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1. Introduction

Various generalizations of quasiconformal mappings such as mappings of the Dirichlet class [23] or
mappings quasiconformal in mean, (see, e.g., [15, 16, 21, 25]) play an important role in the geometric
function theory. In the present article, we study the functional properties of generalized quasiconformal
mappings which are connected with composition operators on Sobolev spaces [7, 26,32]. Recall that a
homeomorphism φ : Ω → Ω̃ is called a weak (p, q)-quasiconformal homeomorphism, 1 ≤ q ≤ p ≤ ∞, if
φ ∈ W 1

q,loc(Ω), has finite distortion and

Kp,q(φ; Ω) = ∥Kp | Lκ(Ω)∥ < ∞, 1/q − 1/p = 1/κ (κ = ∞, ifp = q),

where the p-dilatation of a mapping φ at a point x is defined as

Kp(x) = inf{k(x) : |Dφ(x)| ≤ k(x)|J(x, φ|
1
p , x ∈ Ω}.

In the case p = n, we have the usual conformal dilatation. If p = q = n, this class coincides with
quasiconformal mappings. In the case where p ̸= n, the p-dilatation arose in [4]. The weak (p, q)-
quasiconformal homeomorphisms are a natural generalization of (quasi)conformal mappings and have
applications in the theory of elliptic operators and in elasticity theory. These applications are based
on the composition operators on Sobolev spaces generated by weak (p, q)-quasiconformal homeomor-
phisms. Note that, for p = q = n, a class of weak (p, q)-quasiconformal homeomorphisms coincides
with the usual quasiconformal mappings. In the case where p = n and q = n − 1, these mappings
are mappings of integrable distortions that were considered in [12, 14]. Weak quasiconformal homeo-
morphisms allow a capacitary description and, on this way, are closely connected with the so-called
Q-homeomorphisms [7]. The studies of Q-homeomorphisms are based on the capacitary (moduli)
distortion of these classes and are intensively developed for the last decades (see, e.g., [15, 22]).

In the theory of weak (p, q)-quasiconformal homeomorphisms, the significant role is played by the
composition duality property [26]. Let φ : Ω → Ω̃ be a weak (p, q)-quasiconformal homeomorphism,
n− 1 < q ≤ p < ∞, that induces the bounded composition operator

φ∗ : L1
p(Ω̃) → L1

q(Ω), n− 1 < q ≤ p < ∞.
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Then the inverse mapping φ−1 : Ω̃ → Ω is a weak (q′, p′)-quasiconformal homeomorphism, where
p′ = p/(p− n+ 1), q′ = q/(q − n+ 1).

Using this composition duality, we obtain some self-improvement-type theorems for weak quasicon-
formal homeomorphisms and Liouville-type theorems.

The classical Liouville theorem states that there exists no conformal mapping φ : R2 → Ω̃ onto
any bounded domain Ω̃ ⊂ R2, and, in the space Rn, n ≥ 3, the class of conformal mappings coincides
with the Möbius group of transformations. Below, we will prove, in particular, that there exists no
weak (p, q)-quasiconformal homeomorphism, n− 1 < q < p ≤ n, φ : Rn → Ω̃ onto any domain of finite
measure Ω̃ ⊂ Rn, n ≥ 2.

Note that, for p = n, the Liouville-type theorem was proved in [9]. In capacitary terms, the
Liouville-type theorems for the mappings of a bounded (p, q)-distortion were obtained in [28].

The global Lp-integrability of the weak derivatives of quasiconformal mappings and their Hölder
continuity represent an interesting part of the quasiconformal mapping theory [1,5,18]. In the second
part of the present paper, we prove the property of global integrability of the weak derivatives of weak
(p, q)-quasiconformal mappings and obtain a self-improvement-type theorem.

2. Composition operators on Sobolev spaces

2.1. Sobolev spaces

Let E be a measurable subset of Rn, n ≥ 2. The Lebesgue space Lp(E), 1 ≤ p ≤ ∞, is defined as
a Banach space of p-summable functions f : E → R equipped with the standard norm.

If Ω is an open subset of Rn, the Sobolev space W 1
p (Ω), 1 ≤ p ≤ ∞, is defined as a Banach space

of locally integrable weakly differentiable functions f : Ω → R equipped with the following norm:

∥f | W 1
p (Ω)∥ = ∥f | Lp(Ω)∥+ ∥∇f | Lp(Ω)∥.

The homogeneous seminormed Sobolev space L1
p(Ω), 1 ≤ p ≤ ∞, is defined as a space of locally

integrable weakly differentiable functions f : Ω → R equipped with the following seminorm:

∥f | L1
p(Ω)∥ = ∥∇f | Lp(Ω)∥.

Sobolev spaces are Banach spaces of equivalence classes [20]. To clarify the notion of equivalence
classes, we use the non-linear p-capacity associated with Sobolev spaces. Recall the notion of the
p-capacity of a set E ⊂ Ω [20]. Let Ω be a domain in Rn, and let a compact F ⊂ Ω. The p-capacity
of the compact F is defined by

capp(F ; Ω) = inf{∥f |L1
p(Ω)∥p,

where the infimum is taken over all continuous functions with a compact support f ∈ L1
p(Ω) such that

f ≥ 1 on F . In a similar way, we can define the p-capacity of open sets.
For an arbitrary set E ⊂ Ω, we define an inner p-capacity as

cap
p
(E; Ω) = sup{capp(e; Ω), e ⊂ E ⊂ Ω, e is a compact set},

and an outer p-capacity as

capp(E; Ω) = inf{capp(U ; Ω), E ⊂ U ⊂ Ω, U is an open set}.

A set E ⊂ Ω is called p-capacity measurable, if cap
p
(E; Ω) = capp(E; Ω). The value

capp(E; Ω) = cap
p
(E; Ω) = capp(E; Ω)
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is called the p-capacity of the set E ⊂ Ω.
The notion of p-capacity allows us to refine the notion of Sobolev functions. Let a function f ∈

L1
p(Ω). Then the refined function

f̃(x) = lim
r→0

1

|B(x, r)|

∫
B(x,r)

f(y) dy

is defined quasieverywhere, i.e., up to a set of p-capacity zero, and it is absolutely continuous on almost
all lines [20]. This refined function f̃ ∈ L1

p(Ω) is called a unique quasicontinuous representation (a
canonical representation) of the function f ∈ L1

p(Ω). Recall that a function f̃ is called quasicontinuous,
if, for any ε > 0, there is an open set Uε such that the p-capacity of Uε is less than ε, and the function
f̃ is continuous on the set Ω \ Uε (see, e.g., [11, 20]). In what follows, we will use the quasicontinuous
(refined) functions only.

Note that the first weak derivatives of the function f coincide almost everywhere with the usual
partial derivatives (see, e.g., [20] ).

2.2. Composition operators and the composition duality property

Let φ : Ω → Rn be a weakly differentiable mapping. Then the formal Jacobi matrix Dφ(x) and
its determinant (Jacobian) J(x, φ) are well defined at almost all points x ∈ Ω. The norm |Dφ(x)| is
the operator norm of Dφ(x), i.e., |Dφ(x)| = max{Dφ(x) · h : h ∈ Rn, |h| = 1}. Recall that a weakly
differentiable mapping φ : Ω → Rn is a mapping of finite distortion, if Dφ(x) = 0 for almost all
x ∈ Z = {x ∈ Ω : J(x, φ)} = 0} [30].

Let us recall also the change of variables formula for the Lebesgue integral [3, 10]. Suppose that,
for a mapping φ : Ω → Rn, there exists a collection of closed sets {Ak}∞1 , Ak ⊂ Ak+1 ⊂ Ω for which
restrictions φ|Ak

are Lipschitz mappings on the sets Ak and∣∣∣∣Ω \
∞∑
k=1

Ak

∣∣∣∣ = 0.

Then there exists a measurable set S ⊂ Ω, |S| = 0 such that the mapping φ : Ω \ S → Rn has the
Luzin N -property and the change of variables formula∫

E

f ◦ φ(x)|J(x, φ)| dx =

∫
Rn\φ(S)

f(y)Nf (E, y) dy (2.1)

holds for every measurable set E ⊂ Ω and every nonnegative measurable function f : Rn → R. Here,
Nf (y,E) is the multiplicity function defined as the number of preimages of y under f in E.

Note that Sobolev mappings of the class W 1
1,loc(Ω) satisfy the conditions of the change of variable

formula [10]. So, the change of variable formula (2.1) holds for Sobolev mappings.
If the mapping φ possesses the Luzin N -property (the image of a set of measure zero has measure

zero), then |φ(S)| = 0, and the second integral can be rewritten as the integral on Rn. Note that
Sobolev homeomorphisms of the class L1

p(Ω), p ≥ n, possess the Luzin N -property.
Let Ω and Ω̃ be domains in Rn, n ≥ 2. We say that a homeomorphism φ : Ω → Ω̃ induces a

bounded composition operator

φ∗ : L1
p(Ω̃) → L1

q(Ω), 1 ≤ q ≤ p ≤ ∞,
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by the composition rule φ∗(f) = f ◦ φ, if, for any function f ∈ L1
p(Ω̃), the composition φ∗(f) ∈ L1

q(Ω)
is defined quasieverywhere in Ω, and there exists a constant Kp,q(Ω) < ∞ such that

∥φ∗(f) | L1
q(Ω)∥ ≤ Kp,q(Ω)∥f | L1

p(Ω̃)∥.

The problem of composition operators on Sobolev spaces arose firstly in work [19] where the sub-
areal mappings were introduced, and in Reshennyak’s problem (1969) related to quasiconformal map-
pings [29]. In connection with the geometric function theory, we define the p-dilatation of a mapping
φ at a point x as

Kp(x) = inf{k(x) : |Dφ(x)| ≤ k(x)|J(x, φ|
1
p , x ∈ Ω}.

If p = n, we have the usual conformal dilatation. For p ̸= n, the p-dilatation arose in [4].
The geometric theory of composition operators on Sobolev spaces is based on the measure property

of composition operators introduced in [26] (in the limit case p = ∞, it was introduced in [27]).

Theorem 2.1. Let a homeomorphism φ : Ω → Ω̃ between two domains Ω and Ω̃ induce a bounded
composition operator

φ∗ : L1
p(Ω̃) → L1

q(Ω), 1 ≤ q < p ≤ ∞.

Then

Φ(Ã) = sup
f∈L1

p(Ã)∩C0(Ã)

(
∥φ∗(f) | L1

q(Ω)∥
∥f | L1

p(Ã)∥

)κ

,

(where 1/q − 1/p = 1/κ) is a bounded monotone countably additive set function defined on open
bounded subsets Ã ⊂ Ω̃.

The following theorem allows one to refine this function Φ as a measure generated by the p-dilatation
Kp.

Theorem 2.2. A homeomorphism φ : Ω → Ω̃ between two domains Ω and Ω̃ induces a bounded
composition operator

φ∗ : L1
p(Ω̃) → L1

q(Ω), 1 ≤ q ≤ p ≤ ∞,

if and only if φ ∈ W 1
1,loc(Ω) has finite distortion, and

Kp,q(φ; Ω) = ∥Kp | Lκ(Ω)∥ < ∞,

where 1/q − 1/p = 1/κ.

This theorem was proved in the case where 1 ≤ q = p < ∞ in [7] and in the case where 1 ≤ q <
p < ∞ in [26] (see also [32]); the case p = ∞ was considered in [9]. Homeomorphisms that satisfy
the conditions of Theorem 2.2 are called weak (p, q)-quasiconformal homeomorphisms [7,31] and are a
natural generalization of quasiconformal mappings (p = q = n).

In the geometric theory of composition operators on Sobolev spaces, the significant role is played
by the following composition duality property [26]:

Theorem 2.3. Let a homeomorphism φ : Ω → Ω̃, Ω, Ω̃ ⊂ Rn, induce a bounded composition operator

φ∗ : L1
p(Ω̃) → L1

q(Ω), n− 1 < q ≤ p < ∞.

Then the inverse mapping φ−1 : Ω̃ → Ω induces a bounded composition operator(
φ−1

)∗
: L1

q′(Ω) → L1
p′(Ω̃), n− 1 < p′ ≤ q′ < ∞,

where p′ = p/(p− n+ 1) and q′ = q/(q − n+ 1).
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For readers’ convenience, we recall a short highlight of the proof [26]. On the first step, we need
to check that the inverse mapping φ−1 ∈ W 1

1,loc(Ω̃) [26, Theorem 3]. Because φ−1 ∈ W 1
1,loc(Ω̃), we

have [24] (see also [2, 8, 13])

|Dφ−1(y)| =


(

| adjDφ|(x)
|J(x,φ)|

)
x=φ−1(y)

if x ∈ Ω \ (S ∪ Z) ,

0 otherwise.

Hence,

|Dφ−1(y)| ≤ |Dφ(x)|n−1

|J(x, φ)|

for almost all x ∈ Ω \ (S ∪ Z), y = φ(x) ∈ Ω′ \ φ (S ∪ Z), and

|Dφ−1(y)| = 0 for almost all y ∈ φ(S).

Now, taking into account that

q′p′

q′ − p′
=

pq

(p− q)(n− 1)
,

we obtain ∫
Ω′

(
|Dφ−1(y)|q′

|J(y, φ−1)|

)p′/(q′−p′)

dy ≤
∫
Ω

(
|Dφ(x)|p

|J(x, φ)|

)q/(p−q)

dx

(in the case p = q, we have p′ = q′ and L∞-norms instead of integrals). By Theorem 2.2, we have a
bounded composition operator(

φ−1
)∗

: L1
q′(Ω) → L1

p′(Ω̃), n− 1 < p′ ≤ q′ < ∞.

Remark 2.4. For n = 2, we have p′ = p/(p − 1), q′ = q/(q − 1) and p′′ = p, q′′ = q. Hence, the
homeomorphism φ : Ω → Ω̃, Ω, Ω̃ ⊂ Rn, induces a bounded composition operator

φ∗ : L1
p(Ω̃) → L1

q(Ω), 1 < q ≤ p < ∞,

if and only if the inverse mapping φ−1 : Ω̃ → Ω induces a bounded composition operator(
φ−1

)∗
: L1

q′(Ω) → L1
p′(Ω̃), 1 < p′ ≤ q′ < ∞.

In the case n ̸= 2, we have

p′′ =
(
p′
)′
=

p

(n− 1)2 − p(n− 2)
̸= p, if p′ > n− 1,

q′′ =
(
q′
)′
=

q

(n− 1)2 − q(n− 2)
̸= q, if q′ > n− 1,

and this case is more complicated.

Using this composition duality property, we obtain the following self-improvement-type proposition.
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Theorem 2.5. Let φ : Ω → Ω̃ be a weak (p, q)-quasiconformal homeomorphism, n − 1 < q ≤ p < n.
Then φ induces a bounded composition operator

φ∗ : L1
r(Ω̃) → L1

s(Ω)

for all s ≤ r such that q′′ ≤ s ≤ q and p′′ ≤ r ≤ p.

Proof. Because φ : Ω → Ω̃ is a weak (p, q)-quasiconformal homeomorphism, the composition operator

φ∗ : L1
p(Ω̃) → L1

q(Ω), n− 1 < q ≤ p < ∞,

is bounded.
In the case p < n and q < n, we have

p′′ =
(
p′
)′
=

p

(n− 1)2 − p(n− 2)
< p

and
q′′ =

(
q′
)′
=

q

(n− 1)2 − q(n− 2)
< q.

So, by the composition duality property, we have that this weak (p, q)-quasiconformal homeomorphism
generates also a bounded composition operator

φ∗ : L1
p′′(Ω̃) → L1

q′′(Ω), 1 < q′′ < q ≤ p′′ < p < ∞.

Using the Marcinkiewicz interpolation theorem [6], we obtain that

φ∗ : L1
r(Ω̃) → L1

s(Ω)

is bounded for all s ≤ r such that q′′ ≤ s ≤ q and p′′ ≤ r ≤ p.

3. Liouville-type theorems for weak (p, q)-quasiconformal homeomorphisms

The composition duality property allows us to obtain Liouville-type theorems for weak (p, q)-
quasiconformal homeomorphisms.

Theorem 3.1. Let n < p < ∞. Suppose that there exists a weak (p, n)-quasiconformal homeomorphism
φ : Ω → Ω̃. Then |Ω̃| < ∞.

Proof. Because φ : Ω → Ω̃ is a weak (p, n)-quasiconformal homeomorphism, the composition operator

φ∗ : L1
p(Ω̃) → L1

n(Ω), n < p < ∞,

is bounded. By the duality property, the inverse composition operator(
φ−1

)∗
: L1

n(Ω) → L1
p′(Ω̃), p′ < n,

is bounded as well. Hence, for any function f ∈ L1
p(Ω̃), the inequality

∥f | L1
p′(Ω̃)∥ ≤ ∥

(
φ−1

)∗ ∥∥φ∗(f) | L1
n(Ω)∥ ≤ ∥

(
φ−1

)∗ ∥∥φ∗∥∥f | L1
p(Ω̃)∥

holds. This means that the embedding

L1
p(Ω̃) ↪→ L1

p′(Ω̃), n− 1 < p′ < p < ∞,

holds. Hence, |Ω̃| < ∞.
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This theorem immediately yields

Corollary 3.2. For any n < p < ∞ and any domain Ω ⊂ Rn, a weak (p, n)-quasiconformal homeo-
morphism φ : Ω → Rn does not exist.

Remark 3.3. This corollary can be formulated in the strong form: for any domain Ω ⊂ Rn and any
n < p < ∞, a weak (p, n)-quasiconformal homeomorphism φ from Ω onto any domain with unbounded
volume does not exist.

In the case n < q < p, we have an additional assumption of finiteness of a measure of Ω.

Theorem 3.4. Let n < q < p < ∞ and |Ω| < ∞. Suppose that there exists a weak (p, q)-quasiconfor-
mal homeomorphism φ : Ω → Ω̃. Then |Ω̃| < ∞.

Proof. Because φ : Ω → Ω̃ is a weak (p, q)-quasiconformal homeomorphism, the composition operator

φ∗ : L1
p(Ω̃) → L1

q(Ω), n < q < p < ∞,

is bounded. By the duality property the inverse composition operator(
φ−1

)∗
: L1

q′(Ω) → L1
p′(Ω̃), n− 1 < p′ < q′ < n,

is also bounded. Because |Ω| < ∞, the embedding

L1
q(Ω) ↪→ L1

q′(Ω)

holds. Hence, the embedding

L1
p(Ω̃) ↪→ L1

p′(Ω̃), n− 1 < p′ < p < ∞,

holds. Therefore, |Ω̃| < ∞.

From this theorem, we immediately get

Corollary 3.5. For any domain Ω ⊂ Rn, |Ω| < ∞, and any n < p < ∞, a weak (p, q)-quasiconformal
homeomorphism φ : Ω → Rn does not exist.

Remark 3.6. This corollary can be formulated in the strong form: for any domain Ω ⊂ Rn, |Ω| < ∞
and any n < p < ∞, a weak (p, n)-quasiconformal homeomorphism φ from Ω onto any domain with
unbounded volume does not exist.

In the case n−1 < q < p ≤ n, by using the dual composition property, we obtain dual Liouville-type
theorems for weak (p, q)-quasiconformal homeomorphisms.

Theorem 3.7. Let n− 1 < q < n. Suppose that there exists a weak (n, q)-quasiconformal homeomor-
phism φ : Ω → Ω̃. Then |Ω| < ∞.

This theorem yields

Corollary 3.8. For any n− 1 < q < n and any domain Ω̃, a weak (n, q)-quasiconformal homeomor-
phism φ : Rn → Ω̃ does not exist.

In the case n− 1 < q < p < n, we have an additional assumption of finiteness of a measure of Ω̃.

Theorem 3.9. Let n − 1 < q < p < n and |Ω̃| < ∞. Suppose that there exists a weak (p, q)-
quasiconformal homeomorphism φ : Ω → Ω̃. Then |Ω| < ∞.

From this theorem, we get

Corollary 3.10. For any domain Ω̃ such that |Ω̃| < ∞ and for any n − 1 < q < p < n, a weak
(p, q)-quasiconformal homeomorphism φ : Rn → Ω̃ does not exist.
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4. Composition operators and the integrability of derivatives

The global Lp-integrability of the weak derivatives of quasiconformal mappings and their Hölder
continuity represent an interesting part of the quasiconformal mapping theory [1, 5, 18]. In the next
theorem, we consider the property of global integrability of the weak derivatives of weak (p, q)-
quasiconformal mappings.

Theorem 4.1. Let the homeomorphism φ : Ω → Ω̃ between two domains Ω and Ω̃ induce a bounded
composition operator

φ∗ : L1
p(Ω̃) → L1

q(Ω), 1 ≤ q ≤ p ≤ ∞.

If p ̸= n, then |Dφ|
p−n
p ∈ Lκ(Ω), where 1/q − 1/p = 1/κ.

Proof. The case p = q was proved in [7] and the case p = ∞ was considered in [9].
Let n < p < ∞. We denote Z = {x ∈ Ω : J(x, φ) = 0}. Because φ generates a bounded

composition operator
φ∗ : L1

p(Ω̃) → L1
q(Ω),

φ is a mapping of finite distortion by Theorem 2.2, and Dφ(x) = 0 for almost all x ∈ Z. Using
Theorem 2.2 and Hadamard’s inequality

|J(x, φ)| ≤ |Dφ(x)|n, for almost all x ∈ Ω \ Z,

we have

∥|Dφ|
p−n
p | Lκ(Ω)∥ =

∫
Ω

|Dφ(x)|
p−n
p

pq
p−q dx


p−q
pq

=

 ∫
Ω\Z

|Dφ(x)|
p−n
p

pq
p−q dx


p−q
pq

=

 ∫
Ω\Z

(
|Dφ(x)|p−n

) q
p−q dx


p−q
pq

≤

 ∫
Ω\Z

(
|Dφ(x)|p

|J(x, φ)|

) q
p−q

dx


p−q
pq

= ∥Kp | Lκ(Ω)∥ < ∞.

Let 1 ≤ q < p < n. Because Z = {x ∈ Ω : J(x, φ) = 0}, we have |φ(Z)| = 0 by the change of
variables formula for weakly differentiable mappings [10]. Since the mapping φ possesses the Luzin
N−1 property (preimage of a set of a measure zero has measure zero) in the case 1 ≤ q < p < n [31,32],
we have |Z| = 0 and |J(x, φ)| ̸= 0 a.e. in Ω. Hence, by Hadamard’s inequality,

∥|Dφ|
p−n
p | Lκ(Ω)∥ =

∫
Ω

|Dφ(x)|
p−n
p

pq
p−q dx


p−q
pq

=

 ∫
Ω\Z

(
|Dφ(x)|p−n

) q
p−q dx


p−q
pq

≤

 ∫
Ω\Z

(
|Dφ(x)|p

|J(x, φ)|

) q
p−q

dx


p−q
pq

= ∥Kp | Lκ(Ω)∥ < ∞.

Remark 4.2. Let Ω ⊂ Rn be a bounded domain, and let φ : Ω → Ω̃ be a weak (p, q)-quasiconformal

homeomorphism, p ̸= n. Then |Dφ|
p−n
p ∈ Lα(Ω) for any α ≤ κ.
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In [31], it was proved that the weak (p, q)-quasiconformal homeomorphisms, n < q < p < ∞, are
locally Hölder-continuous with the Hölder exponent α = p(q−n)/q(p−n). As a consequence of Theo-
rem 4.1, we obtain the property of global Hölder continuity for a weak (p, q)-quasiconformal homeomor-
phism in the case of continuous embedding domains. We call a domain Ω ⊂ Rn a Hölder-continuous
embedding domain, if the embedding operator of the Sobolev space to the space of continuous functions

W 1
p (Ω) ↪→ C(Ω), p > n,

is bounded. Examples of such domains are domains with Lipschitz boundaries or domains with the
uniform interior cone condition (see, e.g., [6]).

Theorem 4.3. Let Ω ⊂ Rn be a Hölder-continuous embedding domain, and let the homeomorphism
φ : Ω → Ω̃ induce a bounded composition operator

φ∗ : L1
p(Ω̃) → L1

q(Ω), n < q ≤ p ≤ ∞.

Then φ belongs to the Hölder space Hα(Ω), α = p(q − n)/q(p− n).

Proof. By Theorem 4.1, a mapping φ ∈ L1
s(Ω) for

s =
p− n

p

pq

p− q
=

(p− n)q

p− q
.

In the case n < q < p ≤ ∞, we have
(p− n)q

p− q
> n.

Using the Sobolev theorems of embedding into the spaces of Hölder-continuous functions [20], we
obtain that φ belongs to Hα(Ω), α = p(q − n)/q(p− n).

Corollary 4.4. Let Ω̃ ⊂ Rn be a continuous embedding domain, and let the homeomorphism φ : Ω → Ω̃
induce a bounded composition operator

φ∗ : L1
p(Ω̃) → L1

q(Ω), n− 1 < q < p < n.

Then the inverse mapping φ−1 : Ω̃ → Ω belongs to the Hölder space Hα(Ω̃), α = q′(p′ − n)/p′(q′ − n).

Proof. By the duality theorem [26,31], the inverse mapping generates a bounded composition operator

(φ−1)∗ : L1
q′(Ω) → L1

p′(Ω̃),

where q′ = q/(q − n+ 1), p′ = p/(p− n+ 1), n < p′ ≤ q′ ≤ ∞.
By Corollary 4.3, we obtain that the inverse mapping φ−1 : Ω̃ → Ω belongs to the Hölder space

Hα(Ω̃), α = q′(p′ − n)/p′(q′ − n).

The global integrability of derivatives allows us to obtain a theorem on the second-type self-
improvement for composition operators on Sobolev spaces. Namely, if φ is a weak (p, q)-quasiconformal
homeomorphism, then φ is also a weak (r, s)-quasiconformal mapping under some restrictions on r and
s that depend on p and q.

Theorem 4.5. Let φ : Ω → Ω̃ be a weak (p, q)-quasiconformal homeomorphism, 1 < q < p < ∞.
Then φ is a weak (r, s)-quasiconformal homeomorphism for all 1 < s < r < ∞ such that p/q ≤ r/s
and

rs− ps

rq − ps
=

(p− n)

p− q
.
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Proof. By Theorem 2.2, it is sufficient to check that

Kr,s(φ; Ω) = ∥Kr | Lκ′(Ω)∥ < ∞,

where 1/s− 1/r = 1/κ′.
Because φ is the weak (p, q)-quasiconformal mapping, φ is a mapping of finite distortion. Denote

Z = {x ∈ Ω : J(x, φ) = 0}. Then

∫
Ω\Z

(
|Dφ(x)|r

|J(x, φ)|

) s
r−s

dx =

∫
Ω\Z

(
|Dφ(x)|p|Dφ(x)|r−p

|J(x, φ)|

) s
r−s

dx

=

∫
Ω\Z

(
|Dφ(x)|p

|J(x, φ)|

) s
r−s (

|Dφ(x)|r−p
) s

r−s dx.

By the conditions of the theorem, we have s/(r−s) ≤ q/(p−q). Hence, using the Hölder inequality,
we obtain

∫
Ω\Z

(
|Dφ(x)|r

|J(x, φ)|

) s
r−s

dx ≤

 ∫
Ω\Z

(
|Dφ(x)|p

|J(x, φ)|

) p
p−q

dx


s(p−q)
q(r−s)

 ∫
Ω\Z

|Dφ(x)|
qs(r−p)
qr−ps dx


qr−ps
q(r−s)

.

Using the equality
qs(r − p)

qr − ps
=

q(p− n)

p− q

and Theorem 4.1, we have∫
Ω\Z

|Dφ(x)|
qs(r−p)
qr−ps dx =

∫
Ω\Z

|Dφ(x)|
q(p−n)
p−q dx < ∞.

Hence,
Kr,s(φ; Ω) = ∥Kr | Lκ′(Ω)∥ < ∞,

where 1/s− 1/r = 1/κ′.

Remark 4.6. Recall that, for bounded domains, |Dφ|
p−n
p ∈ Lα(Ω) for any α ≤ q(p−n)

p−q . Therefore, for
bounded domains, the second condition of the previous theorem is

qs(r − p)

qr − ps
≤ q(p− n)

p− q
.

27



REFERENCES

1. K. Astala and P. Koskela, “Quasiconformal mappings and global integrability of the derivative,” J.
Anal. Math., 57, 203–220 (1991).
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