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ON TYPE I BLOW UP FOR THE NAVIER–STOKES
EQUATIONS NEAR THE BOUNDARY

M. Chernobay∗ UDC 517.95

For suitable weak solutions to the Navier–Stokes equations, a new sufficient condition for the
uniform boundedness of the scale invariant energy functionals near a boundary point is established.
Bibliography: 23 titles.

1. Introduction and Main Results

Let C := { x ∈ R
3 : x21 + x22 < 1, |x3| < 1 } and Q := C × (−1, 0). We consider the

Navier–Stokes equations in Q,{
∂tu−Δu+ (u · ∇)u+∇p = 0

div u = 0
in Q, (1.1)

where u : Q → R
3 and p : Q → R are the velocity field and pressure, respectively. Together

with system (1.1), we consider the Navier–Stokes equations near the boundary,⎧⎪⎨
⎪⎩

∂tu−Δu+ (u · ∇)u+∇p = 0

div u = 0

u|x3=0 = 0

in Q+, (1.2)

where Q+ := C+ × (−1, 0) with C+ := C ∩ {x3 > 0}.
In the present paper, we are interested in the local regularity for weak solutions to sys-

tem (1.2), satisfying the estimate

|u(x, t)| ≤ C√
x21 + x22

(1.3)

for a.e. (x, t) ∈ Q and a positive constant C.
Our interest is partly motivated by studying possible behavior of axially symmetric solutions

to the Navier–Stokes equations near the boundary (that is why we use cylinders C, C+, etc.,
rather than standard balls). We remind that that a solution u, p to equations (1.1) or (1.2) is
said to be axially symmetric if

u(x, t) = ur(r, z, t)er + uϕ(r, z, t)eϕ + ur(r, z, t)ez , p(x, t) = p(r, z, t),

where er, eϕ, ez is the cylindrical basis in R
3, r =

√
x21 + x22, and z = x3. We say that the

solution is axi-symmetric without swirl if

u(x, t) = ur(r, z, t)er + ur(r, z, t)ez , p(x, t) = p(r, z, t).

For axially symmetric solutions, condition (1.3) is one of the scale invariant conditions which
characterize so called Type I blow up at the axis of symmetry, see terminology in [15] or [20].

It is a well-known fact that the internal case axi-symmetric solutions without swirl are
locally regular, see [7,9] and [6]. In contrast, in the boundary case the corresponding result is
unknown and an axi-symmetric solution without swirl can potentially have a singularity near
origin (i.e., at the point of intersection of the axis of symmetry with the domain boundary,
see, for example, [5]).
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On the other hand, it was proved in [6] and [15] that in the internal case, axi-symmetric
weak solutions with swirl satisfying (1.3) are regular. The analogous result near the boundary
is unknown.

In our approach we replace condition (1.3) by a more general condition

sup
r<1

Aw(u, r) ≤ C0, (1.4)

where

Aw(u, r) :=
1√
r
ess sup
t∈(−r2,0)

‖u( · , t)‖L2,w (C+(r)).

Set C+(r) := { x ∈ R
3 :

√
x21 + x22 < r, 0 < x3 < r }, and for any domain Ω ⊂ R

3 denote by
L2,w(Ω) a weak Lebesgue space equipped with the quasinorm

‖f‖L2,w(Ω) := sup
λ>0

λ|{x ∈ Ω : |f(x)| > λ}|1/2.

Note that every measurable function u satisfying (1.3) meets condition (1.4) as well.
To formulate our main results we recall the notion of boundary suitable weak solutions. The

notion of suitable weak solutions to the Navier–Stokes system was introduced in celebrated
paper [2]. For the boundary case, we use the following definition, see, for example, [18] (the
notation for functional spaces are explained at the end of this section).

Definition 1.1. We say that a pair of functions u and p is a boundary suitable weak solution
to the Navier–Stokes system in Q+ if

• u ∈ L2,∞(Q+) ∩W 1,0
2 (Q+), p ∈ L 3

2
(Q+),

• u|x3=0 = 0 in the sense of traces,
• u and p satisfy the Navier–Stokes system in Q+ in the sense of distributions,
• for a.a. t ∈ (−1, 0), the pair u and p satisfies the local energy inequality in Q+,

∫
C+

ζ(x, t)|u(x, t)|2 dx+ 2

t∫
−1

∫
C+

ζ|∇u|2 dx dt

≤
t∫

−1

∫
C+

|u|2 (∂tζ +Δζ) dx dt+

t∫
−1

∫
C+

u · ∇ζ
(|u|2 + 2p

)
dx dt,

(1.5)

for any nonnegative test function ζ ∈ C∞(R3×R) vanishing near the parabolic boundary
∂′Q = (∂C × [−1, 0]) ∪ (C̄ × {t = −1}).

To formulate our results we also introduce the following scale invariant functionals:

A(u, r) = ess sup
t∈(−r2,0)

( 1

r

∫
C+(r)

|u(x, t)|2 dx
)1/2

,

C(u, r) =
( 1

r2

∫
Q+(r)

|u(x, t)|3 dxdt
)1/3

,

E(u, r) =
( 1

r

∫
Q+(r)

|∇u(x, t)|2 dxdt
)1/2

,

D(p, r) =
( 1

r2

∫
Q+(r)

|p(x, t)− [p]C+(r)(t)|3/2 dx dt
)2/3

.

(1.6)
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The main result of the present paper is the following theorem.

Theorem 1.1. Assume that the pair u and p is a boundary suitable weak solution to sys-
tem (1.2). Assume that there exists C0 > 0 such that condition (1.4) is satisfied. Then

sup
r<1

(
A(u, r) + C(u, r) + E(u, r) +D(p, r)

)
< +∞. (1.7)

Theorem 1.1 implies that suitable weak solutions with Aw(u, r)-norm, uniformly bounded
in r, can have Type I singularities at the origin only (see terminology in [20]).

It is interesting to compare Theorem 1.1 with other known relevant results. The first
important result was obtained in [14] in the internal case. Namely, it was shown there that if

min
{
sup
r<1

A(u, r), sup
r<1

C(u, r), sup
r<1

E(u, r)
}
< +∞,

then (1.7) holds. In [10], the same statement was proved near the boundary. In [13] (see
also [21]), an analogous result was established in the internal case under the condition

sup
r<1

Cs,l(u, r) < +∞, max

{
2− 1

l
,
3

2
+

1

2l

}
<

3

s
+

2

l
< 2,

where s ∈ (3,+∞), l ∈ (2,+∞), and

Cs,l(u, r) := r1−
3
s
− 2

l

( 0∫
−r2

( ∫
B(r)

|u|s dx
)l/s

dt
)1/l

.

Under assumption (1.3), statement (1.7) in the internal case was proved in [15].
Condition (1.4) can also be interpreted as the inequality

ess sup
t∈(−1,0)

‖u( · , t)‖X < +∞, (1.8)

where X is a Morrey-type class with the scale-invariant quasi-norm

‖w‖X = sup
r<1

1√
r
‖w‖L2,w(C+(r)).

Statement (1.7) is known in the internal case if (1.8) is satisfied and X is one of the following
spaces: X = L3(C), L3,w(C), or BMO−1(C) (the notation is explained at the end of this
section). Namely, in the case X = L3 condition (1.8) implies the Hölder continuity of u near
the origin both in the internal and boundary cases, see [3, 12]. In the case of X = L3,w, the
regularity of u is unknown and estimate (1.7) is available only (this result easily follows from
Theorem 1.1). In the case of X = BMO−1, estimate (1.7) was obtained in the internal case
in [8,16]. Moreover, a similar result was proved by G. Seregin and D. Zhou [22] in the internal

case if X is the (globally defined) Besov space Ḃ−1∞,∞(R3).
A simple consequence of our approach is the following ε-regularity condition. Similar con-

ditions in the boundary case can be found in [17].

Theorem 1.2. There exists an absolute constant ε > 0 such that if a boundary suitable suitable
weak solution u, p to (1.2) satisfies condition (1.3) with C0 < ε, then u is Hölder continuous
in some neighborhood of the origin.

The paper is organized as follows. In Sec. 2, we recall some known facts from the theory of
functions. In Sec. 3, we prove Theorems 1.1 and 1.2.

We use the following notation:

• R
3
+ := {x ∈ R

3 : x3 > 0},
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• C(r) := {x ∈ R
3 :

√
x21 + x22 < r, |x3| < r}, C := C(1),

• C+(r) := C+(r) ∩ R
3
+, C+ := C ∩ R

3
+,

• Lq(Ω), W
k
q (Ω),

◦
W k

q (Ω) are the standard Lebesgue and Sobolev spaces,
• for any measurable f : Ω → R, we set df (λ) := |{x ∈ Ω : |f(x)| ≥ λ }|,
• for q ∈ [1,+∞), Lq,w(Ω) is a weak Lebesgue space equipped with the quasi-norm

‖f‖Lq,w(Ω) := sup
λ>0

λdf (λ)
1/q ;

here, for q = ∞, we set L∞,w(Ω) := L∞(Ω),
• for q ∈ (0,+∞) and s ∈ (0,+∞), we denote by Lq,s(Ω) the Lorentz space equipped
with the quasi-norm

‖f‖Lq,s(Ω) := q
1
s

⎛
⎝

+∞∫
0

λs−1df (λ)
s
q dλ

⎞
⎠

1
s

; (1.9)

if s = ∞, then we put Lq,∞(Ω) := Lq,w(Ω),
• BMO(Ω) is the space of functions with bounded mean oscillation in Ω, equipped with
the norm

‖f‖BMO(Ω) := sup
B(x0,R)⊂Ω

1

|B(R)|
∫

B(x0,R)

|f − [f ]B(x0,R)| dx,

[f ]B(x0,R) :=
1

|B(R)|
∫

B(x0,R)

fdx,

and BMO−1(Ω) := {divF ∈ D′(Ω) : F ∈ BMO(Ω)},
• Q(r) := C(r)× (−r2, 0), Q := Q(1),
• [p]C and (p)Q denote the spatial and total averages of the function p(x, t), respectively,

[p]C(t) :=
1

|C|
∫
C

p(x, t) dx, (p)Q :=
1

|Q|
∫
Q

p(x, t) dx dt,

• Q+(r) := C+(r)× (−r2, 0), Q+ := Q+(1),
• Lq,l(Q(r)) is an anisotropic Lebesgue space equipped with the norm

‖f‖Lq,l(Q(r)) :=
( 0∫
−r2

‖f(·, t)‖lLq(C(r))dt
)1/l

;

in the case l = ∞, we set Lq,∞(Q(r)) := L∞(−r2, 0;Lq(C(r))),
‖f‖Lq,∞(Q(r)) := ess sup

t∈(−r2,0)

‖f( · , t)‖Lq(C(r)),

• W 1,0
q,l (Q(r)) := {u ∈ Lq,l(Q(r)) : ∇u ∈ Lq,l(Q(r))},

‖u‖
W 1,0

q,l (Q(r))
:= ‖u‖Lq,l(Q(r)) + ‖∇u‖Lq,l(Q(r)),

• W 2,1
q,l (Q(r)) := {u ∈ W 1,0

q,l (Q(r)) : ∇2u ∈ Lq,l(Q(r)), ∂tu ∈ Lq,l(Q(r))},
‖u‖

W 2,1
q,l (Q(r))

:= ‖u‖
W 1,0

q,l (Q(r))
+ ‖∇2u‖Lq,l(Q(r)) + ‖∂tu‖Lq,l(Q(r));

in the case of q = l, we set W 1,0
q (Q) := W 1,0

q,q (Q) etc.,
• Lq,w;∞(Q(r)) := L∞(−r2, 0;Lq,w(C(r))).
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2. Some results from the function theory

First we recall an interpolation result concerning Lorentz spaces, see [1, Theorem 5.3.1].

Lemma 2.1. Assume that 1 ≤ q1 < q < q2 ≤ ∞ and θ ∈ (0, 1) are such that

1

q
=

1− θ

q1
+

θ

q2
.

Then for any 0 < s ≤ ∞, there is a constant c = c(q1, q2, q, s) > 0 such that if Ω ⊂ R
n is any

domain and u ∈ Lq1,w(Ω) ∩ Lq2,w(Ω), then u ∈ Lq,s(Ω) and the estimate

‖u‖Lq,s(Ω) ≤ c ‖u‖1−θ
Lq1,w(Ω)‖u‖θLq2,w(Ω) (2.1)

holds.

The next result is a trivial combination of Lemma 2.1 and Sobolev’s embedding theorem.

Lemma 2.2. Assume that 1 ≤ q ≤ p ≤ 6 and θ ∈ [0, 1] are such that

1

p
=

1− θ

q
+

θ

6
.

Then any f ∈ Lq,w(C+(r)) ∩ W 1
2 (C+(r)) belongs to Lp(C+(r)), and there exists a positive

constant c = c(p, q) (independent of r > 0) such that if, in addition, f |x3=0 = 0, then

‖f‖Lp(C+(r)) ≤ c ‖f‖1−θ
Lq,w(C+(r))

‖∇f‖θL2(C+(r)). (2.2)

Next we recall the well-known O’Neils inequality, see [4, Exercise 1.4.19].

Lemma 2.3. If q1, q2, q ∈ (1,+∞] and s1, s2, s ∈ (0,+∞] are such that

1

q1
+

1

q2
=

1

q
and

1

s1
+

1

s2
=

1

s
,

then

‖fg‖Lq,s(C+(r)) ≤ c(q1, q2, s1, s2) ‖f‖Lq1,s1(C+(r))‖g‖Lq2,s2 (C+(r)).

We use the following modification of the O’Neils inequality for three functions.

Lemma 2.4. If q1, q2, q3, q ∈ (1,+∞] and s1, s2, s3, s ∈ (0,+∞] are such that

1

q1
+

1

q2
+

1

q3
=

1

q
and

1

s1
+

1

s2
+

1

s3
=

1

s
,

then

‖fgh‖Lq,s(C+(r)) ≤ c(qi, si) ‖f‖Lq1,s1 (C+(r))‖g‖Lq2 ,s2(C+(r))‖h‖Lq3,s3 (C+(r)) (2.3)

3. Proof of the Main Results

We start with the following interpolation inequality. Below we set Aw(r) := Aw(u, r),
C(r) := C(u, r), etc., see the definition of the functionals in (1.6).

Theorem 3.1. Let u and p be a boundary suitable weak solution to the Navier–Stokes equations
in Q+. Then

C(r) ≤ c A
1
2
w(r) E

1
2 (r). (3.1)

Proof. Follows from (2.2) with p = 3, q = 2, and θ = 1
2 . �
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Our next result gives an estimate for the pressure. This estimate is the crucial point of
our approach, different from the analogous estimate in the internal case, because it involves
stronger (energy-type) norms on the right-hand side. This leads to additional technical dif-
ficulties which do not arise in the internal case. To obtain the result we adopt a technique
developed in [11] for studying boundary regularity to the Navier–Stokes equations.

Theorem 3.2. For any δ ∈ (0, 1), there exist positive constants c1, c2 such that for any
boundary suitable weak solution u, p to the Navier–Stokes equation in Q+,

D(θr) ≤ c1θ
4
3
(
C(r) +D(r)

)
+ c2θ

− 4
3E1+δ(r)A1−δ

w (r) (3.2)

for all r ∈ (0, 1) and θ ∈ (0, 12 ).

Proof. First, we prove (3.2) for r = 1. We decompose p = p1 + p2 and u = u1 + u2, where u1
and p1 is a solution to the initial-boundary value problem for the linear system⎧⎪⎨

⎪⎩
∂tu1 −Δu1 +∇p1 = (u · ∇)u

div u1 = 0

u1|∂Q+ = 0

in Q+. (3.3)

Then u2 = u− u1 and p2 = p− p1 satisfy the following system:⎧⎪⎨
⎪⎩

∂tu2 −Δu2 +∇p2 = 0

div u2 = 0

u2|x3=0 = 0

in Q+.

Moreover, we may assume that for a.e. t ∈ (−1, 0), [p]C+ = [p1]C+ = [p2]C+ = 0. The
right-hand side (u · ∇)u of system (3.3) belongs to L 9

8
, 3
2
(Q). Applying the coercive estimate

of solutions to the Stokes problem in anisotropic Sobolev spaces (see [23]) for any ε ∈ (0, 18 ],
we obtain

‖u1‖W 2,1

1+ε, 32

(Q+)
+ ‖∇p1‖L

1+ε, 32
(Q+) ≤ c ‖(u · ∇)u‖L

1+ε, 32
(Q+).

To estimate the right-hand side of the last inequality, we split

|(u · ∇)u| ≤ |u| 13 |u| 23 |∇u|
and apply (2.3) with exponents q1 = 2, q2 = 3, q3 =

6(1+ε)
1−5ε and r1 = 2, r2 = ∞, r3 =

2(1+ε)
1−ε :

1

1 + ε
=

1

2
+

1

3
+

1− 5ε

6(1 + ε)
,

1

1 + ε
=

1

2
+

1

∞ +
1− ε

2(1 + ε)
.

For a.e. t ∈ (−1, 0), we obtain

‖(u · ∇)u‖L1+ε(C+) ≤ c ‖∇u‖L2(C+)‖|u|
2
3‖L3,w(C+)‖|u|

1
3‖

L
6(1+ε)
1−5ε ,

2(1+ε)
1−ε (C+)

.

Taking into account the property of the Lorentz norm
∥∥|u|θ∥∥

Lq,s(C+)
= ‖u‖θ

Lθq,θs(C+)
, where

q, θ ∈ (0,+∞) and s ∈ (0,+∞], we get

‖(u · ∇)u‖L1+ε(C+) ≤ c ‖∇u‖L2(C+)‖u‖
2
3

L2,w(C+)
‖u‖

1
3

L
2(1+ε)
1−5ε ,

2(1+ε)
3(1−ε) (C+)

.

Applying the Hölder inequality with exponents l1 = 2, l2 = ∞, l3 = 6,

2

3
=

1

2
+

1

∞ +
1

6
,
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we arrive at

‖(u · ∇)u‖L
1+ε, 32

(Q+) ≤ c ‖∇u‖L2(Q+) ‖u‖
2
3

L2,w;∞(Q+)

∥∥u∥∥ 1
3

L2

(
−r2,0; L

2(1+ε)
1−5ε ,

2(1+ε)
3(1−ε) (C+)

).

Using (2.1), we get

‖u‖
L

2(1+ε)
1−5ε ,

2(1+ε)
3(1−ε) (C+)

≤ c ‖u‖1−δ′
L2,w(C+(r))

‖u‖δ′L6(C+).

Here, 1−5ε
2(1+ε) = 1−δ′

2 + δ′
6 and δ′ = 3ε

1−5ε . Now using the Sobolev embedding theorem, we

obtain
‖u‖

L
2(1+ε)
1−5ε ,

2(1+ε)
3(1−ε) (C+)

≤ c ‖u‖1−δ′
L2,w(C+)

‖∇u‖δ′L2(C+).

Therefore,

‖u · ∇u‖L
1+ε, 32

(Q+) ≤ c ‖∇u‖1+
δ′
3

L2(Q+)
‖u‖

2
3
+ 1−δ′

3

L2,w;∞(Q+)
= c ‖∇u‖1+δ

L2(Q+)
‖u‖1−δ

L2,w;∞(Q+)
,

where δ := δ′
3 = ε

1−5ε . Thus,

‖u1‖W 2,1

1+ε, 32

(Q+)
+ ‖∇p1‖L

1+ε, 32
(Q+) ≤ c ‖∇u‖1+δ

L2(Q+)
‖u‖1−δ

L2,w;∞(Q+)
.

Now we turn to the derivation of the estimate for p2. From the local regularity theory for
the linear Stokes system near the boundary (see, for example, [18, Theorem 2.3]) for any

m ∈ (1,+∞), it follows that p2 ∈ W 1,0

m, 3
2

(Q+(12 )) and for any ρ < 1
2 the following estimate

holds:

‖∇p2‖L
m, 32

(Q+( 1
2
)) ≤ c

(
‖u2‖L

1+ε, 32
(Q+) + ‖p2‖L

1+ε, 32
(Q+)

)

≤ c
(
‖u1‖L

1+ε, 32
(Q+) + ‖u‖L

1+ε, 32
(Q+) + ‖p‖L

1+ε, 32
(Q+) + ‖p1‖L

1+ε, 32
(Q+)

)

≤ c
(
‖u‖L

1+ε, 32
(Q+) + ‖p‖L

1+ε, 32
(Q+) + ‖∇u‖1+δ

L2(Q+)
‖u‖1−δ

L2,w;∞(Q+)

)
. (3.4)

Taking any θ < 1
2 and using Poincare inequality, we obtain

‖p2 − [p2]C+(θ)‖L 3
2
(Q+(θ)) ≤ c θβ‖∇p2‖L

m, 32
(Q+( 1

2
)),

where β > 0 depends on m ∈ (1,+∞). Choosing m = 9, we get β = 8
3 . Finally, we can

estimate p = p1 + p2 as follows:

‖p− [p]C+(θ)‖L 3
2
(Q+(θ)) ≤ 2‖p1‖L 3

2
(Q+(θ)) + ‖p2 − [p2]C+(θ)‖L 3

2
(Q+(θ))

≤ c
(
‖∇u‖1+δ

L2(Q+)‖u‖1−δ
L2,w;∞(Q+) + θ

8
3‖∇p2‖L

9, 32
(Q+( 1

2
))

)
.

Taking into account (3.4) with m = 9, we obtain

‖p− [p]C+(θ)‖L 3
2
(Q+(θ)) ≤ c‖∇u‖1+δ

L2(Q+)
‖u‖1−δ

L2,w;∞(Q+)
+cθ

8
3

(
‖u‖L

1+ε, 32
(Q+)+‖p‖L 3

2
(Q+)

)
. (3.5)

Using the definition of the functionals D(r) := D(p, r), etc., we arrive at the estimate

D(θ) ≤ c1 θ
4
3 (C(1) +D(1)) + c2θ

− 4
3E1+δ(1)A1−δ

w (1).

To complete the proof, we use standard scaling arguments to get (3.2) for all r ∈ (0, 1) and
θ ∈ (0, 12 ). �

Now we can prove Theorem 1.1.
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Proof. As u, p is a boundary suitable weak solution and (3.1) holds, we have

sup
r<1

Aw(r) ≤ C0, A
(3
4

)
+ E

(3
4

)
≤ C1 < ∞.

From (3.1), it follows that

C(r) ≤ c(C0) E
1
2 (r). (3.6)

Set E(r) = E(r) +A(r) +D(r). Using the local energy inequality (1.5) for any θ ∈ (0, 1
16 ), we

get

E(θr) ≤ C(2θr) +C
3
2 (2θr) +C

1
2 (2θr)D

1
2 (2θr) +D(θr).

By Young’s inequality this implies that

E(θr) ≤ c (C(2θr) + C
3
2 (2θr) +D(2θr)). (3.7)

Taking δ = 1
7 in (3.2) and using (3.6), we obtain

D(θr) +D(2θr) ≤ c θ
4
3

[
C
(r
4

)
+D

(r
4

)]
+ c(C0)θ

− 4
3E

8
7

(r
4

)
. (3.8)

Combining (3.6), (3.7), and (3.8), we get

E(θr) ≤ c(C0)
[
E

1
2 (2θr) + E

3
4 (2θr) + θ−

4
3E

8
7

(r
4

)]
+ cθ

4
3

(
C
(r
4

)
+D

(r
4

))

≤ c(C0)
[
θ−

1
4E 1

2 (r) + θ−
3
8 E 3

4 (r) + θ−
4
3E

8
7

(r
4

)]
+ cθ

4
3E

(r
4

)
.

(3.9)

One of the terms on the right-hand side of (3.9) has exponent 8
7 > 1. Therefore, to estimate

it, we use (3.6) and (3.7) again:

E
8
7 (
r

4
)≤

(
C
(r
2

)
+ C

3
2

(r
2

)
+D

(r
2

)) 8
7 ≤c(C0)

(
E 1

2 (r)+E 3
4 (r)

) 8
7 ≤c(C0)

(
E 4

7 (r)+E 6
7 (r)

)
.

Combining the last estimate with (3.9), we arrive at

E(θr) ≤ c(C0)
[
θ−

1
4E 1

2 (r) + θ−
3
8 E 3

4 (r) + θ−
4
3

(
E 4

7 (r) + E 6
7 (r)

) ]
+ cθ

4
3E(r).

Taking ε > 0 and using Young’s inequality θβEα(r) ≤ εE(r)+c(ε, θ, α, β) for any α < 1, β ∈ R,
we proceed to

E(θr) ≤ E(r)(ε+ cθ
4
3 ) + F (ε, C0, θ)

where F (ε, C, θ) is a continuous function which is nondecreasing with respect to C and has
the following property:

for any fixed ε, θ ∈ (0, 1), F (ε, C, θ) → 0 as C → +0.

Let us fix θ ∈ (0, 1
16) and then fix ε ∈ (0, 1) so that ε+ cθ

4
3 ≤ 1

2 . Then

E(θr) ≤ 1

2
E(r) + F (C0) for all r ∈ (0, 1).

Using standard iteration technique, we conclude that

sup
r<1

E(r) ≤ c F (C0) < +∞. (3.10)

Theorem 1.1 is proved. �

We complete the paper with the proof of Theorem 1.2.
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Proof. Assume that C0 ≤ ε. As the function F (C) in (3.10) is continuous, nondecreasing, and
tends to zero as C → +0, we can fix ε > 0 so that

sup
r<1

E(r) ≤ ε∗,

where ε∗ > 0 is the absolute constant from the boundary analog of the Caffarelli–Kohn–
Nirenberg theorem, see [11]. Then Theorem 1.2 follows from results of [11], see also [18,19]. �

The author thanks Timofey Shilkin for the statement of the problem and Alexander Mikhay-
lov for valuable discussions.
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