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IN THE COMPETING RISK MODEL UNDER RANDOM CENSORING
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Abstract. We prove the asymptotic normality of Bayesian-type estimates in the competing risk model

with two-sided random censoring.
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1. Introduction. The likelihood ratio statistic (LRS) plays a fundamental role in the theory of

decision-making, especially in the theory of verification of statistical hypotheses. Among various cri-
teria, we mention criteria based on the LRS; they are actively used in the theory of hypothesis testing.
According to the Neumann–Pearson lemma, criteria based on the LRS are optimal compared with

other criteria constructed on the basis of other statistics. Interesting problems arise when alternatives
H1 depend on n and are “close” to H0, i.e., H1 = H1n → H0 for n → ∞.

In such situations, asymptotic properties of the LRS appear; these properties are useful in the

theory of estimating of unknown parameters and hypotheses testing. The most important property of
statistical models is the property of local asymptotic normality (LAN) of LRS of a regular statistical
experiment.

The essence of the LAN is that an LRS model admits approximation by functions of the form

exp
{
uωn,θ − 1

2
u2
}
,

where ωn,θ are asymptotically (i.e., as n → ∞) normal random variables with parameters (0, 1). The
properties of experiments satisfying the LAN condition in the case of independent and identically
distributed observations were studied by A. Wald, L. Le Kam, and J. Haeck (see [5–10]. The results

on approximation of the LRS by stochastic integrals in competing risk model (CRM) with random
censoring of observations from the right and from both sides were established in [2, 3]; this version of
the LAN generalizes the classical results. In the present paper, using the LAN property in the general

statistical model, we examine asymptotic properties of estimates of Bayesian type for an unknown
parameter, and prove its asymptotic efficiency.

2. Preliminaries. Let us consider a competing risk model (CRM) following [1]. Let X be a random
variable defined on the probability space (Ω,A,P), which takes values in a measurable space (X ,B).
We consider the joint properties of random pairs (X,A(i)), i = 1, k, where A(1), . . . , A(k) are pairwise

incompatible events such that P
( k⋃

i=1
A(i)

)
= 1.

This corresponds to the case where the object (a technical device or an individual) with the uptimeX

is exposed to k competing risks and breaks down under one of the events A(i), i = 1, k. Let δ(i) =
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I
(
A(i)

)
be the indicator of the event A(i), i = 1, k, and the joint distribution of the random vector(

X, δ(1), . . . , δ(k)
)
is given up to a parameter θ ∈ Θ:

Qθ

(
x, y(1), . . . , y(k)

)
= P

(
X ≤ x, δ(1) = y(1), . . . , δ(k) = y(k)

)
,

where x ∈ R
1 = (−∞; +∞), y(i) ∈ {0, 1}, i = 1, k, and Θ is an open set in R

1. In particular, we define
the marginal distributions H(x; θ) = P (X ≤ x) and assume that the following condition holds:

H(i)(x; θ) = P
(
X ≤ x, δ(i) = 1

)
, i = 1, k.

It is easy to see that δ(1) + . . .+ δ(k) = 1 and for the subdistributions H(i)(x; θ), i = 1, k, the equality

H(1)(x; θ) + . . .+H(k)(x; θ) = H(x; θ) (1)

holds for all (x; θ) ∈ R
1 ×Θ.

Assume that the distributions H(x; θ) and H(i)(x; θ), i = 1, k, are absolutely continuous. We define
the integral intensity functions

Λ(x; θ) =

x∫

−∞

dH(u; θ)

1−H(u; θ)
= − log[1−H(x; θ)],

Λ(i)(x; θ) =

x∫

−∞

dH(i)(u; θ)

1−H(u; θ)
, i = 1, k.

It is easy to see that Λ(1)(x; θ) + . . .+ Λ(k)(x; θ) = Λ(x; θ); this implies

1−H(x; θ) = exp

{
−

k∑
i=1

Λ(i)(x; θ)

}
=

k∏
i=1

[
1− F (i)(x; θ)

]
, (2)

where F (i)(x; θ) = 1− exp
{
Λ(i)(x; θ)

}
, i = 1, k.

It was established in [1] that the functions F (i)(x; θ), i = 1, k, possess properties of subdistributions.
In the sequel, we consider a statistical scheme according to which in the model considered, the set

(X,A(1), . . . , A(k)) is subjected to a random censoring from the right and from the left by random
variables Y and L, respectively, with absolutely continuous unknown distribution functions K(y),
y ∈ R

1, and L(y), y ∈ R
1.

Let

Z = max(L,min(X,Y )) = L ∨ (X ∧ Y ),

D(−1) = {ω : X(ω) ∧ Y (ω) < L(ω)},
D(0) = {ω : L(ω) ≤ Y (ω) < X(ω)},
D(i) = A(i) ∩ {ω : L(ω) ≤ X(ω) ≤ Y (ω)}, i = 1, k.

The set
(
Z;D(−1),D(0),D(1), . . . ,D(k)) is available for observation. Note that the events {D(−1),D(0),

D(1), . . . ,D(k)} also have the properties of the events A(1), . . . , A(k). In this model, the random vari-

ables Y and L and the distribution functions K and L are considered to be disturbing.
Let

{
Xj , Lj , Yj ; D

(−1),D(0),D(1), . . . ,D(k)
}∞
j=1

be a sequence of independent copies of the set
(
X,L,

Y ;D(−1),D(0), D(1), . . . ,D(k)
)
, and let at the nth step of the experiment, a sample of volume n be

observed:

Z̃(n) = (Z̃1, Z̃2, . . . , Z̃n), (3)
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where

Z̃j =
(
Zj ;Δ

(−1)
j ,Δ

(0)
j ,Δ

(1)
j , . . . ,Δ

(k)
j

)
,

Zj = Lj ∨ (Xj ∧ Yj),

Δ
(i)
j = I(D

(i)
j ), i = −1, k.

Note that in the sample (3), the pairs of interest (Xj ;A
(i)
j ) are observed only in the case where Δ

(i)
j = 1,

i = 1, k. It is easy to see that the observed random variables Zj have the following distribution function:

N(x; θ) = L(x)
(
1− (

1−K(x)
)(
1−H(x; θ)

))
.

We introduce the subdistributions T (i)(x; θ) = P
(
Zj ≤ x;D

(i)
j

)
, i = −1, k, where the following identity

holds:

T (−1)(x; θ) + T (0)(x; θ) + T (1)(x; θ) + . . . + T (k)(x; θ) = N(x; θ);

here

T (−1)(x; θ) = P (Xj ∧ Yj < Lj;Lj ≤ x) =

x∫

−∞

(
1− (

1−K(u)
)(
1−H(u; θ)

)
)
dL(u),

T (0)(x; θ) = P (Lj ≤ Yj < Xj;Yj ≤ x) =

x∫

−∞
L(u)(1 −H(u; θ))dK(u) (4)

T (i)(x; θ) = P (Lj ≤ Xj ≤ Yj;Xj ≤ x;A
(i)
j ) =

x∫

−∞
L(u)

(
1−K(u)

)
dH(u; i).

Due to the censoring from the left, instead of Λ(i)(x; θ) we must deal with the integral intensity
functions truncated at some appropriate level τ :

Λ
(i)

τ (x; θ) = Λ(i)(x; θ)− Λ(i)(τ ; θ).

In this case, according to (4), it is easy to verify that

Λ(i)
τ (x; θ) =

x∫

τ

dT (i)(u; θ)

L(u)(1−K(u))(1 −H(u; θ))
, i = 1, k. (5)

Therefore, instead of 1− Fτ (i)(x; θ) we can consider the following identity:

1− F (i)
τ (x; θ) =

(
1− F (i)(x; θ)

)(
1− F (i)(τ ; θ)

)−1
= exp

{
−

k∑
i=1

Λ(i)
τ (x; θ)

}
, i = 1, k.

Let
(
Y(n), U (n), Q̃

(n)
θ

)
be a sequence of statistical experiments generated by the observations (3).

We denote by Z̃ the set of values of the random variable Z and obtain the relation

Y(n) =
{
Z̃ × {0, 1}(k+2)

}(n)
=

n︷ ︸︸ ︷{
Z̃ × {0, 1}(k+2)

}
× . . .×

{
Z̃ × {0, 1}(k+2)

}
,

where {0, 1}(k+2) =

k+2︷ ︸︸ ︷
{0, 1} × . . . × {0, 1}, U (n) is the σ-algebra of Borel sets in Y(n), and Q̃

(n)
θ is the

distribution on
(Y(n),U (n)

)
, which is the n-fold direct product of the following “one-dimensional”
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distributions:

Q̃θ(x, y
(−1), y(0), y(1), . . . , y(k))

= P
(
Zj ≤ x, Δ

(−1)
j = y(−1), Δ

(0)
j = y(0), Δ

(1)
j = y(1), . . . , Δ

(k)
j = y(k)

)
.

Let f (i)(x; θ) be the density of the subdistribution F (i)(x; θ), i = 1, k. Then the distribution Q̃
(n)
θ is

absolutely continuous with respect to the measure ν(n) and its density for any θ ∈ Θ is defined on the
sample space Y(n) by the following formula:

dQ̃
(n)
θ (z̃(n))

dν(n)(z̃(n))
= pn(z̃

(n)θ) =

n∏
m=1

k∏
i=1

{
l(zm)

(
1− (1− (K(zm))(1 −H(zm; θ))

)}y
(−1)
m

×
{
L(zm)(1 −K(zm))f (i)(zm; θ) ·

k∏
j=1
j �=i

[1− F (j)(zm; θ)]

}y
(i)
m

×
{
L(zm)k(zm)(1 −H(zm; θ))

}y
(0)
m

, z̃(n) ∈ Y(n), (6)

where k(x) = K ′(x), l(x) = L′(x), dν(n)(z̃(n)) = dν(z̃1)× . . .×dν(z̃n), dν(z̃m) = ε
y
(i)
m

×dxm, i = −1, k,

m = 1, n, and ε
y
(i)
m

is the counting measure concentrated at the point y
(i)
m ∈ {0, 1}.

Assume that the following condition is fulfilled:

h(i)(x; θ) = f (i)(x; θ)
∏
j �=i

(
1− F (j)

(
x; θ

))
, i = 1, k,

where θ0 is the true value of the parameter θ and γ(x; θ) = 1− (
1−K(x)

)(
1−H(x; θ)

)
.

For u ∈ R
1, the following identity holds:

θ0 +
u√
n
= θn ∈ Θ.

According to (6), we specify the LRS

dQ̃
(n)
θn

(Z̃(n))

dQ̃
(n)
θ0

(Z̃(n))
=

pn(Z̃
(n); θn)

pn(Z̃(n); θ0)
=

n∏
m=1

{ k∏
i=1

[h(i)(zm; θn)

h(i)(zm; θ0)

]}y
(i)
m {γ(zm; θn)

γ(zm; θ0)

}y
(−1)
m

{1−H(zm; θn)

1−H(zm; θ0)

}y
(0)
m

We take the logarithm of the LRS:

Ln(u) = log
{dQ̃

(n)
θn

(Z̃(n))

dQ̃
(n)
θ0

(Z̃(n))

}
= n

k∑
i=1

+∞∫

−∞
log

[h(i)(x; θn)
h(i)(x; θ0)

]
dT (i)

n (x)

+

+∞∫

−∞
log

[γ(x; θn)
γ(x; θ0)

]
dT (−1)

n (x) +

+∞∫

−∞
log

[1−H(x; θn)

1−H(x; θ0)

]
dT (0)

n (x) (7)

For u ∈ R
1, we define a “close alternative” of θ0 + u√

n
= θn ∈ Θ, where θ0 is the true value of

the parameter θ. Now we formulate the regularity conditions under which the LAN of the family of

distributions {Q̃(n)
θ , θ ∈ Θ} holds at the point θ = θ0.
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Condition 1. The supports N (i) = {x : f (i)(x; θ) > 0}, i = 1, k, are independent of θ and the set
k⋂

i=1
N (i) is nonempty.

Condition 2. For any two points θ1, θ2 ∈ Θ, θ1 �= θ2, and x ∈ N (i), we the inequalities f (i)(x; θ1) �=
f (i)(x; θ2) hold, i = 1, . . . , k.

Condition 3. For all x, there exist finite derivatives ∂lf (i)(x; θ)/∂θl, l = 1, 2, i = 1, . . . , k; moreover,
∞∫

−∞

∣∣∣∣∣
∂lf (i)(x; θ)

∂θl

∣∣∣∣∣ dx < ∞, l = 1, 2, i = 1, . . . , k.

Condition 4. The derivatives
∂ log f (i)(x; θ0)

∂θ
and

∂ log h(i)(x; θ0)

∂θ
, i = 1, k, are functions of bounded

variation.

Condition 5. The Fisher information functions are finite and positive at the point θ = θ0:

J (i)(θ) =

∞∫

−∞

(
∂ log h(i)(x; θ)

∂θ

)2

dT (i)(x; θ) +

∞∫

−∞

(
∂ log(1−H(x; θ))

∂θ

)2

dT (−1)(x; θ)

+

∞∫

−∞

(
∂ log(1−H(x; θ))

∂θ

)2

dT (0)(x; θ), i = 1, k.

We introduce the notation J(θ) = J (1)(θ) + · · · + J (k)(θ) and note that the Fisher information

function of the sample (3) is equal to nJ(θ). The following theorem is valid.

Theorem 1 (see [3]). Let the conditions 1–5 be valid. Then for each u ∈ R
1, the following represen-

tation of the LRS holds:

dQ̃
(n)
θn

(Z̃(n))

dQ̃
(n)
θ0

(Z̃(n))
= exp{uWn − u2

2
J(θ0) +Rn(u)},

where

Wn =

k∑
i=1

∞∫

−∞

∂ log h(i)(x; θ0)

∂θ
dn−1/2W̃i

(
T (i)(x);n

)

+

∞∫

−∞

∂ log(1−H(x; θ0))

∂θ
dn−1/2W̃i

(
T (−1)(x);n

)

+

∞∫

−∞

∂ log(1−H(x; θ0))

∂θ
dn−1/2W̃i

(
T (0)(x);n

)
,

Rn(u) → 0 as n → ∞ by Q̃
(n)
θ0

-probability. Here W̃i(y;n) are two-parameter Wiener processes on

[0, 1] × (0,∞) and the components of the vector (W̃1, . . . , W̃k) are independent.

Remark 1. Due to the properties of the processes W̃i, the random variable Wn is the sum of indepen-

dent stochastic Ito integrals, each of which coincides by distribution with the corresponding normally
distributed random variable N(0, J (i)(θ0)), i = 1, k. Therefore,

Wn
D
= N(0, J(θ0)). (8)
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Taking into account the relation (8), the statement of Theorem 1 can be written in the following

form:

Ln(u) = uJ1/2(θ0)ζ − u2

2
J(θ0) +Rn(u) (9)

for each u ∈ R
1. Here ζ is the standard normal random variable and the equality is understood in the

sense of the distribution Q̃
(n)
θ0

. The property (9) is called the LAN for the LRS.

3. Main result. Let {π(u), u ∈ Θ} be a nonnegative measurable function and l(d; θ) = (d− θ)2 be

the loss function on the set D ×Θ, where D is the set of possible estimates for θ.
We consider the estimates θn ∈ D defined by the following equation:

θ̂n = argmin
d∈D

∫

Θ

l(d; θ)pn(Z̃
(n); θ)π(θ)dθ

∫

Θ

pn(Z̃
(n); θ)π(θ)dθ

. (10)

Note that if θ is a random quantity with a priori density π, then θn is the Bayesian estimate for θ.

We prove the asymptotic normality of the estimates θn whose limit distributions are independent on
the functions π.

Theorem 2. Assume that the regularity conditions 1–5 are fulfilled and the function π(θ) is contin-

uous in a neighborhood of a point θ0, π(θ0) �= 0. Then
√
n(θn − θ0) ⇒ N(0, (J(θ0))

−1) as n → ∞.

Proof. Under the conditions 1–5, the LAN of (9) follows from Theorem 1. According to (10), the

estimate θ̂n has the following representation:

θ̂n =

∫

Θ

θpn(Z̃
(n); θ)π(θ)dθ

∫

Θ

pn(Z̃
(n); θ)π(θ)dθ

. (11)

In the integrals (11), we replace the variable θ by its close alternative θ0 +
u√
n
= θn ∈ Θ, u ∈ R

1.

Then, using Ln(u), we obtain

√
n(θ̂n − θ0) =

+∞∫

−∞
u exp(Ln(u))π

(
θ0 +

u√
n

)
du

+∞∫

−∞
exp(Ln(u))π

(
θ0 +

u√
n

)
du

. (12)

Let

L(u) = uJ1/2(θ0)ζ − u2

2
J(θ0).

Then, according to (9), for every u ∈ R
1 we conclude that exp(Ln(u)) ⇒ exp(L(u)) as n → ∞. This

implies that the finite-dimensional distributions of the process Ln(u) converge to finite-dimensional
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distributions of the process L(u). In (12) we formally pass to the limit under the integral sign and

obtain

ζJ1/2(θ0) =

+∞∫

−∞
u exp(L(u))du

+∞∫

−∞
exp(L(u))du

. (13)

To justify the passage to the limit, we choose a fixed number C > 0 and prove the continuity of the

process Ln(u) for u ∈ [−C,C]. Let numbers u1 and u2 be such that θ0 + uj ∈ [−C,C], j = 1, 2. We
show that for sufficiently large n, the following inequality holds:

Mθ0

(
Ln(u1)− Ln(u2)

)2 ≤ α(u1 − u2)
2, α > 0. (14)

Since
k∑

i=1

Δ(i)
m +Δ(−1)

m +Δ(0)
m = 1, m = 1, n,

the following calculations are valid:

Mθ0

(
Ln(u1)− Ln(u2)

)2
= Mθ0

{
n∑

m=1

{
Δ(−1)

m

[
log γ

(
Zm; θ0 +

u1√
n

)
− log γ

(
Zm; θ0 +

u2√
n

)]

+

k∑
i=1

Δ(i)
m

[
log h(i)

(
Zm; θ0 +

u1√
n

)
− log h(i)

(
Zm; θ0 +

u2√
n

)]

+Δ(0)
m

[
log

(
1−H

(
Zm; θ0 +

u1√
n

))
− log

(
1−H

(
Zm; θ0 +

u2√
n

))]}}2

≤ n

⎧
⎨
⎩

+∞∫

−∞

[
log γ

(
x; θ0 +

u1√
n

)
− log γ

(
x; θ0 +

u2√
n

)]2
dT (−1)(x; θ0)

+

k∑
i=1

+∞∫

−∞

[
log h(i)

(
x; θ0 +

u1√
n

)
− log h(i)

(
x; θ0 +

u2√
n

)]2
dT (i)(x; θ0)

+

+∞∫

−∞

[
log

(
1−H

(
x; θ0 +

u1√
n

))
− log

(
1−H

(
x; θ0 +

u2√
n

))]2
dT (0)(x; θ0)

⎫⎬
⎭

= J(θ0)(u1 − u2)
2, (15)

which proves (14). Thus, according to (15), the process {Ln(u), u ∈ [−C,C]} is an element of the
space C[−C;C].

On the other hand, for any t1 and t2, the following functional is continuous in ψ:

Φ(ψ) = t1

C∫

−C

uψ(u)du + t2

C∫

−C

uψ(u)du
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According to the Cramer–Wald theorem, due to the continuity of Ln(u) and the condition (7), from [4]

we conclude that the distributions of the random vectors
( C∫

−C

u exp(Ln(u))π

(
θ0 +

u√
n

)
du,

C∫

−C

exp(Ln(u))π

(
θ0 +

u√
n

)
du

)

converge to the distribution of the vector
(
π(θ0)

C∫

−C

u exp(L(u))du, π(θ0)

C∫

−C

exp(L(u))du

)
.

On the other hand, for any ε > 0, there exists δ > 0 such that the following relations are valid:

P

(
π(θ0)

∫

|u|>C

u exp(L(u))du > δ

)
< ε, (16)

P

(
π(θ0)

∫

|u|>C

exp(L(u))du > δ

)
< ε. (17)

For sufficiently large n, the inequalities of the type (16) and (17) are also valid for Ln(u). Moreover,
for sufficiently large C and n, the following inequality holds:

P

(
t1

∫

|u|>C

u exp(Ln(u))π
(
θ0 +

u√
n

)
du+ t2

∫

|u|>C

exp(Ln(u))π
(
θ0 +

u√
n

)
du >

1

CN

)

≤
∑
|l|>C

P

( l+1∫

l

(|u|+ 1) exp(Ln(u))π
(
θ0 +

u√
n

)
du >

1

lN (t1 ∨ t2)

)

≤
∑
|l|>C

P

(
max

u∈[l,l+1]

{
exp(Ln(u))

}
>

l−(N+M+2)

(t1 ∨ t2)

)
≤ λN

CN
. (18)

From (17), for large n we have

√
n(θ̂n − θ0) =

C∫

−C

u exp(Ln(u))du

C∫

−C

exp(Ln(u))du

+ rn(C),

where P
(
|rn(C)| > δ

)
< ε. Thus, Eq. (13) is valid. The theorem is proved. �

Remark 2. Due to Theorem 2, according to Fisher’s definition (see [6]), the estimate θ̂n can be

considered asymptotically effective.
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