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A SOLUTION TO THE CAUCHY PROBLEM FOR
PARABOLIC EQUATION WITH SINGULAR
COEFFICIENTS

G. I. Bizhanova∗ UDC 517.95

The Cauchy problem for the second order parabolic equation with singular coefficients with respect
to t at the first order spatial derivatives, is considered. A solution to this problem is constructed
in explicit form. To this purpose a weighted Hölder space with positive power of t as the weight,
is defined. The existence, uniqueness, and estimates of the solution are proved. Bibliography: 9
titles.

Dedicated to the 85th jubilee of V. A. Solonnikov

The paper is devoted to study the Cauchy problem for a parabolic equation with coefficients
singular in t at the first derivatives with respect to spatial variables. To such a problem, the
problems for parabolic equations in domains with moving or free (unknown) boundaries are
reduced when the required smoothness of the solutions is higher than the smoothness of the
boundary of the domain.

Consider, for example, a one-dimensional problem in the domain Ω(t) := {x : btγ < x < ∞},
0 < γ < 1, b > 0,

∂tu− a∂2
xu = f(x, t) in Ω(t), 0 < t < T,

u
∣
∣
t=0

= u0(x) in Ω(0), u
∣
∣
x=btγ

= ϕ(t), 0 < t < T.

After change of the variable y = x − btγ , t = t1, the problem reduces to a problem with
unknown function u(y + btγ1 , t1) =: v(y, t1) in the domain (0,∞),

∂t1v − a∂2
yv − bγ

1

t1−γ
1

∂yv = f(y − bt1−γ
1 , t1), y ∈ (0,∞), t1 ∈ (0, T ),

v
∣
∣
t1=0

= u0(y), y ∈ (0,∞), v
∣
∣
y=0

= ϕ(t1), t1 ∈ (0, T ),

where 1− γ ∈ (0, 1).
We see that boundary-value problems in noncylindrical domains are reduced to problems

for parabolic equations with coefficients singular in t at the first derivatives with respect to
spatial variables. A study the problems for smooth functions in noncylindrical domains with
moving boundaries whose smoothness is less than the smoothness of solutions was started by
M. Gevrey [1]. L. I. Kamynin obtained results on the solvability of one-dimensional boundary-
value problems in domains with boundary satisfying the Gevrey condition [2, 3]. In papers
by E. A. Baderko [4–6], the studies of one-dimensional and multidimensional boundary-value
problems were continued in domains with boundaries of less smoothness as compared with
the smoothness of the solution in Hölder spaces. It should be noted that all the studies in
the indicated papers [1–6] were carried out by methods of theory of heat potentials and by
reducing the problems to the Volterra integral equations of the second kind.

In [7], V. P. Mikhailov proved that if the boundary of the domain is given by the equation
x = −√

t ln t, t ∈ (0, 1), then the solution to a parabolic equation with such a boundary
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is not unique. In this case, after change of the variable y = x +
√
t ln t, the heat equation

∂tu− a∂2
xu = 0, x ∈ (−√

t ln t,∞) takes the form

∂tv − a∂2
yv +

( 1

2
√
t
ln t+

1√
t

)

∂yv = 0, y ∈ (0,∞).

In the present paper, we prove that the Cauchy problem (1), (2) has a unique solution in
the weighted Hölder space, and also βi ∈ (0, 1/2], i = 1, . . . , n in equation (1). For this, the
solution of the problem is constructed in explicit form. Then Theorem 2 is established for the
problem (1), (2) with β1 = . . . = βn = β; this enables us to prove Theorem 1.

Set D := R
n, n ≥ 1, DT := D × (0, T ), x = (x1, . . . , xn).

In what follows, C1, C2, . . . are positive constants.
We consider the Cauchy problem for a parabolic equation the coefficients of which are

singular with respect to t at the first derivatives with respect to spatial variables,

∂tu− aΔu−
n∑

i=1

bi
tβi

∂xiu = f(x, t) in DT , (1)

u|t=0 = u0(x) in D, (2)

where a, b1, . . . , bn are constant coefficients, a > 0, and βi ∈ (0, 1/2], i = 1, . . . , n.
In the one-dimensional case, hereinafter we have an equation in the form

∂tu− a∂2
xu− b

tβ
∂xu = f(x, t).

The problem (1), (2) is studied in the classical and weighted Hölder spaces C
l, l/2
x t (ΩT ) and

C 2+α
β (ΩT ), where l is a nonintegral positive number, α ∈ (0, 1), β > 0, ΩT = Ω× (0, T ), and

Ω ⊂ R
n, n ≥ 1.

The norms |u|(l)ΩT
and |u|(2+α)

β,ΩT
in these spaces are defined by

|u|(l)ΩT
=

[l]
∑

2m0+|m|=0

|∂m0
t ∂m

x u|ΩT
+

∑

2m0+|m|=[l]

(

[∂m0
t ∂m

x u]
(α)
x,ΩT

+ [∂m0
t ∂m

x u]
(α/2)
t,ΩT

)

+

⎧

⎨

⎩

∑

2m0+|m|=[l]−1

[∂m0
t ∂m

x u]
( 1+α

2
)

t,ΩT
, [l] ≥ 1,

0, [l] = 0,

(3)

where α = l− [l] ∈ (0, 1), m = (m1, . . . ,mn), the mi are nonnegative numbers, i = 0, 1, . . . , n,
|m| = m1 + . . .+mn,

|v|ΩT
= max

(x,t)∈ΩT

| v|, [v]
(α)
x,ΩT

= max
(x,t),(z,t)∈ΩT

∣
∣v(x, t)− v(z, t)

∣
∣

|x− z|α ,

[v]
(α)
t,ΩT

= max
(x,t),(x,t1)∈ΩT

∣
∣v(x, t) − v(x, t1)

∣
∣

|t− t1|α ,

and

|u|(2+α)
β,ΩT

=
2∑

|m|=0

|Dm
x u|ΩT

+ sup
t≤T

tβ|∂tu|Ω′
t
+

∑

|m|=2

(

[Dm
x u]

(α)
x,ΩT

+ [Dm
x u]

(α/2)
t,ΩT

)

+ sup
t≤T

tβ[Dtu]
(α)
x,Ω′

t
+ sup

t≤T
tβ+α/2[∂tu]

(α/2)
t,Ω′

t
+

∑

|m|=1

sup
t≤T

tβ[Dm
x u]

( 1+α
2

)

Ω′
t

,

(4)

where Ω′
t = Ω× (t/2, t).
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Now we state the main result of the paper.

Theorem 1. Let βi ∈ (0, 1/2], i = 1, . . . , n, β = max(β1, . . . , βn), and α ∈ (0, 1). Then for
any functions

u0(x) ∈ C2+α(D), f(x, t) ∈ C
α, α/2
x t (DT ),

the problem (1), (2) has a unique solution

u(x, t) = u1(x, t) + u2(x, t)

such that u1(x, t) ∈ C 2+α
β (DT ), u2(x, t) ∈ C

2+α,1+α/2
x t (DT ), and the following estimates hold:

|u1|(2+α)
β,DT

≤ C1|u0|(2+α)
D , (5)

|u2|(2+α)
DT

≤ C2|f |(α)DT
, (6)

where u1 and u2 are solutions to the problem (1), (2) with f(x, t) = 0, and u0(x) = 0,
respectively.

Remark 1. In Theorem 1, u2(x, t) belongs to the classical Hölder space C
2+α,1+α/2
x t (DT ).

This is because in contrast to u1(x, t), we have u2|t=0 = 0, ∂xiu2|t=0 = 0, ∂2
xixj

u2|t=0 = 0,
i, j = 1, . . . , n.

We find a solution to the problem (1), (2) explicitly.

Lemma 1. Let βi ∈ (0, 1), i = 1, . . . , n. The solution to the problem (1), (2) is of the form

u(x, t) = u1(x, t) + u2(x, t), (7)

u1(x, t) =

∫

Rn

u0(ξ)Γ(x− ξ + (c1t
1−β1 , . . . , cnt

1−βn), t) dξ, (8)

u2(x, t) =

t∫

0

dτ

∫

Rn

f(ξ, τ)Γ(x−ξ+(c1(t
1−β1−τ1−β1), . . . , cn(t

1−βn−τ1−βn)), t) dξ, (9)

where ci =
bi

1−βi
, i = 1, . . . , n, and

Γ(x, t) =
1

(2
√
aπt)n

e−
x2

4at

is a fundamental solution to the heat equation ∂tu− aΔu = 0.

Proof. We apply the integral Fourier transform with respect to x = (x1, . . . , xn) to the prob-
lem (1), (2), see [8]:

F [u] = ũ(s, t) =

∫

Rn

u(x, t)e−ixsdx, s = (s1, . . . , sn).

Then we get the Cauchy problem for the ordinary differential equation

ũ ′ +
(

as2 − i

n∑

i=1

bit
1−βi

)

ũ = f̃(s, t), t > 0, ũ|t=0 = ũ0(s). (10)

A solution to the problem (10) has the form

ũ(s, t) = ũ0(s)e
−as2t+i

n∑

k=1

bk
1−βk

t1−βk sk
+

t∫

0

f(s, τ)e−as2(t−τ)e
i

n∑

k=1

bk
1−βk

(t1−βk−τ1−βk )sk
dτ.
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After applying the inverse Fourier transform formulas to ũ,

F−1[e−as2t] =
1

(2
√
aπt)n

e−
x2

4at = Γ(x, t),

F−1[f̃(s)eids] = f(x+ d), f(x) = F−1[f̃(s)], d = (d1, . . . , dn),

we obtain a solution to the problem (1), (2) in the form (7)–(9).
Substituting functions (8), (9) into equation (1) and condition (2), we see that formula (7)

gives a solution to the problem (1), (2). �

To prove Theorem 1, we first consider the problem

∂tu− aΔu− c

tβ
∇Tu = f(x, t) in DT ,

u|t=0 = u0(x) in D,
(11)

where c = (c1, . . . , cn), and ∇T =: (∂x1 , . . . , ∂xn) is a column vector.

Theorem 2. Let β ∈ (0, 1/2] and α ∈ (0, 1). Then for any functions

u0(x) ∈ C2+α(D), f(x, t) ∈ C
α, α/2
x t (DT ),

problem (11) has a unique solution

u(x, t) = u1(x, t) + u2(x, t)

such that

u1(x, t) ∈ C 2+α
β (DT ), u2(x, t) ∈ C

2+α,1+α/2
x t (DT ),

and the following estimates hold:

|u1|(2+α)
β,DT

≤ C3|u0|(2+α)
D , (12)

|u2|(2+α)
DT

≤ C4|f |(α)DT
. (13)

Set βi = β, i = 1, . . . , n, in formulas (8) and (9). Then we obtain a solution to problem (11),

u(x, t) = u1(x, t) + u2(x, t),

u1(x, t) =

∫

Rn

u0(ξ)Γ(x− ξ + ct1−β , t) dξ, (14)

u2(x, t) =

t∫

0

dτ

∫

Rn

f(ξ, τ)Γ(x− ξ + c(t1−β − τ1−β), t) dξ. (15)

In formulas (14) and (15), we apply the substitution

y = x+ ct1−β.

Then

u1(y − ct1−β, t) =

∫

Rn

u0(ξ)Γ(y − ξ, t) dξ =: v1(y, t), (16)
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u2(y − ct1−β , t) =

t∫

0

dτ

∫

Rn

f(ξ, τ)Γ(y − ξ − cτ1−β , t− τ) dξ

=

t∫

0

dτ

∫

Rn

f(η − cτ1−β , τ)Γ(y − η, t− τ)dη =: v2(y, t);

(17)

in integral (17), we have also changed the integration variable η = ξ + cτ1−β and got the
function f(η − cτ1−β , τ).

Lemma 2. Let β ∈ (0, 1/2] and f(x, t) ∈ C
α,α/2
x t (DT ). Then f(y − ct1−β, t) =: f1(y, t) ∈

C
α,α/2
y t (DT ) and

|f1|(α)DT
≤ C5|f(y, t)|(α)DT

. (18)

Proof. The norm of the function f1(y, t) in C
α,α/2
y t(DT ) is defined by formula (3),

|f1|(α)DT
:= |f1|DT

+ [f1]
(α)
y,DT

+ [f1]
(α/2)
t,DT

. (19)

Obviously,

|f1|DT
= |f(y − ct1−β , t)|DT

= |f(y, t)|DT
, (20)

|f1(y, t)− f1(ξ, t)| = |f(y − ct1−β , t)− f(ξ − ct1−β ,t)| ≤ [f(y, t)]
(α)
y,DT

|y − ξ|α,
and

[f1]
(α)
y,DT

≤ [f(y, t)]
(α)
y,DT

. (21)

We estimate the difference

|Δ|= ∣
∣f1(y, t)−f1(y, t1)

∣
∣≤ ∣

∣f(y−ct1−β , t)−f(y−ct1−β1 , t)
∣
∣+

∣
∣f(y−ct1−β1 , t)−f(y−ct1−β1 , t1)

∣
∣.

Let t1 < t. Then

|Δ| ≤ C6

(

[f(y, t)]
(α)
y,DT

(t1−β − t1−β
1 )α + [f(y, t)]

(α/2)
t,DT

(t− t1)
α/2

)

.

Since

(t1−β − t1−β
1 )α ≤ C7(t− t1)

α(1−β) ≤ C7(t− t1)
α/2 tα(1/2−β),

we have

|Δ| = |f1(y, t)− f1(y, t1)| ≤ C8

(

[f(y, t)]
(α)
y,DT

+ [f(y, t)]
(α/2)
t,DT

)

(t− t1)
α/2

and

[f1]
(α/2)
t,DT

≤ C8

(

[f(y, t)]
(α)
y,DT

+ [f(y, t)]
(α/2)
t,DT

)

. (22)

Applying relations (20)–(22) in formula (19), we get estimate (18) which proves Lemma 2. �

Proof of Theorem 2. By direct estimates of potentials (14) and (15), one can prove the theorem
as in [9]. But we use another way.

We have presented a solution to problem (11) in form (16), (17).
Let us consider the function v1(y, t) which is the potential (16). It is easily seen that v1(y, t)

is a solution to the Cauchy problem

∂tv1 − aΔyv1 = 0 in DT , v1|t=0 = u0(y) in D.

But then v1(y, t) ∈ C
2+α,1+α/2
y t (DT ) (see [9]) and

|v1(y, t)|(2+α)
DT

≤ C9|u0|(2+α)
D . (23)
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After the substitution y = x+ ct1−β in formula (14), we put

u1(y − ct1−β , t) = v1(y, t). (24)

Relation (24) can be written in the form

u1(x, t) = v1(x+ ct1−β, t).

It is easily seen that

|u1(x, t)|DT
= |v1(x+ ct1−β, t)|DT

= |v1(y, t)|DT
,

|∂xiu1(x, t)|DT
= |∂xiv1(x+ ct1−β, t)|DT

= |∂yiv1(y, t)|DT
,

|∂2
xixj

u1(x, t)|DT
= |∂2

xixj
v1(x+ ct1−β , t)|DT

= |∂2
yiyjv1(y, t)|DT

,

(25)

and

[∂2
xixj

u1(x, t)]
(α)
x,DT

= [∂2
xixj

v1(x+ ct1−β, t)]
(α)
x,DT

= [∂2
yiyjv1(y, t)]

(α)
y,DT

, i, j = 1, . . . , n. (26)

In what follows, we need the following estimates for t/2 ≤ t1 < t and β ∈ (0, 1/2]:

(t1−β − t1−β
1 )α ≤ (t− t1)

α/2+α(1/2−β), (27)

1

tβ1
− 1

tβ
= β

t∫

t1

dτ

τ1+β
= β

t∫

t1

dτ

τ1−α/2 τα/2+β
≤ C10

1

tβ+α/2
(t− t1)

α/2, (28)

t1−β − t1−β
1 = (1− β)

t∫

t1

τ
1−α
2

τβ+
1−α
2

dτ ≤ C11
1

tβ
(t− t1)

1+α
2 t

1−α
2 , (29)

t1−β − t1−β
1 ≤ C11(t− t1)

α/2 t1/2−β+ 1−α
2 . (30)

Let us consider the difference

∂2
xixj

u1(x, t)− ∂2
xixj

u1(x, t1) =
(

∂2
xixj

v1(x+ ct1−β , t)− ∂2
xixj

v1(x+ ct1−β
1 , t)

)

+
(

∂2
xixj

v1(x+ ct1−β
1 , t)− ∂2

xixj
v1(x+ ct1−β

1 , t1)
)

.
(31)

Taking into account that v1(y, t) ∈ C
2+α,1+α/2

y t (DT ) and using inequality (27), we obtain

|∂2
xixj

u1(x, t) − ∂2
xixj

u1(x, t1)|
≤ C12[∂

2
yiyjv1(y, t)]

α
y,DT

(t1−β − t1−β
1 )α +C13[∂

2
yiyjv1(y, t)]

α/2
t,DT

(t− t1)
α/2

≤ C14

(

[∂2
yiyjv1(y, t)]

(α)
y,DT

+ [∂2
yiyjv1(y, t)]

(α/2)
t,DT

)

(t− t1)
α/2,

(32)

i, j = 1, . . . , n, and

[∂2
xixj

u1]
(α/2)
t,DT

≤ C15

(

[∂2
yiyjv1(y, t)]

(α)
y,DT

+ [∂2
yiyjv1(y, t)]

(α/2)
t,DT

)

. (33)

We estimate the derivative

∂tu1(x, t) = ∂tv1(x+ ct1−β, t) = (1− β)
1

tβ
c∇T

x v1(x+ ct1−β , t) + ∂t∗v1(x+ ct1−β, t∗)|t∗=t (34)

and its Hölder constants.
From (34), we obtain the estimates

|∂tu1(x, t)|≤C16

( 1

tβ

n∑

i=1

|∂yiv1(y, t)|Dt + |∂tv1(y, t)|Dt

)

(35)
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and

sup
t≤T

tβ|∂tu1|D′
t
≤ C17

( n∑

i=1

|∂yiv1(y, t)|DT
+ |∂tv1(y, t)|DT

)

, (36)

where D′
t = D × (t/2, t). Taking formula (34) into account, we consider the difference

Δ1 := ∂tu1(x, t)− ∂tu1(x, t1) =
(

∂t∗v1(x+ ct1−β , t∗)|t∗=t − ∂t∗v1(x+ ct1−β
1 , t∗)|t∗=t

)

+
(

∂t∗v1(x+ ct1−β
1 , t∗))|t∗=t − ∂t∗v1(x+ ct1−β

1 , t∗))|t∗=t1

)

+ (1− β)
( 1

tβ
− 1

tβ1

)

c∇T
x v1(x+ ct1−β , t)

+
1

tβ1

(

c∇T
x v1(x+ ct1−β , t)− c∇T

x v1(x+ ct1−β
1 , t)

)

+
1

tβ1

(

c∇T
x v1(x+ ct1−β

1 , t)−c∇T
x v1(x+ ct1−β

1 , t1)
)

=:

5∑

i=1

Δ1i.

(37)

In view of inequalities (27), (28), (30), and taking into account that β ∈ (0, 1/2], and

v1(y, t) ∈ C
2+α,1+α/2

y t (DT ), we have

|Δ11| ≤ C18[∂tv1(y, t)]
(α)
y,DT

(t− t1)
α/2tα(1/2−β),

|Δ12| ≤ C19[∂tv1(y, t)]
(α/2)
t,DT

(t− t1)
α/2,

|Δ13| ≤ C20
1

tβ+α/2

n∑

i=1

|∂yiv1(y, t)|Dt(t− t1)
α/2,

|Δ14| ≤ C21

n∑

i,j=1

1

tβ
|∂2

yiyjv1(y, t)|(t − t1)
α/2 t

1−α
2

+(1/2−β)

|Δ15| ≤ C22

n∑

i=1

[∂yiv1(y, t)]
( 1+α

2
)

t,DT
(t− t1)

α/2 t1/2−β .

Applying the established estimates for relation (37),

|∂tu1(x, t)− ∂t1u1(x, t1)| ≤ C23

(

[∂tv1(y, t)]
(α)
y,DT

+ [∂tv1(y, t)]
(α/2)
t,DT

)

+
n∑

i=1

( 1

tβ+α/2
|∂yiv1(y, t)|Dt + [∂yiv1(y, t)]

( 1+α
2

)

t,DT

)

+
n∑

i,j=1

1

tβ
|∂2

yiyjv1(y, t)|t
1−α
2

+1/2−β
)

(t− t1)
α/2, (38)

we obtain

sup
t≤T

tβ+α/2[∂tu1]
(α/2)
t,D′

t
≤ C24|v1(y, t)|(2+α)

DT
. (39)

Taking into account formula (34), we consider the difference

Δ2 = ∂tu1(x, t)− ∂tu1(z, t) = ∂tv1(x+ ct1−β , t)− ∂tv1(z + ct1−β , t)

= (1− β)
1

tβ
(

c∇T
x v1(x+ ct1−β , t)− c∇T

z v1(z + ct1−β, t)
)

+
(

∂t∗v1(x+ ct1−β , t∗)
∣
∣
t∗=t

− ∂t∗v1(z + ct1−β , t∗)
)|t∗=t1 ,
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which can be estimated as follows:

|Δ2| ≤
(

(1− β)
1

tβ
|c∇T

x v1(x+ ct1−β , t)− c∇T
z v1(z + ct1−β, t))|α

|x− z|α
× ∣

∣c∇T
x v1(x+ ct1−β , t)− c∇T

z v1(z + ct1−β, t)
∣
∣1−α

+ [∂tv1(y, t)]
(α)
y,DT

)

|x− z|α

≤ C25

( 1

tβ
(

n∑

i,j=1

|∂2
yiyjv1(y, t)|Dt

)α(
n∑

i=1

|∂yiv1(y, t)|Dt

)1−α
+ [∂tv1(y, t)]

(α)
y,DT

)

|x− z|α.

We apply Young’s inequality,

|ab| ≤ 1

p
|a|p + 1

q
|b|q, 1/p + 1/q = 1, p > 1, (40)

with 1/p = α and 1/q = 1− α. Then

|Δ2|≤C26

(
1

tβ

( n∑

i,j=1

|∂2
yiyjv1(y, t)|Dt+

n∑

i=1

|∂yiv1(y, t)|Dt

)

+[∂tv1(y, t)]
(α)
y,DT

)

|x−z|α. (41)

It follows that

sup
t≤T

tβ[∂tu1]
(α)
x,D′

t
≤ C27

( n∑

i,j=1

|∂2
yiyjv1(y, t)|DT

+
n∑

i=1

|∂yiv1(y, t)|DT
+ [∂tv1(y, t)]

(α)
y,DT

)

. (42)

Finally, we estimate the difference

Δ3 = ∂xiu1(x, t)− ∂xiu1(x, t1)

=
(

∂xiv1(x+ ct1−β , t)− ∂xiv1(x+ ct1−β
1 , t)

)

+
(

∂xiv1(x+ ct1−β
1 , t)− ∂xiv1(x+ ct1−β

1 , t1)
)

.

By inequality (29),

|Δ3| ≤ C28

( n∑

i,j=1

1

tβ
|∂2

yiyjv1(y, t)|Dt t
1−α
2 + [∂yiv1(y, t)]

( 1+α
2

)

t,Dt

)

(t− t1)
1+α
2 . (43)

It follows that
n∑

i=1

sup
t≤T

tβ[∂xiu1]
( 1+α

2
)

DT
≤ C29

( n∑

i,j=1

|∂2
yiyjv1(y, t)|DT

+
n∑

i=1

[∂yiv1(y, t)]
( 1+α

2
)

t,DT

)

. (44)

Applying estimates (25), (26), (33), (36), (39), (42), (44), and also (23) for the func-
tion v1(y, t), we obtain the following estimate for the norm (4) of the function u1(x, t):

|u1|(2+α)
β,DT

≤ C30|v1(y, t)|(2+α)
DT

≤ C31|u0|(2+α)
DT

,

i.e., estimate (12) in Theorem 2.
Let us prove estimate (13) for the function

u2(x, t) =

t∫

0

dτ

∫

Rn

f(ξ, τ)Γ(x− ξ + c(t1−β − τ1−β), t− τ) dξ.

After the substitution y = x+ ct1−β , it has been written in the form (17),

u2(y−ct1−β , t)=:v2(y, t)=

t∫

0

dτ

∫

Rn

f(η−cτ1−β , τ)Γ(y−η, t−τ)dη, (45)
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where
f(y − ct1−β, t) ∈ C

α,α/2
y t (DT )

and
|f(y − ct1−β, t)|(α)DT

≤ C3|f(x, t)|(α)DT
,

see Lemma 2. But then (see [9]), v2(y, t) ∈ C
2+α,1+α/2

y t (DT ) and

|v2(y, t)|(2+α)
DT

≤ C32|f(y, t)|(α)DT
.

First, we estimate the function v2(y, t) defined by formula (45),

|v2(y, t)| ≤ |f(y, t)|DT
t. (46)

Then

∂yiv(y, t)=

t∫

0

dτ

∫

Rn

(

f(η−cτ1−β, τ)−f(y−cτ1−β, τ)
)

Γyi(y−η, t−τ)dη,

∂yiyjv(y, t)=

t∫

0

dτ

∫

Rn

(

f(η−cτ1−β, τ)−f(y−cτ1−β, τ)
)

Γyiyj (y−η, t−τ)dη, i, j=1, . . . , n.

Since f(y − ct1−β , t) ∈ C
α,α/2
y t , we can use the estimate of the kernel Γ(x, t),

|∂m0
t ∂m

x Γ(x, t)| ≤ C33
1

t
n+2m0+|m|

2

e−
x2

8at

to obtain

|∂yiv2(y, t)| ≤ C34[f(y, t)]
(α)
y,DT

t
1+α
2 , (47)

|∂2
yiyjv2(y, t)| ≤ C35[f(y, t)]

(α)
y,DT

tα/2, i, j = 1, . . . , n. (48)

Now we set x = y − ct1−β in the formula u2(y − ct1−β, t) = v2(y, t). Then u2(x, t) =
v2(x+ ct1−β, y).

For the function u2(x, t), we obtain the same estimates as for the function u1(x, t) = v1(x+
ct1−β, y). We make use of them with taking into account estimates (46)–(48). Then from
formula (35), written for u2(x, t), and in view of (47), we have

|∂tu2(x, t)| ≤ C36

( 1

tβ

n∑

i=1

|∂yiv2(y, t)| + |∂tv2(y, t)|
)

≤ C37

( n∑

i=1

|∂yiv2(y, t)|t
1+α
2

−β + |∂tv2(y, t)|
)

≤ C38

( n∑

i=1

|∂yiv2(y, t)|DT
+ |∂tv2(y, t)|DT

)

, β ∈ (0, 1/2].

(49)

We estimate the Hölder constants of the function u2(x, t). To this end, we write inequal-
ity (38) for the function u2(x, t) with taking into account estimates (47) and (48) of the
derivates ∂yiv2(y, t) and ∂2

yiyjv2(y, t),

|∂tu2(x, t) − ∂t1u2(x, t1)| ≤ C39

(

[∂tv2(y, t)]
(α)
y,DT

+ [∂tv2(y, t)]
(α/2)
t,Dt

+
1

tβ+α/2
[f(y, t)]

(α)
y,DT

t
1+α
2 + [∂yiv2(y, t)]

( 1+α
2

)

t,DT
+

1

tβ
[f(y, t)]

(α)
y,DT

t
1−α
2

+1/2−β+α/2
)

(t− t1)
α/2,
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where in the third and fifth summands on the right-hand side of the inequality,

t
1+α
2

−β−α/2 = t1/2−β , t
1−α
2

+1/2−β+α/2−β = t2(1/2−β),

respectively, β ∈ (0, 1/2]. This inequality gives the estimate

[∂tu2]
(α/2)
t,DT

≤ C40

(

|v2(y, t)|(2+α)
DT

+ [f ]
(α)
x,DT

)

. (50)

We consider the difference obtained by formula (34),

Δ4 = ∂tu2(x, t) − ∂tu2(z, t) = ∂tv2(x+ ct1−β , t)− ∂tv2(z + ct1−β , t) = Δ41 +Δ42, (51)

Δ41 = (1− β)
1

tβ

(

c∇T
x v2(x+ ct1−β , t)− c∇T

z v2(z + ct1−β, t)
)

,

Δ42 =
(

∂t∗v2(x+ ct1−β, t∗)− ∂t∗v2(z + ct1−β , t∗)
)

|t∗=t.

Let us estimate Δ41 in a different way, not like Δ2 for the function ∂tu1(x, t) (see (41)
and (42)). Here we take into account that

v2|t=0 = 0, ∂xiv2|t=0 = 0, ∂xixjv2|t=0 = 0.

The term Δ41 includes the derivatives ∂xiv2(x+ ct1−β, t), i = 1, . . . , n. Therefore for the sake
of simplicity, we consider the difference of one derivative

Δ5=∂xiv2(x+ct1−β , t)−∂xiv2(x+ct1−β , 0)−∂ziv2(z+ct1−β , t)+∂ziv2(z+ct1−β , 0), i=1, . . . , n.

We have

|Δ5| = |∂xiv2(x+ct1−β , t)−∂ziv2(z+ct1−β , t)|α
|x− z|α

∣
∣
(

∂xiv2(x+ ct1−β, t)− ∂xiv2(x+ ct1−β , 0)
)

− (

∂ziv2(z + ct1−β, t)− ∂ziv2(z + ct1−β , 0)
)∣
∣1−α|x− z|α

≤ C41

( n∑

j=1

|∂2
yiyjv2(y, t)|Dt

)α(

[∂yiv2(y, t)]
( 1+α

2
)

t,DT

)1−α
t
1+α
2

(1−α)|x−z|α.

Applying estimate (48) to |∂2
yiyjv2|, and then Young’s inequality (40) with 1/p = α and

1/q = 1− α, we obtain

|Δ5| ≤ C42t
α2/2+1/2−α2/2

(

[f(y, t)]
(α)
y,DT

+ [∂yiv2(y, t)]
( 1+α

2
)

t,DT

)

|x− z|α.
For the difference Δ41 in (51), this gives

|Δ41| ≤ C43

(

[f(y, t)]
(α)
y,DT

+
n∑

i=1

[∂yiv2(y, t)]
( 1+α

2
)

t,DT

)

t1/2−β .

For the difference Δ42, we have

|Δ42| ≤ C44[∂tv2(y, t)]
(α/2)
y,DT

.

This together with (51) implies that

|∂tu2(x, t)− ∂tu2(z, t)| ≤ C45

((

[f(y, t)]
(α)
y,DT

+
n∑

i=1

[∂yiv2(y, t)]
( 1+α

2
)

t,DT

)

t1/2−β

+[∂tv2(y, t)]
(α)
y,DT

)

|x− z|α, β ∈ (0, 1/2],

and

[∂tu2]
(α)
x,DT

≤ C46

(

|v2(y, t)|(2+α)
DT

+ [f(y, t)]
(α)
y,DT

)

. (52)
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For the difference

Δ6 = ∂xiu2(x, t)− ∂xiu2(x, t1),

estimate (43) holds with v1(y, t) replaced by v2(y, t). After taking into account inequality (48),

|∂2
yiyjv2(y, t)| ≤ C35[f ]

(α)
y,DT

tα/2, we obtain

|Δ6| ≤ C47

( n∑

j=1

|∂2
yiyjv2(y, t)|Dtt

1−α
2

−β + [∂yiv2(y, t)]
( 1+α

2
)

t,DT

)

(t− t1)
1+α
2

≤ C48

(

[f(y, t)]
(α)
y,DT

tα/2−α/2+(1/2−β) + [∂yiv2(y, t)]
( 1+α

2
)

t,DT

)

(t− t1)
1+α
2 .

It follows that
n∑

i=1

[∂xiu2]
( 1+α

2
)

t,DT
≤ C49

(

[f(y, t)]
(α)
y,DT

+
n∑

i=1

[∂yiv2(y, t)]
( 1+α

2
)

t,DT

)

. (53)

Collecting estimates (25), (26), (33) with u1(x, t) and v1(y, t) replaced by u2(x, t) and

v2(y, t), and also (49), (50), (52), (53), we establish estimate (13): |u2|(2+α)
β,DT

≤ C3|f |(α)DT
. This

completes the proof of Theorem 2. �

Proof of Theorem 1. The proof of the theorem is as that of Theorem 2. We consider the
functions u1(x, t) and u2(x, t), defined by formulas (8) and (9), respectively. For the sake of
convenience, set

d(t) = (c1t
1−β1 , . . . , cnt

1−βn), ci =
bi

1− βi
, i = 1, . . . , n.

In formulas (8) and (9), we change the variable

x = y + (c1t
1−β1 , . . . , cnt

1−βn) ≡ x+ d(t).

Changing the integration variable in (9), η = ξ + d(τ), we get

u1(y − d(t), t) =

∫

Rn

u0(ξ)Γ(y − ξ, t) dξ =: w1(y, t), (54)

u2(y − d(t), t) =

t∫

0

dτ

∫

Rn

f(η − d(τ), τ)Γ(y − η, t− τ)dη =: w2(y, t), (55)

where according to Lemma 2 with β = max(β1, . . . , βn),

f(y − d(t), t) ∈ C
α,α/2
y t (DT )

and |f1|(α)DT
≤ C5|f(y, t)|(α)DT

.

From formulas (54) and (55), it follows that

wi(y, t) ∈ C
2+α,1+α/2
y t (DT ), i = 1, 2,

see [9], and

|w1|(2+α)
DT

≤ C50|u0|(2+α)
D , |w2|(2+α)

DT
≤ C51|f(y, t)|(α)DT

. (56)

We return to the variable x, and set y = x+ d(t) in formulas (54) and (55). Then

uj(x, t) = wj(x+ d(t), t), j = 1, 2.
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For the function u1(x, t), estimates (25) and (26) hold. We consider difference (31) with v1
replaced by w1, and apply estimates (32):

|∂2
xixj

u1(x, t)− ∂2
xixj

u1(x, t1)|
= |∂2

xixj
w1(x+ d(t), t)− ∂2

xixj
w1(x+ d(t1), t1)|

=
∣
∣
∣

(

∂2
xixj

w1(x+ (c1t
1−β1 , · · · , cnt1−βn), t) − ∂2

xixj
w1(x+ (c1t

1−β1
1 , · · · , cnt1−βn

1 ), t)
)

+
(

∂2
xixj

w1(x+ d(t1), t)− ∂2
xixj

w1(x+ d(t1), t1)
)
∣
∣
∣

≤ C52

n∑

k=1

[∂2
xixj

w1(y, t)]
(α)
y,DT

(t1−βk − t1−βk
1 )α + [∂2

xixj
w1(y, t)]

(α/2)
t,DT

(t− t1)
α/2.

Taking into account estimate (27), (t1−β − t1−β
1 )α ≤ (t − t1)

α/2+α(1/2−β) for t/2≤ t1<t,
β ∈ (0, 1/2], we obtain

(t1−βk − t1−βk
1 )α ≤ (t− t1)

α/2+α(1/2−βk), βk ∈ (0, 1/2], k = 1, . . . , n,

and

[∂2
xixj

u1]
(α/2)
t,DT

≤ C53

(

[∂2
xixj

w1(y, t)]
(α)
x,DT

+ [∂2
xixj

w1(y, t)]
(α/2)
t,DT

)

.

We estimate the derivative

∂tu1(x, t) = ∂tw1(x+ (c1t
1−β1 , · · · , cnt1−βn), t)

=

n∑

i=1

ci(1− βi)

tβi
∂xiw1(x+ d(t), t) + ∂t∗w1(x+ d(t), t∗)|t∗=t

in the following way:

|∂tu1(x, t)| ≤ C54

n∑

i=1

1

tβi
|∂yiw1(y, t)|DT

+ C55|∂tw1(y, t)|DT
.

It follows that

sup
t≤T

tβ|∂tu1|D′
t
≤ C56

( n∑

i=1

|∂yiw1(y, t)|DT
+ |∂t|w1(y, t)|DT

)

,

where β = max(β1, . . . , βn) and D′
t = D × (t/2, t).

All the other estimates for the functions

uj(x, t) = wj(x+ (c1t
1−β1
1 , . . . , cnt

1−βn
1 ), t), j = 1, 2,

are established in a similar way. As a result, we have

|u1|(2+α)
β,DT

≤ C57|w1(y, t)|(2+α)
DT

, |u2|(2+α)
DT

≤ C58|w2(y, t)|(2+α)
DT

.

By inequalities (56) for the functions wj(y, t), j = 1, 2, we obtain estimates (5) and (6):

|u1|(2+α)
β,DT

≤ C1|u0|(2+α)
D , |u2|(2+α)

DT
≤ C2|f |(α)DT

.

Theorem 1 is proved. �
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