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A SOLUTION TO THE CAUCHY PROBLEM FOR
PARABOLIC EQUATION WITH SINGULAR
COEFFICIENTS

G. I. Bizhanova* UDC 517.95

The Cauchy problem for the second order parabolic equation with singular coefficients with respect
to t at the first order spatial derivatives, is considered. A solution to this problem is constructed
in explicit form. To this purpose a weighted Hdélder space with positive power of t as the weight,
is defined. The existence, uniqueness, and estimates of the solution are proved. Bibliography: 9
titles.

Dedicated to the 85th jubilee of V. A. Solonnikov

The paper is devoted to study the Cauchy problem for a parabolic equation with coefficients
singular in ¢ at the first derivatives with respect to spatial variables. To such a problem, the
problems for parabolic equations in domains with moving or free (unknown) boundaries are
reduced when the required smoothness of the solutions is higher than the smoothness of the
boundary of the domain.

Consider, for example, a one-dimensional problem in the domain Q(t) := {z : bt" < z < oo},
0<y<1, b>0,

Ou — ad?u = f(x,t) inQt), 0<t<T,
ul,_y =uo(z) inQ0), ul =), 0<t<T.

r=bt"

After change of the variable y = x — bt", ¢ = 1, the problem reduces to a problem with
unknown function u(y + bt],t1) =: v(y,t1) in the domain (0, 00),

1 _
8t1U - aagv - blytl_,yayv = f(y - bt% ﬂ/7151)7 y e (0,00), l1 € (OvT)7
1

v‘tlzo = uO(y)7 Y€ (0700)7 v‘y:O = Qo(tl)a t1 € (07T)7

where 1 —v € (0,1).

We see that boundary-value problems in noncylindrical domains are reduced to problems
for parabolic equations with coefficients singular in ¢ at the first derivatives with respect to
spatial variables. A study the problems for smooth functions in noncylindrical domains with
moving boundaries whose smoothness is less than the smoothness of solutions was started by
M. Gevrey [1]. L. I. Kamynin obtained results on the solvability of one-dimensional boundary-
value problems in domains with boundary satisfying the Gevrey condition [2,3]. In papers
by E. A. Baderko [4-6], the studies of one-dimensional and multidimensional boundary-value
problems were continued in domains with boundaries of less smoothness as compared with
the smoothness of the solution in Holder spaces. It should be noted that all the studies in
the indicated papers [1-6] were carried out by methods of theory of heat potentials and by
reducing the problems to the Volterra integral equations of the second kind.

In [7], V. P. Mikhailov proved that if the boundary of the domain is given by the equation
r = —/tlnt, t € (0,1), then the solution to a parabolic equation with such a boundary
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is not unique. In this case, after change of the variable y = = + v/tInt, the heat equation
Ou — ad?u =0, z € (—V/tInt,00) takes the form

1 1
8v—a82v+( Int+ >8v:0, € (0,00).
t Y 2\/t \/t Y Yy ( )
In the present paper, we prove that the Cauchy problem (1), (2) has a unique solution in

the weighted Holder space, and also 8; € (0,1/2], i = 1,...,n in equation (1). For this, the
solution of the problem is constructed in explicit form. Then Theorem 2 is established for the

problem (1), (2) with 5y = ... = 3, = 3; this enables us to prove Theorem 1.
Set D:=R" n>1, Dr:=D x(0,T), z = (x1,...,2Tp).
In what follows, C,Cs, ... are positive constants.

We consider the Cauchy problem for a parabolic equation the coefficients of which are
singular with respect to t at the first derivatives with respect to spatial variables,

n
b; .
du — alu — 2; t/i- dpu = f(z,t) in Dr, (1)
1=
ulio = uolz) in D, (2)
where a, by, ..., b, are constant coefficients, a > 0, and 3; € (0,1/2], i =1,...,n

In the one-dimensional case, hereinafter we have an equation in the form
9 b
0w — adyu — tb,(‘)xu = f(z,1).

The problem (1), (2) is studied in the classical and weighted Hélder spaces C' L2 . (Qr) and
C 2;"(QT), where [ is a nonintegral positive number, a € (0,1), >0, Qp = Q X (O,T), and
QCR", n>1.

The norms |u|Q and |u|(2+a in these spaces are defined by

(1]
Wy = Y lorearule, + >0 (10 orully, + ooyl

2mo+|m|=0 2mo+|m|=[l]
mo m (1+o¢) (3)
Z [8 a ]tQT ) [l] 2 17
+ q 2mo+|m|=[l]—1
0, [l =0,
where a =1 —[l] € (0,1), m = (mq,...,my), the m; are nonnegative numbers, i = 0,1,...,n,
m|=m1+ ...+ my,
(@) "U(:L‘,t)—’U(Z,t)‘
lvlo, = max |v], [v], 5. =  max ,
(z,t)eQr T (@), (2,0 EQr |z — 2|
() v(,t) —v(a,t))|
Wi, = max N ,
’ (2,8), (2,41 )EQr |t — 1]

and

2+« a a/2
D = 3 D2, +sup ol + 3 (02, + D2

|m|=0 |m|=2 (4)
14«
+supt’3[Dtu](S)2 +supt6+"/2[8u] a/2 + E sup t?[D™u ]ﬁ, )7
t<T

t<T t<T
[m|=1

where Q) = Q x (t/2,1).
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Now we state the main result of the paper.

Theorem 1. Let 3; € (0,1/2], i =1,...,n, B = max(f1,...,0n), and a € (0,1). Then for
any functions
u(@) € C*H(D),  f(xt) € C P (Dr),
the problem (1), (2) has a unique solution
u(ac,t) = ul(x7t) + u2($7t)
such that ui(x,t) € C 2;“(DT), uz(x,t) € C 2+a’1+a/2(DT), and the following estimates hold:
(2+
(G5 < Crfuol 5, (5)
(2

Jua| () < Col 1115, (6)
where uy and ug are solutions to the problem (1), (2) with f(x,t) = 0, and up(z) = 0,
respectively.
Remark 1. In Theorem 1, us(z,t) belongs to the classical Holder space C 2za’lt+ o/ 2(DT
This is because in contrast to ui(x,t), we have usli—g = 0, Oy, u2lt=0 = 0, 8§ixqu\t:0 =0,
ii=1,....n

~—

We find a solution to the problem (1), (2) explicitly.
Lemma 1. Let 5; € (0,1), i =1,...,n. The solution to the problem (1), (2) is of the form

u(x,t) = uy(x,t) +us(x,t), (7)
uy (z,t) = / ug (T (x — €+ (et ™, ent' ™) 1) de, (8)
RTL

ug(z,t) = / dr / FE DT (@—&+ (e (P =755 L ey (1P — 718 )) 1) de, (9)

b; .
where ¢; = 1 1= 1,...,n, and

22

1 -
[(z,t) = (2\/a7-rt)" € dat

is a fundamental solution to the heat equation Oyu — aAu = 0.
Proof. We apply the integral Fourier transform with respect to x = (z1,...,z,) to the prob-
lem (1), (2), see [8]:

Flu] = u(s,t) = /u(w,t)e‘imd:ﬁ, $=1(81,.-.,8n)-
Rn
Then we get the Cauchy problem for the ordinary differential equation

'+ (as? =i 30t )i = fs,0), >0, o = Hols). (10)
i=1
A solution to the problem (10) has the form
n t
—as?t+i 3 ks Z b (P )
(s, t) = Tio(s)e & . / s, 7)e—o5 =7 i 1= car
0
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After applying the inverse Fourier transform formulas to u,
1 22
(2\/a7rt)”e_4at =I'(z,1),
FHf(s)e'™] = fl@+d), [fl@)=F'[f(s)], d=(d,...,dn),
we obtain a solution to the problem (1), (2) in the form (7)—(9).

Substituting functions (8), (9) into equation (1) and condition (2), we see that formula (7)
gives a solution to the problem (1), (2). O

F~ 1 [e—a52t] _

To prove Theorem 1, we first consider the problem

Ou — aAu— tcﬁ VT = f(z,t) in Dr,

(11)
ulio = up(x) in D,
where ¢ = (c1,...,¢), and VI =: (9,,...,0,,) is a column vector.
Theorem 2. Let § € (0,1/2] and o € (0,1). Then for any functions
up(z) € (D),  f(x,t) € C & (Dr),
problem (11) has a unique solution
U({L’, t) = ul(‘r7 t) + 'LLQ(.’E, t)
such that
u(z,t) € C 2(Dr), wua(x,t) € C 14 (Dy),
and the following estimates hold:
|7y < Cifuoly™. (12)
(2+a) «
a5 < Cal 15 (13)

Set 5; = B, i =1,...,n, in formulas (8) and (9). Then we obtain a solution to problem (11),

u(z,t) = ui(x,t) + us(x, t),

wy (2, 1) = / (€T (w — € + et 1) de, (14)

t

I
o

dr / FE T (x — &4 c(ttP — 7178 1) de. (15)

In formulas (14) and (15), we apply the substitution

y=x+ ctt=b.
Then
ui(y —ct' 7, t) = /uo(ﬁ)F(y =& 1) d€ = vi(y, 1), (16)
Rn
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t
uz(y—ctl_ﬁ,t) :/dT/f(f,T)F(y—f—CTl_B,t—T)df
0

- (17)
z/dT/f — e )y — .t — 7)dy = valy. 1)
in integral (17), we have also changed the integration variable n = &€ + ¢7'# and got the

function f(n — cr'=P, 7).

Lemma 2. Let 8 € (0,1/2] and f(x,t) € C’aa/2(DT). Then f(y — ct'P,t) =: fi(y,t) €
C aa/tQ(DT) and

y

Al < Cslf .05, (18)
Proof. The norm of the function fi(y,t) in C a,;/2 (D7) is defined by formula (3),
A15) = [filp, + [lyh, + AL, (19)
Obviously,
|f1‘DT = ‘f(y_0t1_67t)|DT = |f(y7t)‘DT7 (20)
iy t) = A€ D] = £y — ct' 7P 1) — € — et P 1) < [F(u. )]\, |y — €1,

and

Alyhy < F@ D, (21)

We estimate the difference

A= £y, )= fily, )| | fly—et' P t) = fly—cty )|+ | fly—cty P t) = fly—cty s ta).
Let t1 < t. Then

AL < Co(f (), (77 =t + [Fy, O)D2 (t — 11)/?).

Since
(tl—ﬁ _ t}—ﬁ)a < C7(t _ tl)a(l—ﬁ) < C7(t _ tl)a/2 ta(l/2—,8)’
we have
A=Ay, t) = Ay )] < Cs([F @O, + [FD5D) (= 1)/
and

a/2) o a2
A1y < (U w01y, + [F 0. (22)
Applying relations (20)—(22) in formula (19), we get estimate (18) which proves Lemma 2. [J

Proof of Theorem 2. By direct estimates of potentials (14) and (15), one can prove the theorem
as in [9]. But we use another way.

We have presented a solution to problem (11) in form (16), (17).

Let us consider the function v; (y, t) which is the potential (16). It is easily seen that v1(y, t)
is a solution to the Cauchy problem

8t211 — aAyvl =0in DT, U1|t:0 = uo(y) inD.
But then v (y,t) € C 2J;a’1;ra/2(DT) (see [9]) and
[or(y, )l < Coluo| 57 (23)
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After the substitution y = = + ¢t'=# in formula (14), we put
w(y —ct' P t) = vi(y, ). (24)
Relation (24) can be written in the form
uy(z,t) = vy (z + ct' =5 1).
It is easily seen that

‘ul(x7t)|DT = |1)1(:L’ +Ct1_67t)‘DT = ‘Ul(y,t)‘DT,

10,1 (2,0) Dy = |05, 01 (2 + et =7, 8) Dy =[y,01 (3. £) Dy (25)
| iz U (x’t)|DT | mxjvl(w"i'Ctl ot )|DT | ylijl(y’ )|DT7
and
(021 (2 D), = (2 01w+ et P 01D, = 105,010, 0] D, 65 =1, n. (26)
In what follows, we need the following estimates for t/2 <t¢; <t and € (0,1/2]:
(tl—,B o 1—5)01 < (t o )a/2+a(1/2—6)’ (27)
t
dr 1
— )2
t1
11—« 1
P =1 - / T dr<Cn L (t—t) 2" 29
( ﬁ)tl <) (29)
170 178 < Oy (8 — )220 ST (30)

Let us consider the difference
02, ua(z,t) — 02, wi(w,tr) = (02, vi(z+ct' 2, 4) = 02, vi(z+ ety 7. 1))
+ (8%1.%1)1@ + ct%_’B, t) — (‘ﬁixjv (x+ ct%_’B, tl)).

24-a,1+a/2
eCc, (

(31)

Taking into account that vy (y,t) Dr) and using inequality (27), we obtain
< ClQ[ay TR o (tF - tl_ﬁ)a + 013[8;iijl(y7 t)]ng (t —t1)/? (32)
el a/2 el
< (102,01 (0. O)Ch, + 102,01 (s D7) ) (& = 1),
,7=1,...,n, and
a/2 a /2
02,0 ui){5) < Cus (102,010 D](D, + (02,01, )57 ) (33)
We estimate the derivative

1
atul (:1:7 t) = 8t'l)l (‘T + Ctl_ﬁa t) = (1 - /B) t8 Cvgvl (‘T + Ctl_ﬁa t) + 8,5*2)1 (.T + Ct1_57 t*)|t*=t (34)

and its Holder constants.
From (34), we obtain the estimates

1
|8tu1(x, t)| <Cis (tﬁ Z|ayivl(y7 t)‘Dt + |atv1(y7 t)|Dt) (35)
=1



and
Sgtﬁ\@ullng < Cw(Z |0y, 01(y, )| Dy + \f%vl(y,t)\DT), (36)
ts i=1

where Dj = D x (t/2,t). Taking formula (34) into account, we consider the difference
Ay = B (,t) — Qua(w,t1) = (pvi(z + et 2 t)|pemy — Gpva( + ety 7 1) |peey)

+ (Opv1 (= + cti_’B, ) |pr=t — Op=v1(z + cti_ﬁ, ENer=t,)

1 1
+(1=-8)(,, — 5)cVivi(z+ ct' =P t)
N 1 (37)
(T Ten(a+e1,0) ¥ Tun(o + etk 1)

e
b
1 5
iy (Vv (z+ ety P t) Vv (z + et} 7 1)) ::ZAU.
th ;

In view of inequalities (27), (28), (30), and taking into account that g € (0,1/2], and
vi(y,t) € C 2+;’1Jga/2(DT), we have

|A11| < Cls[atvl(y’t)]g(/o%T(t _ )a/2ta(l/2—,8)’

|Arz] < Crolevr(y, OB (¢ — 1)/,

n

1 o
|Ag| < C2ot5+a/2 Z |0y 01(y, 1) D, (t — 1),
Bl < Con Y 108, )0 — )20 2028
.7]. 1
(*5%) a/2 41/2-8
|A1s| < O Z Oy o1y, )], g, (= 11)* "t :
i=1

Applying the established estimates for relation (37),

|Opur(w,t) — Oy ur(w,t1)| < 023([@111(11715)];&2) + [@m(%ﬂ]i%?)

1+o¢
+ Z (tﬁ+a/2 |8yﬂ/1 (yv )|Dt [5ylv1(y, )]E r )>

+ Z tﬁ ‘ yzy] )| +1/2_B) (t - tl)a/27 (38)

i,j=1

we obtain

sup /2 {Dn {52 < Coalo 1) 5 (39)
t

Taking into account formula (34), we consider the difference
Ay = dyur(z,t) — dyur(z,t) = Opwr(x + ct* P t) — vy (2 + et P 1)
1
=(1- ﬁ)tﬁ (chm (x4 ct' P 1) — eVIv (2 + ettt 77, t))

+ (Opvr(z +ct' 7 t%) — Opv1(z +ct' P %)) [y,

t*=t
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which can be estimated as follows:

1 [eVIv(x+ct' =8, t) — Vv (2 + et =P 1)) |

|z — 2|
x [eVToy(z + ct' =P t) — eV Tuy (2 + et =0, )7 + [Bror(y,£)]) )|ac e
< O25< Z | yzy] |Dt Z |ayﬂ)1 y,t |Dt [6tv1(y7 )]( )|$ - Z|a
1,j=1
We apply Young’s inequality,
1 1
|ab] < plalp + qlblq, /p+1/g=1, p>1, (40)

with 1/p =a and 1/g =1 — a. Then

|A2|SC26< <Z‘ y7 ‘Dt—"_z‘ayzvl ya )‘Dt) [8tvl(y7 )]; >|x Z|a (41)

1,j=1
It follows that

sup t9[Oyuy )J, < 027( Z 102, v1(y. )|y + D 18,01 (y. )|y + [am(y,t)]%T). (42)

t<T —
1,7=1 =1
Finally, we estimate the difference
Az = Oy, ur(w,t) — Oy, un (1)
_ 1-8 1-8 1-8 1-8
= (Op,v1(x 4 ct' =P t) = Dpvr(z + ety 7)) 4+ (Opvr(x + ety 7 t) — v (z + ety 7, 1)),
By inequality (29),

n

1—a Ito 1ta
89 < Con( 30 10,0 0lpt' " 4 Dyn 0l ) - ) ()
it
It follows that
1+a 1+a
Zsuptﬁa ul 2 <029< Z | 1(y,t) \DT+Z(9 v1(y,t )]ED )>. (44)

3 1<T Py

Applying estimates (25), (26), (33), (36), (39), (42), (44), and also (23) for the func-
tion v1(y,t), we obtain the following estimate for the norm (4) of the function w;(z,t):

fur] S5 < Colvr (3, 6)] 5 < Caluol 5,

i.e., estimate (12) in Theorem 2.
Let us prove estimate (13) for the function

¢
:/dT/f(&,T)F(:E—&—I—C(tl_’B—Tl_ﬁ),t—T) dg.
0

Rn

After the substitution y = = + ct! =7, it has been written in the form (17),

ws(y— et £) =gy, ¢ /dr Fn—er' =P )T (y—1, t—r)dn, (45)



where 2
fly—ct'P.t) e C & (Dr)
and
|fly — ctl—ﬁ,t)|§§2 < 03\f<m,t>|§§27

see Lemma 2. But then (see [9]), v2(y,t) € C 2+;’1J2a/2(DT) and

24 a
[va(y, DI < Caalf (1)1,
First, we estimate the function vs(y,t) defined by formula (45),

lva(y, t)| < |f(y,t)|prt- (46)
Then

Ay, v(y,t)= dT/(f(n—CTl‘B,T)—f(y—CTl‘B,T))Fyi(y—n,t—T)dn,

R

8yiij(y7 t) = dT/ (f(ﬂ—CTl_’B, T)_f(y_CTl_B7 T))Fyiyj (y—ﬂ, t—T)dﬂ, ,j=1,...,n.

R

/
/

Since f(y —ct' =P t) € C’;"O;/z, we can use the estimate of the kernel I'(z, 1),

22

1
0O (2, )] < Cay

n+2m20+\m\
to obtain
10y, 02(y, )] < Caalf (3, 1)) ¢ 2", (47)
05,02y, 0] < CoslF (. ONih, 772, 65 =10, (48)

Now we set & = y — ct'=? in the formula us(y — ct'=?,t) = wo(y,t). Then ug(z,t) =
va(z + et =P y).

For the function ug(x,t), we obtain the same estimates as for the function u;(x,t) = vi(x +
ct'=P y). We make use of them with taking into account estimates (46)—(48). Then from
formula (35), written for us(x,t), and in view of (47), we have

1 n
Orun(a, )] < Cas (5 D 19,502y, 8)] + 0w (y. 1))

=1

< Oy (3 vaty Ot 57 4 0w, 1)) (19)

i=1
< 038(2 |ayi1)2(y7t)|DT + ‘8t1)2(y,t)‘DT), /8 € (07 1/2]
=1

We estimate the Holder constants of the function wus(x,t). To this end, we write inequal-
ity (38) for the function ug(z,t) with taking into account estimates (47) and (48) of the
derivates Jy,v2(y,t) and 852_%_1)2(3/, t),

(Byuz(2.1) = Oy ua . 1)| < Ca ([O002 (9, )]0, + [Brvaly, DI

1 o Ito (*5%) 1 [e? oo —B+a @
PN VL C200) i ) At P U200 b S A ) [V
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where in the third and fifth summands on the right-hand side of the inequality,
pET B/ L 1/2-8 50 1/2=Pra/2=B _ 2(1/2-)

respectively, 8 € (0,1/2]. This inequality gives the estimate
D)2 < Cao (Jealy, DIGH + 71D, )- (50)
We consider the difference obtained by formula (34),
Ay = dyus(x,t) — Opua(z,t) = Opva(z + ct' P t) — Qpua(z + ct* P t) = Ay + Ap,  (51)
Ap=(1-0) tlﬁ (cvgvg(w +ct' P t) — VT vy (2 + et P, t)),
Ay = (8,5*1)2(3: +ct' B, t*) — Opva(z + et P, t*)> l¢x—¢.
Let us estimate Ay in a different way, not like Ay for the function O:uq(x,t) (see (41)
and (42)). Here we take into account that
Vali=0 = 0,  Op,v2li=0 =0, Ou;a,;V2lt=0 = 0.
The term Ay includes the derivatives 0,,v2(z + ct'P.t), i =1,...,n. Therefore for the sake
of simplicity, we consider the difference of one derivative
As=08p,v2(z+ct? P 1) =0y, v0(x+ct'™,0) =0, v (24t )+ 0, v (z+cttP,0), i=1,...,n.
We have
Op,v2(x+ct™P 1) =0, va(2+ctt P 1)

|As| = | | o |(8xiv2(m + ct! 5, t) — Oy, v2(x + ct' P, 0))
':C —_—
— (0zv2(2 + ctt P t) — O, v9(z + ctt P, 0)) |1_a|a: — z|¢
(Ha) = 14a —« a
< c4l(z| v:0l,) (Buvaly i 3, ) ¢ 50—z

Applying estimate (48) to | 52_ij2|, and then Young’s inequality (40) with 1/p = « and
1/q =1 — a, we obtain
1+a)

Ay < 042ta2/2+1/2_a2/2<[ F 01, + [0y, 020y, )L 2.

For the difference Ay in (51), this gives

)|a: — z|*.

S0l < CallF 1, + 3 a5 )0

For the difference Ayo, we have

Dol < Caalora(y, HIH.

This together with (51) implies that

Brua(2.1) — By (2, 0)] < Css (U DI, + Z Oy ualy DIl 2 )27

i=1
+[0ra(y, >]§,DT)|3: A, Be(1/2)

and
O], < Cis (Joa(w DG + £ D), )- (52)



For the difference
AG = ami’LLQ(l‘, t) - 8%.1@(1‘, tl),
estimate (43) holds with v1(y, t) replaced by va(y,t). After taking into account inequality (48),

103 (T v2(y,t)| < Css [f]g?%T /2 we obtain

1+ 14a

6] < Car (D 102,020, Olpet 2" + 0,000,005, ) (= 1)
j=1

1+ 14a

< Cus (7 DIh, 1220 (9 un(y, 1)) o Y (= 1) '3

It follows that

- ) (1)
S Onus]! 2 «meym+Z%M%mm) (53)
i=1
Collecting estimates (25), (26), (33) with wy(x,t) and wvy(y,t) replaced by ws(z,t) and
va(y,t), and also (49), (50), (52), (53), we establish estimate (13): |u2| (21a) o C’3|f|5§2. This

B,Dr
completes the proof of Theorem 2. O

Proof of Theorem 1. The proof of the theorem is as that of Theorem 2. We consider the
functions uq(x,t) and ug(x,t), defined by formulas (8) and (9), respectively. For the sake of
convenience, set

bi .
d(t) — (Cltl_ﬁl,,..,Cntl—Bn), C; = 1_/827 2:1,”‘,7'1“
In formulas (8) and (9), we change the variable
r=y+ (cltl_ﬁ1 ... cntl_ﬁn) = +d(t).

Changing the integration variable in (9), n = & + d(7), we get

0= [ w(OL(y - &0)d = wr(y.) (54)
Ry,
usly — d(t),£) = /dr/f 0= d(r), P)D(y — nt — Py = wa(y, 1), (55)
where according to Lemma 2 with ,8 = max(f1,...,0n),

fly —d(t),t) € C 2 (Dr)

and [f1]%S) < Cs) £ (y, 0)[%5)
From formulas (54) and (55), it follows that

wily,t) € C XDy, i=1,2,
see [9], and
Be”) < Cooluoly ™, Jwalipr® < Caal fly, )15, (56)
We return to the variable x, and set y = x 4+ d(t) in formulas (54) and (55). Then
uj(z,t) = w;(x +d(t),t), j=1,2.

w1
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For the function uq(z,t), estimates (25) and (26) hold. We consider difference (31) with vy
replaced by wy, and apply estimates (32):

|8§imjul(33, t) — 8931-%”1(5137 t1)]
= |07, wi(z +d(t),t) — 87, wi(z +d(tr), t1)]
‘ ( - 51 ,Cntl_ﬁn),t)—82 w1(33+(01t1 51’... Cntl ,8”)’ ))

+ (8§.x.w1(az +d(t1),t) — 02, wi(x + d(tl),tl))‘

<<%2§j g 1D, (10 — 7P 1[92 wi (y, ]2 (t — )/

Taking into account estimate (27), (t'=7 — ti_ﬁ)o‘ < (t — 1)/ 2He2=P) for t/2<t; <t,
B € (0,1/2], we obtain
(tl_ﬁk - ti_ﬁk)a < (t - tl)a/2+a(1/2_ﬁk)7 ﬁk’ S (07 1/2]7 k= 17 RN
and
/2 « a/2
02, uali P2 < Cisa (1020, w1 (0, ), + 02,0, wn (5, D)D),
We estimate the derivative
6t’LL1 (l‘v t) = 8{[1)1 (':L‘ + (Clt1_617 e 7Cnt1_ﬁn)7 t)
—Z( 5Z)8w( d(t d d(t), t*
= o Oawi(z +d(t),t) + Opwr(z +d(t), 7)o~
i=1
in the following way:
1
|Opua (z, ) < Csa > 1,105 01(y, V)| Dy + C55|0wi (y, 8) Dy
i=1
It follows that

Supt5|5tu1|pf < O56(Z|aylw1 Y )| Dy + 0w (y, )|DT)
=1

where 8 = max(f31,...,53,) and D; = D x (t/2,t).
All the other estimates for the functions

uj(z,t) = wj(x + (cltl S cntl ’B"), t), j=1,2,
are established in a similar way. As a result, we have
2 (2 2 (2
furl§ ) < Csthon(y, 0155, lual5f™ < Coslua(y, D57
By inequalities (56) for the functions w;(y,t), j = 1,2, we obtain estimates (5) and (6):
(2 2
furlpy’ < Caluolpy ™™, Juzl ) < Col ).

Theorem 1 is proved. U
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