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MINIMAX NONPARAMETRIC ESTIMATION ON
MAXISETS

M. Ermakov∗ UDC 519.2

We study nonparametric estimation of a signal in Gaussian white noise on maxisets. We point
out minimax estimators in the class of all linear estimators and strong asymptotically minimax
estimators in the class of all estimators. We show that balls in Sobolev spaces are maxisets for
the Pinsker estimators. Bibliography: 22 titles.

1. Introduction

One of the most popular models of nonparametric estimation is nonparametric estimation
of a signal in Gaussian white noise. This problem has been explored in numerous papers for
a wide range of functional spaces and for completely different setups (see [4, 16, 9, 21] and
references therein). Strong asymptotically minimax estimators are known for this setup only
if a priori information is provided that a signal belongs to an ellipsoid in L2 [13, 18, 9, 21, 17],
balls in L∞ [1, 3, 12, 14], or to some bodies in Besov spaces defined in terms of wavelets [9]. The
goal of this paper is to pay attention to the fact that strong asymptotically minimax estimators
can also be obtained for other sets of functions. The definition of these sets coincides with the
definition of a ball in the Besov space Bα

2∞ in terms of a trigonometric system of functions
and some norm (see [19]). We denote these sets by B(α,P0) with α > 0 and P0 > 0.

The balls Bα
2∞(P0) have remarkable properties in nonparametric estimation. These sets

carry a rather reasonable information on the signal smoothness:
on these sets, the most known linear nonparametric estimators have given rates of conver-

gence [10, 11];
for linear statistical estimators, these sets are the largest sets with a given rate of convergence

[10, 11, 15, 19].
The appearing strong asymptotically minimax estimators are penalized maximum likelihood

estimators for some quadratic penalty function [5, 22]. Thus, we conclude that likelihood
estimation with a quadratic penalty function is optimal not only in the Bayes sense but in the
minimax sense as well. These asymptotically minimax estimators are also trigonometric spline
estimators [9, 21, 22]. Results of this paper can also be treated as a solution of the inverse
problem: For the Bayes estimators and maximum penalized likelihood estimators, one needs
to find the largest nonparametric sets such that these estimators are asymptotically minimax
on these sets.

The nonasymptotic setup is also explored. In this setup, we show that our estimator is
minimax on maxisets for the class of all linear estimators.

The results can easily be extended to the setup of minimax estimation of solutions of linear
inverse ill-posed problem. For this setup, a minimax estimator can be treated as some version
of the Tikhonov regularization algorithm [20].

We show that the order of rates of convergence of the Pinsker estimator on B(α,P0) is worse
than the order of rates of convergence of widespread linear estimators. We prove that balls in
Sobolev spaces are maxisets for the Pinsker estimators.
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The results are provided in terms of a sequence model. Let we observe a random sequence
y = {yj}∞j=1,

yj = xj + ε σj ξj , ε > 0, 1 ≤ j < ∞,

where σj > 0 are known constants, ξj , 1 ≤ j < ∞, are independent Gaussian random variables,
Eξj = 0, and Eξ2j = 1.

The problem is to estimate the parameter x = {xj}∞j=1.

Denote σ = {σj}∞j=1 and ξ = {ξj}∞j=1.
For estimation with a fixed ε > 0, minimax estimators in the class of all linear estimators

are obtained if a priori information is provided in the following form:

x ∈ B(a, P0) =
{
x = {xi}∞i=1 : sup

k
a−1
k

∞∑
j=k

x2j ≤ P0

}
, (1.1)

where a = {ak}∞k=1 and ak > 0 is a decreasing sequence.
Asymptotically minimax estimators in the class of all estimators will be obtained if a priori

information is provided that the signal belongs to the sets B(α,P0) = B(ã, P0) with ã =
{k−2α}, α > 0. The analysis of the proof shows that the results can be extended to other
sequences ak. However, this requires more accurate reasoning. For trigonometric orthogonal

system of functions, sup
k

a−1
k

∞∑
j=k

x2j can be considered as the square of some norm in the Besov

space Bα
2∞. For Besov bodies in B

r
2∞ generated by wavelets, asymptotically minimax estimators

has been obtained by Johnstone [9]. For this setup, the proof is reduced to another extremal
problem, and the solution of this problem is completely different.

There are numerous results on strong adaptive asymptotically minimax estimation [9, 21].
Note that the results on adaptive estimation in the Pinsker model [9, 21] are easily carried
over to the setup of this paper with the sets B(α,P0).

Below we recall the definition of maxisets.
For an estimator x̂ε, for the loss function ‖x̂ε − x‖2, for rates of convergence εγ , γ > 0, and

for a constant C > 0, the maxiset is

MS(x̂ε, γ)(C) = {x : sup
ε

ε−2γEx‖x̂ε − x‖2 < C }.

Here ‖x‖ denotes the norm of a vector x = {xj}∞j=1 in a Hilbert space, ‖x‖2 =
∞∑
j=1

x2j .

In what follows, we denote by c and C positive constants and write aε � bε if c < aε/bε < C
for all ε > 0.

2. Main results

We say that a linear estimator x̂ε = {x̂εj}∞j=1 is minimax in the class of linear estimators

x̂ελ = {x̂εjλj
}∞j=1, x̂εjλj

= λj yj , λj ∈ R
1, 1 ≤ j < ∞, λ = {λj}∞j=1 if

Rlε
.
= sup

x∈B(a,P0)
Ex ‖x̂ε − x‖2 = inf

λ
sup

x∈B(a,P0)
Ex ‖x̂ελ − x‖2. (2.1)

We say that an estimator x̂ε is asymptotically minimax if

Rε
.
= sup

x∈B(α,P0)
Ex ‖x̂ε − x‖2 = inf

x̃ε∈Ψ
sup

x∈B(α,P0)
Ex ‖x̃ε − x‖2 (1 + o(1)) (2.2)

as ε → 0. Here Ψ is the set of all estimators.
The minimax estimator in the class of linear estimators is obtained under the following

assumptions.
A1. There is a c > 0 such that c < σ2

j < ∞ for all j.
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A2. For all j > 1,
σ2
j (aj−1 − aj)

σ2
j−1 (aj − aj+1)

> 1. (2.3)

This implies that the sequence σ2
j (aj−1 − aj) is strictly increasing.

Theorem 2.1. Let assumptions A1 and A2 be satisfied. Then the linear estimator x̂λ with

λj =
P0 (aj − aj+1)

P0 (aj − aj+1) + ε2 σ2
j

(2.4)

is minimax on the set of all linear estimators.
The minimax risk equals

Rlε = ε2
∞∑
j=1

P0 σ
2
j (aj − aj+1)

P0 (aj − aj+1) + ε2 σ2
j

. (2.5)

Remark 2.1. The estimator x̂λ is the maximum penalized likelihood estimator [5, 22] with
quadratic penalty function

P−1
0

∞∑
j=1

(aj − aj+1)
−1σ2

jx
2
j

and a Bayes estimator with a priori measure corresponding to independent Gaussian random
coordinates xj with Exj = 0 and Ex2j = P0(aj − aj+1), 1 ≤ j < ∞.

In Theorem 2.2, we replace A2 by a simpler assumption.
B1. For all j > j0,

σ2
j j

2α+1

σ2
j−1 (j − 1)2α+1

> 1. (2.6)

This implies that the sequence σ2
j j

2α+1 is strictly increasing.

Theorem 2.2. Let assumptions A1 and B1 be satisfied. Then the linear estimator x̂λ with

λj =
2αP0 j

−2α−1

2αP0 j−2α−1 + ε2 σ2
j

(2.7)

is asymptotically minimax on the set of all estimators.
The asymptotically minimax risk equals

Rε = ε2
∞∑
j=1

2αP0 j
−2α−1 σ2

j

2αP0 j−2α−1 + ε2 σ2
j

(1 + o(1)). (2.8)

Remark 2.2. The estimator x̂λ is the maximum penalized likelihood estimator [5, 22] with
quadratic penalty function

(2αP0)
−1

∞∑
j=1

j1+2α σ2
jx

2
j

and a Bayes estimator with a priori measure corresponding to independent Gaussian random
coordinates xj with Exj = 0 and Ex2j = 2αP0 j

−1−2α, 1 ≤ j < ∞.
Theorems 2.1 and 2.2 are easily extended to the setup of estimation of a solution of a linear

ill-posed inverse problem with Gaussian random noise. Maxisets for this setup were studied
by Loubes and Rivoirard [15].

Assume that we observe a random vector

y = Rx+ ε ξ (2.9)
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with a self-adjoint linear operator R : H → H in a separable Hilbert space H. The remaining
notation is the same as in the previous setup.

Assume that the linear operator R admits a singular value decomposition (see [21, 9, 8, 15])
with eigenvalues rj , 1 ≤ j < ∞. Then we can consider this setup in the following form.

We observe a random vector

zj = rj xj + ε σj ξj, 1 ≤ j < ∞,

where ξj , 1 ≤ j < ∞, are i.i.d. Gaussian r.v.’s with Eξj = 0 and Eξ2j = 1. The problems

of estimation of x = {xj}∞j=1 are the same. Dividing by rj, we obtain the setup of signal
estimation.

Below we provide two asymptotics of minimax risks for linear ill-posed inverse problems.

Example 2.1. Let α > 0 and γ > 0. Let |rj | = Cj−γ(1 + o(1)) and σj = 1, 1 ≤ j < ∞. Then

Rε = ε
4α

1+2α+2γ
π

2α sin
(
π(2γ+1)

2α

)(2αP0)
2γ+1

2γ+2α+1 C− 2α
2γ+2α+1 (1 + o(1)). (2.10)

Example 2.2. Let α > 0, γ > 0, B > 0, and κ ∈ R1. Let |rj| = Cj−κ exp{−Bjγ} and
σj = 1, 1 ≤ j < ∞. Then

Rε = P0 B
2α/γ | log ε |−2α/γ (1 + o(1)). (2.11)

Note that these asymptotics coincide with the asymptotics of risks of the corresponding
Bayes estimators.

Johnstone ([9, Chap. 3, Theorem 3.10]) compared strong asymptotics of minimax risks for
trigonometric spline estimators and Pinsker estimators in the case where the unknown signal
belongs to a ball in a Sobolev space. Trigonometric spline estimators are strong asymptotically
minimax estimators on maxisets B(α,P0). Thus, we can consider this result as a comparison
of risk asymptotics on Sobolev balls for strong asymptotically minimax estimators on maxisets
B(α,P0) and for Pinsker estimators. Below we provide a similar comparison for strong asymp-
totically minimax estimators on maxisets and for Pinsker estimators in the case where the
unknown signal belongs to a maxiset.

A Pinsker estimator θ̃εμ = {θ̃εj}∞j=1 is a linear estimator

θ̃εj = λεj yj

with

λεj = (1− μ bj)+,

where bj = jβ , β > 0, and parameter μ is defined by the equation

ε2
∞∑
j=1

b2j ((μbj)
−1 − 1)+ = P.

A Pinsker estimator is asymptotically minimax on ellipsoids

S(β, P ) =
{
x :

∞∑
j=1

b2j x
2
j ≤ P, x = {xj}∞1

}

with P > 0.
Denote

Rε(α, β) = inf
μ

sup
θ∈B(α,P0)

Eθ||θ̃εμ − θ||2
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and

C =
2α2

(1 + α)(1 + 2α)
.

Theorem 2.3. Let 0 < α < β. Then

Rε(α, β) = C
2α

1+2α C
1

1+2α

1

(
(2α)−

2α
1+2α + (2α)

1
1+2α

)
ε

4α
1+2α , (2.12)

where C1 =
β

β−αP0.

Let α > β > 0. Then

Rε(α, β) = C
2β

1+2β C
1

1+2β

1

(
(2β)

− 2β
1+2β + (2β)

1
1+2β

)
ε

4β
1+2β , (2.13)

where

C1 =
∞∑
j=1

j2β
(
j−2α − (j + 1)−2α

)
.

If α = β, then

Rε(α, β) =
(
(2α2)

1
1+2α + 2−

2α
1+2αα

1−2α
1+2α

)
(1 + 2α)−

1
1+2αP

1
1+2α

0 C
2α

1+2α ε
4α

1+2α |2 log ε| 1
1+2α . (2.14)

It is of principal interest to compare risks of the Pinsker estimator and of asymptotically
minimax estimators on maxisets if α = β. For this setup, we compare the risks of estimators
on sets having almost the same smoothness. We show that in this case, risks of the Pinsker
estimators have an additional logarithmic term in the asymptotic. Thus, Pinsker estimators
do not belong to the class of linear estimators having maxisets B(α,P0). It turns out that
balls in the Sobolev space S

β are maxisets for Pinsker estimators.

Theorem 2.4. There exists a C > 0 such that, for all ε > 0,

Rε(β, x) = ε
− 4β

1+2β inf
μ

Ex‖x̃εμ − x‖2 < C < ∞ (2.15)

if and only if x belongs to a ball in the Sobolev space

S
β =

{
x :

∞∑
j=1

b2jx
2
j < P, x = {xj}∞j=1

}
, P > 0.

In the theory of linear ill-posed inverse problems, one of the most usual assumptions is that
the solution x satisfies a source condition [2, 15],

x ∈ {x : x = Bu, ‖u‖ ≤ 1, u ∈ H},
where B is a self-adjoint compact linear operator. This implies that the solution x belongs
to an ellipsoid. Theorems 2.3 and 2.4 show that the optimal linear solution on such sets has
worse rates of convergence on wider sets B(α,P0) than a wide class of linear estimators.

3. Proofs of theorems

Proof of Theorem 2.1. We begin with the proof of the lower bound. Denote θ2j = P0 (aj−aj+1)

and θ = {θj}∞j=1.
Then

inf
λ

sup
x∈B(a,P0)

Ex ‖x̂λ − x‖2 ≥ inf
λ

Eθ‖x̂ελ − θ‖2 = ε2
∞∑
j=1

θ2jσ
2
j

θ2j + ε2σ2
j

, (3.1)
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and the infimum is attained for

λj =
θ2j

θ2j + ε2σ2
j

=
P0 (aj − aj+1)

P0 (aj − aj+1) + ε2 σ2
j

.

Our proof of the upper bound is based on the following reasoning. Let x = {xj}∞j=1 ∈ B(a, P0).
For all k denote

uk = a−1
k

∞∑
j=k

x2j .

Then x2k = ak uk − ak+1 uk+1.
For the sequence of λj defined in Theorem 2.1 we have the relations

Ex

∞∑
j=1

(λj yj − xj)
2 = ε2

∞∑
j=1

λ2
j σ

2
j +

∞∑
j=1

(1− λj)
2 x2j

= ε2
∞∑
j=1

λ2
j σ

2
j +

∞∑
j=1

(θ2j σ
−2
j ε−2 + 1)−2 (aj uj − aj+1 uj+1)

= ε2
∞∑
j=1

λ2
j σ

2
j + (θ21 σ

−2
1 ε−2 + 1)−2 u1

−
∞∑
j=2

uj aj

(
(θ2j−1 σ

−2
j−1 ε

−2 + 1)−2 − (θ2j σ
−2
j ε−2 + 1)−2

)
.

(3.2)

By assumption A2, the last terms in the right hand-side of (3.2) are negative. Therefore, the
supremum of the right hand-side of (3.2) is attained for uj = P0, 1 ≤ j < ∞. This completes
the proof of Theorem 2.1. �
Proof of Theorem 2.2. The upper bound follows from Theorem 2.1. Below we prove the lower
bound. This proof has a lot of common features with the proof of lower bound in the Pinsker
theorem [9, 18, 21].

Fix values δ1, 0 < δ1 < 1, and δ, 0 < δ < P0. Define a family of natural numbers kε, ε > 0,
such that ε−2σ2

kε
2rP0k

−2r−1
ε = 1 + o(1) as ε → 0. Define a sequence η = {ηj}∞j=1 of Gaussian

i.i.d.r.v.’s ηj = ηjδδ1 such that E[ηj ] = 0, Var[ηj ] = (P0 − δ)(2r)−1j−2r−1 if δkε ≤ j ≤ δ−1kε,

and ηj = 0 if either j < δ1kε or j > δ−1
1 kε.

Denote by μ the probability measure of the random vector η. Denote by x̃ the Bayes
estimator with a priory measure μ.

Define the conditional probability measure νδ of the random vector η given that η ∈ B(α,P0).
Denote by x̄ the Bayes estimator of x with a priori measure νδ. Denote by θ the random variable
having probability measure νδ.

For any estimator x̂,

sup
x∈B(α,P0)

Ex ‖x̂− x‖2 ≥ Eνδ Eθ ‖x̂− θ‖2 ≥ EμEη ‖x̃− η‖2 −EμEη (‖x̄− η‖2,

η /∈ B(α,P0))P
−1
μ (η ∈ B(α,P0)).

(3.3)

We have the relation
EμEη ‖x̃− η‖2 = I(P0 − δ)(1 + o(1)), (3.4)

where

I(P0 − δ) = ε2
l2∑

j=l1

σ2
j

1 + (2α (P0 − δ1))−1ε2 σ2
j j

2α+1
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and l1 = [δ1kε], l2 = [δ−1
1 kε]. Here [a] denotes the integral part of a number a ∈ R

1.
Since

‖x̄‖2 ≤ sup
x∈B(α,P0)

‖x‖2 ≤ P0,

we have the estimates

EμEη (‖x̄− η‖2, η /∈ B(α,P0)) ≤ 2EμEη (‖x̄‖2 + ‖η‖2, η /∈ B(α,P0))

≤ 2P0 Pμ (η /∈ B(α,P0)) +

l2∑
j=l1

(Eμ η
4
j )

1/2 P1/2
μ (η /∈ B(α,P0)).

(3.5)

Since Eμ[η
4
j ] ≤ Cj−2(α−2,

l2∑
j=l1

(Eμ η
4
j )

1/2 ≤ Cδ−r
1 k−2r

ε . (3.6)

It remains to estimate

Pμ (η /∈ B(α,P0)) = P
(

max
l1≤i≤l2

i2r
l2∑
j=i

η2j − P0 (1− δ1/2) > P0 δ1/2
)
≤

l2∑
i=l1

Ji, (3.7)

where

Ji = P
(
i2α

l2∑
j=i

η2j − P0 (1− δ/2) > P0 δ/2
)
.

To estimate Ji, we apply the following proposition (see [6]). �

Proposition 3.1. Let ξ = {ξi}li=1 be a Gaussian random vector with i.i.d.r.v.’s ξi such that
Eξi = 0 and Eξ2 = 1. Let A be an (l × l)-matrix and let Σ = ATA. Then

P(||Aξ||2 > tr(Σ) + 2
√

tr(Σ2) t+ 2‖Σ‖ t) ≤ exp{−t}. (3.8)

Here tr (Σ) denotes the trace of the matrix Σ.

Define a matrix Σ = {σlj}l2l,j=i with entries σjj = 2α (P0 − δ) j−2α−1 i2α and σlj = 0 if l 	= j.

Then

2
√

tr(Σ2)t+ 2‖Σ‖t = P0 − δ

α(4α + 1)

√
i−1t(1 + o(1)) + i−1t

.
= Vi(t). (3.9)

We put t = k
1/2
ε . Then Vi(t) < Ck

−1/2
ε , 1 ≤ i ≤ l2, and it follows from (3.8) that

Ji < exp{−k−1/2
ε }; (3.10)

therefore,

l2∑
j=l1

Ji ≤ δ−1
1 kε exp{−k1/2ε }. (3.11)

To complete the proof, it remains to estimate Rε−I(P0−δ). By a straightforward estimation,
it is easy to verify that

|I(P0)− I(P0 − δ)| < CδI(P0). (3.12)
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We have the relations

ε2
l1∑
j=1

σ2
j

1 + (2αP0)−1 ε2 σ2
j j

2α+1
� ε2

l1∑
j=1

σ2
j

< Cδ1 ε
2

kε∑
j=l1

σ2
j � Cδ1 ε

2
kε∑

j=l1

σ2
j

1 + (2αP0)−1 ε2 σ2
j j

2α+1

(3.13)

and

ε2
∞∑

j=l2

σ2
j

1 + (2αP0)−1ε2 σ2
j j

2α+1
� ε2

∞∑
j=l2

j−2α−1

≤ ε2δ2α1 C

l2∑
kε

j−2α−1 � ε2δ2α1 C

l2∑
kε

σ2
j

1 + (2αP0)−1 ε2 σ2
j j

2α+1
.

(3.14)

Now (3.12)–(3.14) imply that Rε − I(P0 − δ) → 0 for some δ = δ(ε) → 0 and δ1 = δ1(ε) → 0
as ε → 0.

Proof of Theorem 2.3. The reasoning is based on the following lemma. �
Lemma 3.1. The following relation holds:

sup
x∈B(α,P0)

Ex‖x̃ε − x‖2 = Eθε ||x̃ε − θε||2, (3.15)

where θε = {θεk}∞k=1, θ
2
εk = P0(ak − ak+1).

Proof of Lemma 3.1. Denote uk = a−1
k

∞∑
j=k

θ2j . Then

θ2k = ak uk − ak+1 uk+1.

Denote l = [μ
− 1

β ].
We represent

Ex ‖x̃ε − x‖2 = μ2
l∑

j=1

b2j x
2
j +

∞∑
j=l+1

x2j + ε2
l∑

j=1

λ2
j
.
= J1 + J2 + J3. (3.16)

Note that

J1 + J2 = μ2
l∑

j=1

b2j (ajuj − aj+1 uj+1) + al+1 ul+1

= μ2 a1 b
2
1 u

2
1 − μ2 al+1 b

2
l u

2
l+1 + μ2

l∑
j=2

aj uj (b
2
j − b2j−1) + al+1 ul+1.

(3.17)

The maximum of the right-hand side of (3.17) is attained for uj = P0, 1 ≤ j < ∞, with
x2j = P0(aj − aj+1).

By straightforward calculations, we show that J3 = Cε2l.
If β > α, then

J1 + J2 =
β

β − α
l−2α(1 + o(1)).

If α > β, then

J1 + J2 = P0l
−2βC1(1 + o(1)).
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If α = β, then

J1 + J2 = αP0l
−2α log l.

Minimizing J1 + J2 + J3 with respect to l, we prove Theorem 2.3. �

Proof of Theorem 2.4. It suffices to prove the necessary conditions.
We have the relations

Ex ‖x̃εμ − x‖2 = ε2
l∑

j=1

(1− l−β jβ) + l−2β
l∑

j=1

j2β x2j +

∞∑
j=l

x2j

≥ C ε2 l + l−2β
l∑

j=1

j2β x2j
.
= Jε(l, x).

(3.18)

It is easy to see that if
l∑

j=1

j2β x2j → ∞ as l → ∞, (3.19)

then

lim
ε→0

ε
− 4β

1+2β inf
l

Jε(l, x) = ∞. (3.20)

�
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Translated by M. Ermakov.
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