thus, the space $\mathbb{P}(^{n}X)$ is isomorphic to the space of diagonal *n*-homogeneous polynomials on ℓ_{1} , i.e., polynomials of the form

$$\tilde{P}\left(\sum_{m=1}^{\infty} c_m e_m\right) = \sum_{m=1}^{\infty} c_m^n \overline{P}(e_m).$$

If $\tilde{P} \in \mathcal{P}(^n X)$ and $\tilde{Q} \in \mathcal{P}(^n X)$, then the pointwise product of the algebra $H_b(\ell_1)$ under the mapping $\tilde{P} \mapsto [\tilde{P}]$ turns into the product

$$[\tilde{P}][\tilde{Q}] = [\tilde{R}], \quad \tilde{R}\left(\sum_{m} c_{m}e_{m}\right) = \sum_{m} c_{m}^{n+k}\tilde{P}(e_{m})\tilde{Q}(e_{m}).$$

Let $f \in \mathbb{H}_b(X)$. Then there exists a function $f \in H_b(\ell_1)$ such that $f(\underline{x}) = f(x)$, $x \in X$, and \tilde{f} takes the diagonal form, i.e.,

$$\tilde{f}(u) = \sum_{m=0}^{\infty} \tilde{P}_m(u) = \sum_{m=0}^{\infty} \tilde{P}_m\left(\sum_{n=1}^{\infty} c_n e_n\right)$$
$$= \sum_{m=0}^{\infty} \sum_{n=1}^{\infty} c_n^m \tilde{P}_m(e_n) = \sum_{m=0}^{\infty} c_n^m \tilde{P}_m(e_n) = \sum_{n=1}^{\infty} f_n(c_n)$$

where f_n are entire functions of one variable,

$$f_n(t) = \sum_{m=0}^{\infty} t^m \tilde{P}_m(e_n) ,$$

and $\{f_n(1)\} = \{\tilde{f}(e_n)\}\$ is a bounded sequence. Therefore, for any ultrafilter U on the set of natural numbers, the functional $\varphi_U(f) = \lim_U \tilde{f}(e_n)$ is a character of the algebra $\mathbb{H}_b(X)$, i.e., $\mathcal{M}(\mathbb{H}_b(X)) \supset \beta \mathbb{N}$. On the other hand, if $\{b_n\}$ is a bounded sequence, then $\lim_U \tilde{f}(b_n e_n)$ is a also a character. Thus, $\mathcal{M}(\mathbb{H}_b(X))$ does not coincide with $\beta \mathbb{N}$.

Hence, the set of characters of the algebra $\mathbb{H}_b(X)$ can be complicated even for simple spaces X.

We now recall that any continuous *n*-linear mapping $B: X \times ... \times X \to \mathbb{C}$ can be extended to a continuous *n*-linear mapping $\tilde{B}: X'' \times ... \times X'' \to \mathbb{C}$ as follows:

$$\widetilde{B}(x_1'',\ldots,x_n'') = \lim_{\alpha_1} \ldots \lim_{\alpha_n} B(x_{\alpha_1},\ldots,x_{\alpha_n}).$$

Here, for any k, (x_{α_k}) are the nets in X convergent in the *-weak topology to x_k'' .

Let $P \in \mathcal{P}({}^{n}B(X))$ and let *B* be an *n*-linear mapping associated with *P*. Then the *Aron–Berner extension* \tilde{P} of a polynomial *P* is denoted by $\tilde{P} := \tilde{B}(x, ..., x)$ [5]. The generalizations of the Aron–Berner extension were described in [15]. A Banach space *X* possesses a *property of bounded approximation* if, for any compact set $K \subset X$ and any $\varepsilon > 0$, there exists a bounded operator with finite image $T: X \to X$ such that $Tx - x < \varepsilon$ for all $x \in K$.

The following assertion establishes certain bounds for the set $\mathcal{M}(\mathbb{H}_{bc}(X))$:

Theorem 2. Let X be a complex Banach space.

- (1°) Every character of the algebra $\mathbb{H}_{bc}(X)$ has the form $\varphi_z(f) = \tilde{f}_{AB}(z)$, where $f \in H_b(X)$, \tilde{f}_{AB} is the Aron–Berner extension of the function $\tilde{f} \in H_{bc}(B(X))$ to an element of the space (B(X))'' and $\tilde{f}(\underline{x}) = f(x)$. In this sense, $\mathcal{M}(\mathbb{H}_{bc}(X)) \subset (B(X))''$. Moreover, $\mathcal{M}(\mathbb{H}_{bc}(X)) \supset \underline{X}$.
- (2°) If X has a property of bounded approximation, then $\mathcal{M}(\mathbb{H}_{bw}(X)) = \mathcal{M}(\mathbb{H}_{bc}(X))$.

Proof. (1°) It is well known (see [2]) that $\mathcal{M}(\mathbb{H}_{bc}(E)) = E''$ for any Banach space E. Since $\mathbb{H}_{bc}(X)$ is the quotient algebra of $H_{bc}(B(X))$, we conclude that $\mathcal{M}(\mathbb{H}_{bc}(X))$ is a closed subset in $H_{bc}(B(X)) = (B(X))''$. Since the functional $\delta_x \colon f \mapsto f(x), x \in X$, is a character, we get $\mathcal{M}(\mathbb{H}_{bc}(E)) \supset X$.

 (2°) According to [6], if the Banach space E has the property of bounded approximation, then

$$H_{bc}(E) = H_{bw}(E).$$

In [12], Godefroy and Kalton showed that if a Banach space X has a property of bounded approximation, then B(X) also has the same property. Combining these results, we complete the proof of the theorem.

Hence, the algebras of Lipschitz-analytic maps obtained as a generalization of Lipschitz functions have common properties with the algebras of Lipschitz map but are characterized by a more complicated structure. Their construction is also more complicated.

REFERENCES

- M. V. Dubei and A. V. Zagorodnyuk, "Linearization of Lipschitz-polynomial and Lipschitz-analytic mappings," *Karpat. Mat. Publ.*, 3, No. 1 40–48 (2011).
- V. G. Pestov, "Free Banach spaces and representation of topological groups," *Funkts. Anal. Prilozh.*, 20, No. 1 81–82 (1986); *English translation: Funct. Anal. Appl.*, 20, No. 1, 70–72 (1986), https://doi.org/10.1007/BF01077324.

ALGEBRAS OF LIPSCHITZ-ANALYTIC MAPS

- 3. D. A. Raikov, "Free locally convex subspaces of uniform spaces," Mat. Sbornik, 63, No. 4 582–590 (1964).
- 4. R. F. Arens and J. Eells, jr., "On embedding uniform and topological spaces," Pacific J. Math., 6, No. 3, 397-403 (1956).
- 5. R. M. Aron and P. D. Berner, "A Hahn–Banach extension theorem for analytic mappings," *Bull. Soc. Math. France*, **106**, 3–24 (1978).
- 6. R. M. Aron and J. B. Prolla, "Polynomial approximation of differentiable functions on Banach spaces," J. Reine Angew. Math., **1980**, No. 313, 195–216 (1980), https://doi.org/10.1515/crll.1980.313.195.
- 7. Y. Benyamini and J. Lindenstrauss, *Geometric Nonlinear Functional Analysis*, Vol. 1, American Mathematical Society, Providence, RI (2000).
- M. Dubei, E. D. Tymchatyn, and A. Zagorodnyuk, "Free Banach spaces and extension of Lipschitz maps," *Topology*, 48, Nos. 2-4, 203–212 (2009), https://doi.org/10.1016/j.top.2009.11.020.
- 9. R. Engelking, General Topology, PWN, Warsaw (1977).
- 10. J. Flood, Free Topological Vector Spaces, PhD Thesis, Australian National University, Canberra (1975).
- 11. P. Galindo, D. Garcia, and M. Maestre, "Holomorphic mappings of bounded type," J. Math. Anal. Appl., 166, No. 1, 236–246 (1992), https://doi.org/10.1016/0022–247X(92)90339-F.
- 12. G. Godefroy and N. J. Kalton, "Lipschitz-free Banach spaces," *Studia Math.*, **159**, No. 1, 121–141 (2003), https://doi.org/10.4064/ sm159-1-6.
- 13. J. Mujica, Complex Analysis in Banach Spaces, North-Holland, Amsterdam (1986).
- 14. J. Mujica and L. Nachbin, "Linearization of holomorphic mappings on locally convex spaces," J. Math. Pure Appl., 71, 543–560 (1992).
- 15. O. Taras and A. Zagorodnyuk, "A generalization of the Arens extension for Banach algebras," *Indagat. Math. New Ser.*, **26**, No. 2, 324–328 (2015), https://doi.org/10.1016/j.indag.2014.10.003.
- 16. N. Weaver, Lipschitz Algebras, World Scientific, Singapore (1999), https://doi.org/10.1142/4100.