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INTEGRABLE DYNAMICAL SYSTEMS WITH DISSIPATION
ON TANGENT BUNDLES OF 2D AND 3D MANIFOLDS

M. V. Shamolin UDC 517+531.01

Abstract. In many problems of dynamics, one has to deal with mechanical systems whose configurational
spaces are two- or three-dimensional manifolds. For such a system, the phase space naturally coincides with
the tangent bundle of the corresponding manifold. Thus, the problem of a flow past a (four-dimensional)
pendulum on a (generalized) spherical hinge leads to a system on the tangent bundle of a two- or three-
dimensional sphere whose metric has a particular structure induced by an additional symmetry group. In
such cases, dynamical systems have variable dissipation, and their complete list of first integrals consists
of transcendental functions in the form of finite combinations of elementary functions. Another class of
problems pertains to a point moving on a two- or three-dimensional surface with the metric induced by the
encompassing Euclidean space. In this paper, we establish the integrability of some classes of dynamical
systems on tangent bundles of two- and three-dimensional manifolds, in particular, systems involving fields
of forces with variable dissipation and of a more general type than those considered previously.

Introduction

This paper is aimed at studying integrability cases for dynamical systems on tangent bundles of two-
and three- dimensional manifolds. The problems under consideration involve dissipation of variable sign.

We examine nonconservative systems for which the methods used for studying Hamiltonian systems
are inapplicable, in general. Such systems require some kind of “direct” integration of the basic equation
of dynamics.

In the general case, it is hardly possible to construct an integration theory for nonconservative systems
(even for lower dimensions). However, there are systems with additional symmetries for which one can
find first integrals in terms of finite combinations of elementary functions [1, 11–13,16,17,20].

We find cases of complete integrability of nonconservative dynamical systems with nontrivial symme-
tries. In some integrability cases, each of the first integrals is expressed in terms of a finite combination
of elementary functions and at the same time is a transcendental function of its variables. The term
“transcendental function” is understood in the sense of complex analysis: being continued to the complex
region, such functions have essential singularities [21,22,26,27]. This fact can be explained by the presence
of attractive and repelling sets in the system (for instance, attractive and repelling foci).

We find new integrable cases of motion of a rigid body, in particular, those generalizing the classical
problem of a spherical pendulum in an incoming flow [28,29,32].

Many results of the present paper have been regularly presented at numerous seminars, in particu-
lar, the V. V. Trofimov seminar “Current Problems in Geometry and Mechanics” [3–10] supervised by
D. V. Georgievskii and M. V. Shamolin.

1. Dynamics on the Tangent Bundle of a 2D Manifold

1.1. Equations of Geodesics on the Tangent Bundle of a 2D Manifold.

1.1.1. Some general terms. Consider a smooth 2d Riemannian manifold M2 with a metric gij , which
generates an affine connectedness in given local coordinates x = (x1, x2).

Translated from Trudy Seminara imeni I. G. Petrovskogo, No. 32, pp. 349–382, 2019.

1072–3374/20/2442–0335 c© 2020 Springer Science+Business Media, LLC 335

DOI 10.1007/s10958-019-04622-1



Consider also the tangent bundle
T∗M2{z2, z1; x1, x2},

where z = (z2, z1) are the coordinates in the tangent space.
If zi = ẋi, i = 1, 2, then the equations of the geodesic lines take the form

ẍi + Γi
11(x)(ẋ1)2 + 2Γi

12(x)(ẋ1)(ẋ2) + Γi
22(x)(ẋ2)2 = 0, i = 1, 2. (1.1)

1.1.2. Some special terms. For the sake of clarity, in the case of a 2d manifold, we denote the coordinates
(x1, x2) by (α, β).

Then equations (1.1) on the tangent bundle T∗M2{α̇, β̇; α, β} take the form

α̈ + Γα
αα(α, β)α̇2 + 2Γα

αβ(α, β)α̇β̇ + Γα
ββ(α, β)β̇2 = 0,

β̈ + Γβ
αα(α, β)α̇2 + 2Γβ

αβ(α, β)α̇β̇ + Γβ
ββ(α, β)β̇2 = 0.

(1.2)

Example 1. In the case of spherical coordinates (α, β), with the metric on the 2d sphere induced by the
Euclidean metric of the 3d space, equations (1.2) become

α̈ − β̇2 sin α cos α = 0, β̈ + 2α̇β̇
cos α

sinα
= 0, (1.3)

i.e., the nonzero connectedness coefficients take the form

Γα
ββ(α, β) = − sinα cos α, Γβ

αβ(α, β) =
cos α

sinα
.

Example 2. In the case of spherical coordinates (α, β), with the metric on the 2d sphere induced by the
metric of some special field of forces (see [33,34]), equations (1.2) take the form

α̈ − β̇2 sinα

cos α
= 0, β̈ + α̇β̇

1 + cos2 α

cos α sin α
= 0, (1.4)

i.e., the nonzero connectedness coefficients become

Γα
ββ(α, β) = − sinα

cos α
, Γβ

αβ(α, β) =
1 + cos2 α

2 cos α sin α
.

1.1.3. Changing coordinates on the tangent bundle. One of the purposes of this study is to examine the
structure of equations (1.1) after changing the coordinates on the tangent bundle T∗M2.

Consider the following transformation of the coordinates in the tangent space:
α̇ = R1z1 + R2z2,

β̇ = R3z1 + R4z2,
(1.5)

and its inversion
z1 = T1α̇ + T2β̇,

z2 = T3α̇ + T4β̇.
(1.6)

Here, Rk, Tk, k = 1, . . . , 4, are functions of α, β, and

RT = E,

where

R =
(

R1 R2

R3 R4

)
, T =

(
T1 T2

T3 T4

)
.

Equations (1.5) (or (1.6)) will be referred to as new kinematic relations, i.e., relations on the tangent
bundle T∗M2.

The following identities hold:

ż1 = T1αα̇2 + T1βα̇β̇ + T2αα̇β̇ + T2ββ̇2 + T1α̈ + T2β̈,

ż2 = T3αα̇2 + T3βα̇β̇ + T4αα̇β̇ + T4ββ̇2 + T3α̈ + T4β̈,
(1.7)
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where

Tkα =
∂Tk

∂α
, Tkβ =

∂Tk

∂β
, k = 1, . . . , 4.

Substituting (1.2) into (1.7), we get

ż1 = α̇2{T1α − T1Γα
αα − T2Γβ

αα} + α̇β̇{T1β + T2α − 2T1Γα
αβ − 2T2Γ

β
αβ} + β̇2{T2β − T1Γα

ββ − T2Γ
β
ββ},

ż2 = α̇2{T3α − T3Γα
αα − T4Γβ

αα} + α̇β̇{T3β + T4α − 2T3Γα
αβ − 2T4Γ

β
αβ} + β̇2{T4β − T3Γα

ββ − T4Γ
β
ββ},

(1.8)
where α̇, β̇ should be replaced by their expressions from (1.5).

Proposition 1.1. In the domain where det R(α, β) �= 0, system (1.2) is equivalent to the composite system
(1.5), (1.8).

Thus, the result of passing from the geodesic equations (1.2) to the equivalent system (1.5), (1.8)
depends both on the transformation of the variables (1.5) (or (1.6)) (i.e., new kinematic relations) and
on the affine connectedness Γi

jk.

Corollary 1.1. In the case of spherical coordinates (α, β), with the metric on the 2d sphere induced by
that of the 3d Euclidean space (see also Example 1), the system equivalent to the geodesic equations (1.3)
takes the form

α̇ = −z2, ż2 = −z2
1

1
cos α sin α

, ż1 = z1z2
1

cos α sin α
, β̇ = z1

1
cos α sinα

, (1.9)

provided that the first and the fourth equations of system (1.9) are regarded as new kinematic relations.

Corollary 1.2. In the case of spherical coordinates (α, β), with the metric on the 2d sphere induced by
that of a cetrain special field of forces (see [40,41] and Example 2), the system equivalent to the geodesic
equations (1.4) takes the form

α̇ = −z2, ż2 = −z2
1

cos α

sinα
, ż1 = z1z2

cos α

sinα
, β̇ = z1

cos α

sin α
, (1.10)

provided that the first and the fourth equations of system (1.10) are regarded as new kinematic relations.

1.1.4. A complete list of first integrals for geodesic equations. Consider a fairly general case of kinematic
relations

α̇ = −z2, β̇ = z1f(α), (1.11)

where f(α) is a sufficiently smooth function.

Proposition 1.2. In the case of kinematic relations (1.11), equations (1.8) take the form

ż1 = − 1
f(α)

Γβ
αα(α, β)z2

2 +
[
2Γβ

αβ(α, β) +
d ln |f(α)|

dα

]
z1z2 − f(α)Γβ

ββ(α, β)z2
1 ,

ż2 = Γα
αα(α, β)z2

2 − 2Γα
αβ(α, β)f(α)z1z2 + f2(α)Γα

ββ(α, β)z2
1 .

(1.12)

Thus, after a suitable choice of kinematic relations, geodesic equations (1.2) become equivalent (almost
everywhere) to the composite system (1.11), (1.12) on the manifold T∗M2{z2, z1; α, β}.

For the complete integration of the fourth-order system (1.11), (1.12), one should know three inde-
pendent first integrals, in general.

Corollary 1.3. If

Γα
αα(α, β) ≡ Γα

αβ(α, β) ≡ Γβ
αα(α, β) ≡ Γβ

ββ(α, β) ≡ 0, (1.13)
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then the system equivalent to the geodesic equations (1.2) can be reduced to⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

α̇ = −z2,

ż2 = Γα
ββ(α, β)f2(α)z2

1 ,

ż1 =
[
2Γβ

αβ(α, β) +
d ln |f(α)|

dα

]
z1z2,

β̇ = z1f(α).

(1.14)

Proposition 1.3. If the relation

Γα
ββ(α, β)f2(α) + 2Γβ

αβ(α, β) +
d ln |f(α)|

dα
≡ 0 (1.15)

holds everywhere, then system (1.14) has the following analytic first integral :

Φ1(z2, z1) = z2
1 + z2

2 = C2
1 = const. (1.16)

Proposition 1.4. If the function Γβ
αβ(α, β) depends only on α,

Γβ
αβ(α, β) = Γβ

αβ(α), (1.17)

then system (1.14) has the following first integral :

Φ2(z1; α) = z1Φ0(α) = C2 = const, (1.18)

Φ0(α) = f(α) exp
{

2

α∫
α0

Γβ
αβ(b)db

}
.

Remark 1.1. If (1.17) holds and Γα
ββ(α, β), too, depends only on α,

Γα
ββ(α, β) = Γα

ββ(α), (1.19)

then system (1.14) contains an independent third-order subsystem that consists of the first three equations
(the equation for β̇ is separated): ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

α̇ = −z2,

ż2 = Γα
ββ(α)f2(α)z2

1 ,

ż1 =
[
2Γβ

αβ(α) +
d ln |f(α)|

dα

]
z1z2,

(1.20)

β̇ = z1f(α). (1.21)

In particular, properties (1.15), (1.17) ensure the appearance of such an independent subsystem (1.20).

Proposition 1.5. If conditions (1.15), (1.17) are satisfied, then system (1.20), (1.21) admits the following
first integral :

Φ3(z2, z1; α, β) = β ±
α∫

α0

C2f(a)√
C2

1Φ2
0(a) − C2

2

da = C3 = const, (1.22)

where, after calculating the integral (1.22), the constants C1, C2 should be replaced by the left-hand sides
of (1.16), (1.18), respectively.

Theorem 1.1. If conditions (1.15), (1.17) are satisfied, then system (1.20), (1.21) has a complete set
(three) of independent first integrals (1.16), (1.18), (1.22).
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2. Equations of Motion on the Tangent Bundle of a 2D Manifold
in a Potential Field of Forces

2.1. Reduced System. Let us modify system (1.14) and thus obtain a conservative system. The presence
of forces is characterized by the term F (α) in the second equation in (2.1) (in contrast to system (1.14)).
The system under consideration on the tangent bundle T∗M2{z2, z1; α, β} takes the form⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

α̇ = −z2,

ż2 = F (α) + Γα
ββ(α, β)f2(α)z2

1 ,

ż1 =
[
2Γβ

αβ(α, β) +
d ln |f(α)|

dα

]
z1z2,

β̇ = z1f(α).

(2.1)

Remark 2.1. System (2.1) almost everywhere is equivalent to the following system:{
α̈ + F (α) + Γα

ββ(α, β)β̇2 = 0,

β̈ + 2Γβ
αβ(α, β)α̇β̇ = 0.

(2.2)

2.2. A Complete List of First Integrals for the System in a Potential Field of Forces.

Proposition 2.1. If (1.15) holds everywhere, then system (2.1) has the following analytic first integral :

Φ1(z2, z1; α) = z2
1 + z2

2 + F1(α) = C1 = const, F1(α) = 2

α∫
α0

F (a) da. (2.3)

Proposition 2.2. If the function Γβ
αβ(α, β) depends only on α (condition (1.17)), then system (2.1)

admits the following first integral:

Φ2(z1; α) = z1Φ0(α) = C2 = const, (2.4)

Φ0(α) = f(α) exp
{

2

α∫
α0

Γβ
αβ(b)db

}
.

Remark 2.2. If condition (1.17) is satisfied and the function Γα
ββ(α, β), too, depends only on α (condition

(1.19)), then system (2.1) contains an independent third-order subsystem that consists of the first three
equations (equation for β̇ is dropped):⎧⎪⎪⎪⎨

⎪⎪⎪⎩

α̇ = −z2,

ż2 = F (α) + Γα
ββ(α)f2(α)z2

1 ,

ż1 =
[
2Γβ

αβ(α) +
d ln |f(α)|

dα

]
z1z2,

(2.5)

β̇ = z1f(α). (2.6)

In particular, such a subsystem (2.5) can be separated if both properties (1.15) and (1.17) hold.

Proposition 2.3. If conditions (1.15), (1.17) hold, then system (2.5), (2.6) admits the following first
integral :

Φ3(z2, z1; α, β) = β ±
α∫

α0

C2f(a)√
Φ2

0(a)(C1 − F1(a)) − C2
2

da = C3 = const, (2.7)

where, having calculated the integral (2.7), one should replace the constants C1, C2 by the left-hand sides
of (2.3), (2.4), respectively.
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Theorem 2.1. If conditions (1.15), (1.17) are satisfied, then system (2.5), (2.6) has a complete set (three)
of independent first integrals: (2.3), (2.4), (2.7).

3. Equations of Motion on a Tangent Bundle of a 2D Manifold
in a Force Field with Dissipation

3.1. A Reduced System. Let us modify system (2.1)) and thus obtain a system with dissipation.
The presence of dissipation (of alternating sign, in general) is characterized by the term bg(α), b > 0,
in the first equation os system (3.1) (in contrast to system (2.1))) Our system on the tangent bundle
T∗M2{z2, z1; α, β} takes the form⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

α̇ = −z2 + bg(α),

ż2 = F (α) + Γα
ββ(α, β)f2(α)z2

1 ,

ż1 =
[
2Γβ

αβ(α, β) +
d ln |f(α)|

dα

]
z1z2,

β̇ = z1f(α).

(3.1)

Remark 3.1. System (3.1) is almost everywhere equivalent to the following one:
{

α̈ − bg′(α)α̇ + F (α) + Γα
ββ(α, β)β̇2 = 0,

β̈ − bg(α)f(α)β̇ + 2Γβ
αβ(α, β)α̇β̇ = 0.

(3.2)

3.2. A Complete List of First Integrals for a System with Dissipation. Let us integrate the
fourth-order system (3.1) under the conditions (1.15), (1.17). In this case, system (3.1) admits separation
of the following independent third-order system:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

α̇ = −z2 + bg(α),

ż2 = F (α) + Γα
ββ(α)f2(α)z2

1 ,

ż1 =
[
2Γβ

αβ(α) +
d ln |f(α)|

dα

]
z1z2,

(3.3)

β̇ = z1f(α). (3.4)

First, we associate to the third-order system (3.3) the following nonautonomous second-order system:

dz2

dα
=

F (α) + Γα
ββ(α)f2(α)z2

1

−z2 + bg(α)
,

dz1

dα
=

[
2Γβ

αβ(α) + d ln |f(α)|
dα

]
z1z2

−z2 + bg(α)
.

(3.5)

Then, introducing homogeneous variables

zk = ukg(α), k = 1, 2, (3.6)

we reduce system (3.5) to

g(α)
du2

dα
+ g′(α)u2 =

F (α) + Γα
ββ(α)f2(α)g2(α)u2

1

−u2g(α) + bg(α)
,

g(α)
du1

dα
+ g′(α)u1 =

[
2Γβ

αβ(α) + d ln |f(α)|
dα

]
g2(α)u1u2

−u2g(α) + bg(α)
,

(3.7)
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which, in view of (1.15), is almost everywhere equivalent to

g(α)
du2

dα
=

F3(α) + Γα
ββ(α)f2(α)g(α)u2

1 + g′(α)u2
2 − bg′(α)u2

−u2 + b
,

g(α)
du1

dα
=

−Γα
ββ(α)f2(α)g(α)u1u2 + g′(α)u1u2 − bg′(α)u1

−u2 + b
,

(3.8)

F3(α) =
F (α)
g(α)

.

Now, in order to integrate system (3.8), we impose the following two conditions.
• There is κ ∈ R such that

Γα
ββ(α)f2(α) = κ

g′(α)
g(α)

; (3.9)

• There is λ ∈ R such that
F3(α) = λg′(α). (3.10)

Conditions (3.9) and (3.10) can be respectively rewritten as follows:

Γα
ββ(α)f2(α) = κ

d

dα
ln |g(α)|; (3.11)

F (α) = λ
d

dα

g2(α)
2

. (3.12)

Indeed, if conditions (3.9) and (3.10) (or (3.11) and (3.12)) are fulfilled, then system (3.8) can be reduced
to the first-order equation

du2

du1
=

λ + κu2
1 + u2

2 − bu2

(1 − κ)u1u2 − bu1
. (3.13)

Equation (3.13) is an Abel equation [11,13,42]. For κ = −1, it has the following first integral:

u2
2 + u2

1 − bu2 + λ

u1
= C1 = const, (3.14)

which, in the former variables, reads as follows:

Θ1(z2, z1; α) =
z2
2 + z2

1 − bz2g(α) + λg2(α)
z1g(α)

= C1 = const. (3.15)

Remark 3.2. If α is a 2π-periodic coordinate, then system (3.3) (being a part of system (3.3), (3.4))
becomes a dynamical system with zero mean variable dissipation [14,15,23], and it turns into the following
conservative system for b = 0: ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

α̇ = −z2,

ż2 = F (α) + Γα
ββ(α)f2(α)z2

1 ,

ż1 =
[
2Γβ

αβ(α) +
d ln |f(α)|

dα

]
z1z2.

(3.16)

System (3.16) admits two smooth first integrals (2.3), (2.4), which we transform as follows. By virtue of
(3.10) (or (3.12)), we have

Φ1(z2, z1; α) = z2
1 + z2

2 + 2

α∫
α0

F (a) da = z2
1 + z2

2 + λ

α∫
α0

d

da
g2(a) da ∼= z2

1 + z2
2 + λg2(α), (3.17)

where “∼=” means equal to within an additive constant.
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Further, in view of (1.15), we have

Φ2(z1; α) = z1f(α) exp
{

2

α∫
α0

Γβ
αβ(b)db

}

= z1f(α) exp
{
−

α∫
α0

[
Γα

ββ(b)f2(b) +
d ln |f(b)|

db

]
db

}
∼= z1 exp

{
−

α∫
α0

Γα
ββ(b)f2(b)db

}
,

where “∼=” means being equal to within a multiplicative constant.
Now, using (3.9) (or (3.11)), we can rewrite the last expression, for κ = −1, in the form

z1 exp
{ α∫

α0

d

db
ln |g(b)|db

}
∼= z1g(α) (3.18)

to within a multiplicative constant.
Obviously, the ratio of the two first integrals (3.17), (3.18) (or (2.3), (2.4)) is also a first integral of

system (3.16). But, for b �= 0, neither

z2
2 + z2

1 − bz2g(α) + λg2(α) (3.19)

nor (3.18), separately, is a first integral of (3.3). However, the ratio of the functions (3.19), (3.18) is a first
integral of system (3.3) (for κ = −1) for any b.

Now, let us find in explicit form an additional first integral of the third-order system (3.3) for κ = −1.
To this end, we start with transforming the invariant relation (3.14) for u1 �= 0 as follows:(

u2 − b

2

)2

+
(

u1 − C1

2

)2

=
b2 + C2

1

4
− λ. (3.20)

We see that the parameters of this invariant relation must satisfy the condition

b2 + C2
1 − 4λ ≥ 0, (3.21)

and the phase space of system (3.3) foliates into a family of surfaces defined by (3.20).
Thus, in view of (3.14), the first equation of system (3.8), under the conditions (3.9), (3.10), and

κ = −1, takes the form
g(α)
g′(α)

du2

dα
=

2(λ − bu2 + u2
2) − C1U1(C1, u2)

−u2 − b∗
, (3.22)

where

U1(C1, u2) =
1
2

{
C1 ±

√
C2

1 − 4(u2
2 − bu2 + λ)

}
, (3.23)

and the integration constant C1 is chosen from (3.21).
Therefore, the quadrature for the additional first integral of system (3.3) takes the form∫

dg(α)
g(α)

=
∫

(b − u2)du2

2(λ − bu2 + u2
2) − C1{C1 ±

√
C2

1 − 4(u2
2 − bu2 + λ)}/2

. (3.24)

The left-hand side of this relation is obviously equal to (to within an additive constant)

ln |g(α)|. (3.25)

If
u2 − b

2
= r1, b2

1 = b2 + C2
1 − 4λ, (3.26)

then the right-hand side of (3.24) takes the form

−1
4

∫
d(b2

1 − 4r2
1)

(b2
1 − 4r2

1) ± C1

√
b2
1 − 4r2

1

− b

∫
dr1

(b2
1 − 4r2

1) ± C1

√
b2
1 − 4r2

1

= −1
2

ln
∣∣∣∣
√

b2
1 − 4r2

1

C1
± 1

∣∣∣∣∓ b

2
I1, (3.27)
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where

I1 =
∫

dr3√
b2
1 − r2

3(r3 ± C1)
, r3 =

√
b2
1 − 4r2

1. (3.28)

When calculating the integral (3.28), we consider the following possible cases.
I. b > 2.

I1 = − 1
2
√

b2 − 4
ln

∣∣∣∣
√

b2 − 4 +
√

b2
1 − r2

3

r3 ± C1
± C1√

b2 − 4

∣∣∣∣
+

1
2
√

b2 − 4
ln

∣∣∣∣
√

b2 − 4 −
√

b2
1 − r2

3

r3 ∓ C1
∓ C1√

b2 − 4

∣∣∣∣ + const. (3.29)

II. b < 2.

I1 =
1√

4 − b2
arcsin

±C1r3 + b2
1

b1(r3 ± C1)
+ const. (3.30)

III. b = 2.

I1 = ∓
√

b2
1 − r2

3

C1(r3 ± C1)
+ const. (3.31)

Going back to the variable

r1 =
z2

g(α)
− b

2
, (3.32)

we obtain the final expression for I1:
I. b > 2.

I1 = − 1
2
√

b2 − 4
ln

∣∣∣∣
√

b2 − 4 ± 2r1√
b2
1 − 4r2

1 ± C1

± C1√
b2 − 4

∣∣∣∣
+

1
2
√

b2 − 4
ln

∣∣∣∣
√

b2 − 4 ∓ 2r1√
b2
1 − 4r2

1 ± C1

∓ C1√
b2 − 4

∣∣∣∣ + const. (3.33)

II. b < 2.

I1 =
1√

4 − b2
arcsin

±C1

√
b2
1 − 4r2

1 + b2
1

b1(
√

b2
1 − 4r2

1 ± C1)
+ const. (3.34)

III. b = 2.

I1 = ∓ 2r1

C1(
√

b2
1 − 4r2

1 ± C1)
+ const. (3.35)

Thus, having found an additional first integral for the third-order system (2.5) for κ = −1, we obtain
a complete set of first integrals in the form of transcendental functions of their phase variables [24, 25].

Remark 3.3. In the expressions of the first integrals found above, the constant C1 should be formally
replaced by the left-hand side of the first integral (3.14).

Then, the said additional first integral acquires the following structural form (cf. [30, 31]):

Θ2(z2, z1; α) = G

(
g(α),

z2

g(α)
,

z1

g(α)

)
= C2 = const, (3.36)

in other words,

Θ2(z2, z1; α) = g(α) exp
{ α∫

α0

A(u2; C1)du2

}
= C2 = const, (3.37)

A(u2; C1) =
u2 − b

2(λ − bu2 + u2
2) − C1{C1 ±

√
C2

1 − 4(u2
2 − bu2 + λ)}/2

.
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Thus, in order to integrate the fourth-order system (2.5), (2.6), we have found, under certain condi-
tions, two independent first integrals of system (2.5). For its complete integration, it suffices to find one
more (additional) first integral that “attaches” equation (2.6).

Since

g(α)
du1

dα
=

u1

(
(1 − κ)u2 − b

)
g′(α)

b − u2
, g(α)

dβ

dα
=

u1g(α)f(α)
b − u2

, (3.38)

it follows that
du1

dβ
= [(1 − κ)u2 − b]

g′(α)
g(α)f(α)

. (3.39)

Omitting further calculations, we conclude that the desired additional first integral has the following
structural form:

Θ3(z2, z1; α, β) = G1

(
g(α), β,

z2

g(α)
,

z1

g(α)

)
= C2 = const. (3.40)

Thus, in the case under consideration, the system of dynamic equations (3.3), (3.4) admits three first
integrals (3.15), (3.36), (3.40), which are transcendental functions (in the sense of complex analysis) of
phase variables.

Theorem 3.1. System (3.3), (3.4) has a complete set (three) of independent first integrals. For κ = −1,
these integrals have the form (3.15), (3.36), (3.40).

4. On Surfaces of Revolution

We have indicated two concrete cases, (1.3) and (1.4) (for f(α) defining the metric on the 2d sphere),
in which it is possible to obtain integrable dynamical systems with dissipation. Let us apply the above
methods to the case of 2d surfaces of revolution.

In the 3d Euclidean space with cylindrical coordinates (ρ, ϕ, z), consider a surface of revolution defined
by the equation

ρ = ρ(z). (4.1)
The equations of geodesics on this surface have the form{

α̈ + Γ1(α)α̇2 + Γ2(α)β̇2 = 0,

β̈ + Γ3(α)α̇β̇ = 0,
(4.2)

Γ1(α) =
ρ′(α)ρ′′(α)
1 + ρ′2(α)

, Γ2(α) =
ρ(α)ρ′(α)
1 + ρ′2(α)

, Γ3(α) = 2
ρ′(α)
ρ′(α)

, (4.3)

where α = z, β = ϕ.
Let us introduce new kinematic relations:

α̇ = f1(α)z2, β̇ = f2(α)z1. (4.4)

Then system (4.2), (4.3) can be rewritten in the form⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

α̇ = f1(α)z2,

ż2 = −z2
1

{−Γ1(α)f1(α) − f ′
1(α)

}
+ z2

1

{−Γ2(α)f2
2 (α)

f1(α)

}
,

ż1 = z2z1

{
−Γ3(α)f1(α) − f ′

2(α)
f1(α)
f2(α)

}
,

(4.5)

β̇ = f2(α)z1, (4.6)

where equation (4.6) can be separated from the fourth-order system (4.5), (4.6).
Sufficient conditions for the existence of the first integral

Φ1(z2, z1) = z2
1 + z2

2 = const (4.7)
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of system (4.5), (4.6) can be written as two groups of relations:
⎧⎨
⎩

Γ1(α)f1(α) + f ′
1(α) = 0,

Γ2(α)f3
2 (α)

f2
2 (α)

+ Γ3(α)f2(α) + f ′
2(α) = 0.

(4.8)

Equations (4.8) admit the following solutions:

f1(α) =
A1√

1 + ρ′2(α)
, f2(α) =

A1

ρ(α)
√

A2A2
1ρ

2(α) − 1
, A2 > 0, A1, A2 ∈ R. (4.9)

Choosing f1(α), f2(α) as solutions of (4.9), we rewrite system (4.5), (4.6) in the form
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

α̇ = z2
A1√

1 + ρ′2(α)
,

ż2 = −z2
1Γ(α),

ż1 = z2z1Γ(α),

(4.10)

β̇ = z1
A1

ρ(α)
√

A2A2
1ρ

2(α) − 1
, (4.11)

where

Γ(α) =
A1ρ

′(α)
ρ(α)

√
1 + ρ′2(α)(A2A2

1ρ
2(α) − 1)

. (4.12)

Let us introduce a conservative force field F (α) and dissipation g(α), b > 0, in system (4.10), (4.11).
We thus obtain the following system:

⎧⎪⎨
⎪⎩

α̇ = z2f1(α) + bg(α),
ż2 = F (α) − z2

1Γ(α),
ż1 = z2z1Γ(α),

(4.13)

β̇ = z1f2(α). (4.14)

In order to integrate system (4.13), (4.14), we associate to the third-order system (4.13) the nonau-
tonomous second-order system

dz2

dα
=

F (α) − Γ(α)z2
1

z2f1(α) + bg(α)
,

dz1

dα
=

Γ(α)z1z2

z2f1(α) + bg(α)
. (4.15)

Then, introducing the homogeneous variables

zk = uk
g(α)
f1(α)

, k = 1, 2, (4.16)

we reduce system (4.15) to

g(α)
f1(α)

du2

dα
+

[
g(α)
f1(α)

]′
u2 =

F (α) − Γ(α)
[

g(α)
f1(α)

]2
u2

1

−u2g(α) + bg(α)
,

g(α)
f1(α)

du1

dα
+

[
g(α)
f1(α)

]′
u1 =

Γ(α)
[

g(α)
f1(α)

]2
u1u2

−u2g(α) + bg(α)
,

(4.17)
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which, almost everywhere, is equivalent to

g(α)
f1(α)

du2

dα
=

F3(α) − Γ(α) g(α)
f2
1 (α)

u2
1 −

[ g(α)
f1(α)

]′
u2

2 − b
[ g(α)

f1(α)

]′
u2

u2 + b
,

g(α)
f1(α)

du1

dα
=

Γ(α) g(α)
f2
1 (α)

u1u2 −
[ g(α)

f1(α)

]′
u1u2 − b

[ g(α)
f1(α)

]′
u1

u2 + b
,

(4.18)

F3(α) =
F (α)
g(α)

.

And now, in order to integrate system (4.18), we impose the following two conditions.
• There is κ ∈ R such that

Γ(α)
g(α)
f2
1 (α)

= κ

[
g(α)
f1(α)

]′
. (4.19)

• There is λ ∈ R such that

F3(α) = λ

[
g(α)
f1(α)

]′
. (4.20)

Indeed, if conditions (4.19) and (4.20) are fulfilled, system (4.18) reduces to the first-order equation

du2

du1
=

λ − κu2
1 − u2

2 − bu2

(κ − 1)u1u2 − bu1
. (4.21)

Equation (4.21) is an Abel equation [11,13,42]. For κ = −1, it has the following first integral:

−u2
2 − u2

1 − bu2 + λ

u1
= C1 = const, (4.22)

which, in former variables, has the form

Θ1(z2, z1; α) =
−z2

2f
2
1 (α) − z2

1f
2
1 (α) − bz2g(α)f1(α) + λg2(α)
z1g(α)f1(α)

= C1 = const. (4.23)

In a similar way, we find two other first integrals (see above and [2, 18,19]).
In particular, property (4.19) takes the form

g(α) =
A1A3√

1 + ρ′2(α)

∣∣∣∣ ρ2(α)
A2A2

1ρ
2(α) − 1

∣∣∣∣
−1/2κ

= C1 = const, A1 �= 0, A2 > 0, A1, A2, A3, κ ∈ R. (4.24)

5. Dynamics on the Tangent Bundle of a 3D Manifold

In dynamic problems for systems with three degrees of freedom, configuration spaces are 3d manifolds.
Accordingly, phase spaces of such systems are tangent bundles of such manifolds. For instance, to study
the motion of a four-dimensional rigid body such as a pendulum (the generalized spherical pendulum) in
a nonconservative force field one has to consider a dynamical system on the tangent bundle of a 3d sphere,
with its special metric induced by an additional group of symmetries [35]. In this case, dynamical systems
describing the motion of such pendulums have variable dissipation, and the complete list of first integrals
consists of transcendental functions expressed in terms of finite combination of elementary functions [36].

There is also a class of problems regarding the motion of a point on a 3d surface whose metric is
induced by the Euclidean metric of the all-encompassing four-dimensional space. For some systems with
variable dissipation, it is also possible to obtain a complete list of first integrals consisting of transcendental
functions. The results obtained in this direction are especially important for cases with nonconservative
force fields [37].
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In the present paper, we establish integrability of some classes of dynamical systems on tangent
bundles of 3d manifolds, with force fields having variable dissipation [38] and generalizing those considered
previously.

5.1. Geodesic Equations after Changing Coordinates. For a 3d Riemannian manifold M3 with
coordinates (α, β), β = (β1, β2), and affine connectedness Γi

jk(x), the geodesic equations on the tangent
bundle T∗M3{α̇, β̇1, β̇2; α, β1, β2}, α = x1, β1 = x2, β2 = x3, x = (x1, x2, x3), have the form

ẍi +
3∑

j,k=1

Γi
jk(x)ẋj ẋk = 0, i = 1, 2, 3, (5.1)

where differentiation is in the natural parameter.
Let us examine the structure of equations (5.1) after changing the coordinates on the tangent bundle

T∗M3. Consider the following transformation of the coordinates of a point in the tangent space depending
on the point x on the manifold:

ẋi =
3∑

j=1

Rij(x)zj . (5.2)

This transformation can be inverted:

zj =
3∑

i=1

Tji(x)ẋi,

where Rij , Tji, i, j = 1, 2, 3, are functions of x1, x2, x3 and

RT = E, R = (Rij), T = (Tji).

Equations (5.2) will be called new kinematic relations, i.e., relations on the tangent bundle T∗M3.
The following identities hold:

żj =
3∑

i=1

Ṫjiẋ
i +

3∑
i=1

Tjiẍ
i, Ṫji =

3∑
k=1

Tji,kẋ
k, (5.3)

where

Tji,k =
∂Tji

∂xk
, j, i, k = 1, 2, 3.

Substituting (5.1) into (5.3), we obtain

żi =
3∑

j,k=1

Tij,kẋ
j ẋk −

3∑
j,p,q=1

TijΓj
pqẋ

pẋq, (5.4)

where ẋi, i = 1, 2, 3, should be replaced by (5.2).
Thus, (5.4) can be rewritten in the form

żi +
3∑

j,k=1

Qijkẋ
j ẋk|(5.2) = 0, (5.5)

where

Qijk(x) =
3∑

s=1

Tis(x)Γs
jk(x) − Tij,k(x). (5.6)

Proposition 5.1. In the domain where det R(x) �= 0, system (5.1) is equivalent to the composite system
(5.2), (5.4).
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Therefore, the result of passing from geodesic equations (5.1) to the equivalent system (5.2), (5.4)
depends both on the transformation of the variables (5.2) (i.e., new kinematic relations) and on the affine
connectedness Γi

jk(x).

5.2. A Fairly General Case. Consider a fairly general case of kinematic relations,

α̇ = −z3, β̇1 = z2f1(α), β̇2 = z1f2(α)g(β1), (5.7)

where f1(α), f2(α), g(β1) are smooth functions in their domains. Such coordinates z1, z2, z3 on the tangent
bundle are introduced when one considers the following geodesic equations (in particular, on surfaces of
revolution): ⎧⎪⎪⎨

⎪⎪⎩
α̈ + Γα

11(α, β)β̇2
1 + Γα

22(α, β)β̇2
2 = 0,

β̈1 + 2Γ1
α1(α, β)α̇β̇1 + Γ1

22(α, β)β̇2
2 = 0,

β̈2 + 2Γ2
α2(α, β)α̇β̇2 + 2Γ2

12(α, β)β̇1β̇2 = 0,

(5.8)

i.e., the other connectedness coefficients are equal to zero. In the case (5.7), equations (5.4) take the form

ż1 =
[
2Γ2

α2(α, β) +
d ln |f2(α)|

dα

]
z1z3 −

[
2Γ2

12(α, β) +
d ln |g(β1)|

dβ1

]
f1(α)z1z2,

ż2 =
[
2Γ1

α1(α, β) +
d ln |f1(α)|

dα

]
z2z3 − Γ1

22(α, β)
f2
2 (α)

f1(α)
g2(β1)z2

1 ,

ż3 = Γα
11f

2
1 (α)z2

2 + Γα
22f

2
2 (α)g2(β1)z2

1 ,

(5.9)

and equations (5.8) are almost everywhere equivalent to the composite system (5.7), (5.9) on the manifold
T∗M3{z3, z2, z1; α, β1, β2}.

For the complete integration of system (5.7), (5.9), it is necessary to know five independent first
integrals, in general.

Proposition 5.2. If the relations⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

2Γ1
α1(α, β) +

d ln |f1(α)|
dα

+ Γα
11(α, β)f2

1 (α) ≡ 0,

2Γ2
α2(α, β) +

d ln |f2(α)|
dα

+ Γα
22(α, β)f2

2 (α)g2(β1) ≡ 0,

[
2Γ2

12(α, β) +
d ln |g(β1)|

dβ1

]
f2
1 (α) + Γ1

22(α, β)f2
2 (α)g2(β1) ≡ 0

(5.10)

hold in their domain, then system (5.7), (5.9) has the following analytic first integral :

Φ1(z3, z2, z1) = z2
1 + z2

2 + z2
3 = C2

1 = const. (5.11)

One can prove a separate theorem on the existence of a solution f1(α), f2(α), g(β1) for the quasilinear
system (5.10), in order to obtain the analytic first integral (5.11) for system (5.7), (5.9) equivalent to
geodesic equations (5.8). But it will be shown below that such arguments would make sense either for
systems without a force field or systems with a potential force field. However, for systems with dissipation,
conditions (5.10) acquire a somewhat different sense.

Still, in what follows, we assume that

f1(α) = f2(α) = f(α) (5.12)

in (5.7) and g(β1) satisfies the transformed third relation from (5.10):

2Γ2
12(α, β) +

d ln |g(β1)|
dβ1

+ Γ1
22(α, β)g2(β1) ≡ 0. (5.13)
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Thus, g(β1) is chosen in agreement with the connectedness coefficients and the constraints on f(α)
will be specified below.

Proposition 5.3. If conditions (5.12), (5.13) hold and

Γ1
α1(α, β) = Γ2

α2(α, β) = Γ1(α), (5.14)

then system (5.7), (5.9) has the following smooth first integral :

Φ2(z2, z1; α) =
√

z2
1 + z2

2 Φ0(α) = C2 = const, Φ0(α) = f(α) exp
{

2

α∫
α0

Γ1(b)db

}
.

Proposition 5.4. If condition (5.12) holds,

Γ2
12(α, β) = Γ2(β1), (5.15)

and Γ2
α2(α, β) = Γ1(α) (the second relation in (5.14)), then system (5.7), (5.9) has the following smooth

first integral :

Φ3(z1; α, β1) = z1Φ0(α)Φ(β1) = C3 = const, Φ(β1) = g(β1) exp
{

2

β1∫
β10

Γ2(b)db

}
.

Proposition 5.5. If conditions (5.12), (5.13), (5.14), (5.15) are satisfied, then system (5.7), (5.9) has
the following first integral :

Φ4(z2, z1; β) = β2 ±
β1∫

β10

C3g(b)√
C2

2Φ2(b) − C2
3

db = C4 = const, (5.16)

where, after calculating the integral (5.16), one should replace the constants C2, C3 with the left-hand sides
of (5.15), (5.16), respectively.

Under the above conditions, system (5.7), (5.9) has a complete set (four) of independent first integrals:
(5.11), (5.15), (5.16), (5.16).

5.3. Equations of Motion on the Tangent Bundle of a 3D Manifold in a Potential Field of
Forces. Let us modify system (5.7), (5.9) under the conditions (5.12), (5.13), (5.14), (5.15) and thus
obtain a conservative system. The presence of a force field is characterized by the term F (α) in the
second equation of system (5.17). This system on the tangent bundle T∗M3{z3, z2, z1; α, β1, β2} takes the
form ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α̇ = −z3,

ż3 = F (α) + Γα
11(α, β)f2(α)z2

2 + Γα
22(α, β)f2(α)g2(β1)z2

1 ,

ż2 =
[
2Γ1(α) +

d ln |f(α)|
dα

]
z2z3 − Γ1

22(β1)f(α)g2(β1)z2
1 ,

ż1 =
[
2Γ1(α) +

d ln |f(α)|
dα

]
z1z3 −

[
2Γ2(β1) +

d ln |g(β1)|
dβ1

]
f(α)z1z2,

β̇1 = z2f(α),

β̇2 = z1f(α)g(β1),

(5.17)

and is almost everywhere equivalent to the following system:⎧⎪⎪⎨
⎪⎪⎩

α̈ + F (α) + Γα
11(α, β)β̇2

1 + Γα
22(α, β)β̇2

2 = 0,

β̈1 + 2Γ1(α)α̇β̇1 + Γ1
22(β1)β̇2

2 = 0,

β̈2 + 2Γ1(α)α̇β̇2 + 2Γ2(β1)β̇1β̇2 = 0.
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Proposition 5.6. Under the conditions of Proposition 5.2, system (5.17) has the following smooth first
integral :

Φ1(z3, z2, z1; α) = z2
1 + z2

2 + z2
3 + F1(α) = C1 = const, F1(α) = 2

α∫
α0

F (a)da. (5.18)

Proposition 5.7. Under the conditions of Propositions 5.3, 5.4, system (5.17) has two smooth first
integrals (5.15), (5.16).

Proposition 5.8. Under the conditions of Proposition 5.5, system (5.17) has the first integral (5.16).

Under the above conditions, system (5.17) has a complete set (four) of independent first integrals:
(5.18), (5.15), (5.16), (5.16).

5.4. Equations of Motion on the Tangent Bundle of a 2D Manifold in a Force Field with
Dissipation. Let us modify system (5.17) to include dissipation (of changing sign, in general), which is
characterized by the term bδ(α) in the first equation of the system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α̇ = −z3 + bδ(α),

ż3 = F (α) + Γα
11(α, β)f2(α)z2

2 + Γα
22(α, β)f2(α)g2(β1)z2

1 ,

ż2 =
[
2Γ1(α) +

d ln |f(α)|
dα

]
z2z3 − Γ1

22(β1)f(α)g2(β1)z2
1 ,

ż1 =
[
2Γ1(α) +

d ln |f(α)|
dα

]
z1z3 −

[
2Γ2(β1) +

d ln |g(β1)|
dβ1

]
f(α)z1z2,

β̇1 = z2f(α),

β̇2 = z1f(α)g(β1),

(5.19)

which is almost everywhere equivalent to⎧⎪⎪⎨
⎪⎪⎩

α̈ − bα̇δ′(α) + F (α) + Γα
11(α, β)β̇2

1 + Γα
22(α, β)β̇2

2 = 0,

β̈1 − bβ̇1δ(α)f(α) + 2Γ1(α)α̇β̇1 + Γ1
22(β1)β̇2

2 = 0,

β̈2 − bβ̇2δ(α)f(α) + 2Γ1(α)α̇β̇2 + 2Γ2(β1)β̇1β̇2 = 0.

Let us integrate the 6th-order system (5.19) under the conditions (5.13) and

Γα
11(α, β) = Γα

22(α, β)g2(β1) = Γ3(α). (5.20)

We introduce (by analogy with (5.13)) a constraint on f(α): this function should satisfy the first
relation in (5.10):

2Γ1(α) +
d ln |f(α)|

dα
+ Γ3(α)f2(α) ≡ 0. (5.21)

For its complete integration, it is necessary to know five independent first integrals, in general. How-
ever, after the following transformation of the variables:

z1, z2 → z, z∗, z =
√

z2
1 + z2

2 , z∗ =
z2

z1
,

system (5.19) splits as follows:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

α̇ = −z3 + bδ(α),

ż3 = F (α) + Γ3(α)f2(α)z2,

ż =
[
2Γ1(α) +

d ln |f(α)|
dα

]
zz3,

(5.22)
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⎧⎪⎪⎨
⎪⎪⎩

ż∗ = ±z
√

1 + z2∗f(α)
[
2Γ2(β1) +

d ln |g(β1)|
dβ1

]
,

β̇1 = ± zz∗√
1 + z2∗

f(α),
(5.23)

β̇2 = ± z√
1 + z2∗

f(α)g(β1). (5.24)

It can be seen that for the complete integration of system (5.22)–(5.24), it suffices to find two inde-
pendent first integrals of system (5.22), one integral for system (5.23), and an additional first integral
“attaching” equation (5.24) (four integrals altogether).

Theorem 5.1. Suppose that for some κ, λ ∈ R , we have

Γ3(α)f2(α) = κ
d

dα
ln |δ(α)|, F (α) = λ

d

dα

δ2(α)
2

. (5.25)

Then system (5.19) with the conditions (5.13), (5.20), (5.21) has a complete set (four) independent
transcendental (in general) first integrals.

We start with associating to the third-order system (5.22) the following nonautonomous second-order
system:

dz3

dα
=

F (α) + Γ3(α)f2(α)z2

−z3 + bg(α)
,

dz

dα
=

[
2Γ1(α) + d ln |f(α)|

dα

]
zz3

−z3 + bg(α)
. (5.26)

Introducing homogeneous variables

z3 = u3δ(α), z = uδ(α), (5.27)

we reduce system (5.26) to

δ(α)
du3

dα
+ δ′(α)u3 =

F (α) + Γ3(α)f2(α)δ2(α)u2

−u3δ(α) + bδ(α)
,

δ(α)
du

dα
+ δ′(α)u =

[
2Γ1(α) + d ln |f(α)|

dα

]
δ2(α)uu3

−u3δ(α) + bδ(α)
,

(5.28)

which, on account of (5.21), is almost everywhere equivalent to

δ(α)
du3

dα
=

F3(α) + Γ3(α)f2(α)δ(α)u2 + δ′(α)u2
3 − bδ′(α)u3

−u3 + b
,

δ(α)
du

dα
=

−Γ3(α)f2(α)δ(α)uu3 + δ′(α)uu3 − bδ′(α)u
−u3 + b

,

(5.29)

F3(α) =
F (α)
δ(α)

.

Upon fulfilling the conditions (5.25), we reduce system (5.29) to the first-order equation

du3

du
=

λ + κu2 + u2
3 − bu3

(1 − κ)uu3 − bu
. (5.30)

Equation (5.30) is an Abel equation [11,13,42]. For κ = −1, it has the following first integral:

u2
3 + u2 − bu3 + λ

u
= C1 = const, (5.31)

which in the former variables has the form

Θ1(z3, z; α) = G1

(
z3

δ(α)
,

z

δ(α)

)
=

z2
3 + z2 − bz3δ(α) + λδ2(α)

zδ(α)
= C1 = const. (5.32)
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Now, let us find an explicit expression for the additional first integral for the third-order system (5.22)
for κ = −1. To this end, we transform the invariant relation (5.31) for u �= 0 as follows:

(
u3 − b

2

)2

+
(

u − C1

2

)2

=
b2 + C2

1

4
− λ. (5.33)

We see that the parameters of this invariant relation must satisfy the condition

b2 + C2
1 − 4λ ≥ 0, (5.34)

and the phase space of system (5.22) foliates into the family of surfaces defined by (5.33).
Thus, by virtue of (5.31), the first equation of system (5.29) with the conditions (5.21) and κ = −1

takes the form
δ(α)
δ′(α)

du3

dα
=

2(λ − bu3 + u2
3) − C1U1(C1, u3)

−u3 + b
, (5.35)

where

U1(C1, u3) =
1
2

{
C1 ±

√
C2

1 − 4(u2
3 − bu3 + λ)

}
, (5.36)

and the integration constant C1 is chosen from the condition (5.34).
Now, the additional first integral for system (5.22) has the following structural form:

Θ2(z3, z; α) = G2

(
δ(α),

z3

δ(α)
,

z

δ(α)

)
= C2 = const (5.37)

and, for κ = −1, it can be found from the quadrature

ln |g(α)| =
∫

(b − u3)du3

2(λ − bu3 + u2
3) − C1

{
C1 ±

√
C2

1 − 4(u2
3 − bu3 + λ)

}
/2

,

where

u3 =
z3

δ(α)
.

Here, after calculating the integral, C1 should be replaced by the left-hand side of (5.32). The right-hand
side of this relation can be expressed in terms of a finite combination of elementary functions and its
left-hand side depends δ(α). Therefore, the expressios of the first integrals (5.32), (5.37) in terms of finite
linear combinations of elementary functions depends not only on the quadrature calculations, but also on
the explicit form of the function δ(α).

The first integral for system (5.23) has the form

Θ3(z∗; β1) =

√
1 + z2∗

Φ(β1)
= C3 = const, (5.38)

where Φ(β1) is defined in (5.16). The additional first integral that “attaches” to equation (5.24) can be
found by analogy with (5.16):

Θ4(z∗; β) = β2 ±
β1∫

β10

g(b)√
C2

3Φ2(b) − 1
db = C4 = const,

where, after calculating the integral, one should replace C3 by the left-hand side of (5.38).
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6. Structure of First Integrals for Systems with Dissipation

If α is a 2π-periodic coordinate, then (5.22) becomes a dynamical system with variable zero mean
dissipation [37]. If, in addition, b = 0, then this system is conservative and has two first integrals of the
form (5.18), (5.15). In view of (5.25), we have

Φ1(z3, z2, z1; α) = z2
1 + z2

2 + z2
3 + 2

α∫
α0

F (a)da ∼= z2 + z2
3 + λδ2(α), (6.1)

where “∼=” means equal to within an additive constant. Relations (5.21), (5.25) ensure that

Φ2(z2, z1; α) =
√

z2
1 + z2

2f(α) exp
{

2

α∫
α0

Γ1(b)db

}
∼= zδ(α) = C2 = const, (6.2)

where “∼=” means equal to within a multiplicative constant.
Obviously, the ratio of the two first integrals (6.1), (6.2) (or (5.18), (5.15)) is also a first integral of

system (5.22) with b = 0. For b �= 0, neither the function

z2 + z2
3 − bz3δ(α) + λδ2(α) (6.3)

nor (6.2) separately is a first integral of system (5.22). However, the ratio of the functions (6.3) and (6.2)
is a first integral of system (5.22) for κ = −1 and any b.

In general, for systems with dissipation, the fact that their first integrals are expressed by transcen-
dental functions (in the sense that these functions have essential singularities) is due to the existence of
attractive or repelling limit sets [38].

7. Conclusion

By analogy with smaller dimensional cases, we point out two essential cases of functions f(α) that
determine the metric on the sphere:

f(α) =
cos α

sinα
, (7.1)

f(α) =
1

cos α sin α
. (7.2)

Case (7.1) forms a class of systems corresponding to the motion of a dynamically symmetric four-
dimensional rigid body on the zero-level of cyclic integrals in a nonconservative (in general) field of
forces [39]. Case (7.2) forms a class of systems corresponding to the motion of a material point in
a nonconservative (in general) field of forces [40]. In particular, for δ(α) ≡ F (α) ≡ 0, the system under
consideration describes a geodesic flow on a 3d sphere. In case (7.1), the condition

δ(α) =
F (α)
cos α

,

corresponds to a system describing spatial motion of a four-dimensional rigid body in a force field F (α)
with a following force [41]. Thus, if F (α) = sin α cos α, δ(α) = sinα, then the system also describes
a generalized four-dimensional spherical pendulum in a nonconservative force field and has a complete set
of transcendental first integrals expressed in terms of finite combinations of elementary functions.

If the function δ(α) is nonperiodic, then the dissipative system under consideration is a system with
variable nonzero mean dissipation (the system is dissipative in the proper sense). Nevertheless, in this
case, too, one can find explicit expressions for transcendental first integrals in terms of finite combinations
of elementary functions. The latter is a new nontrivial case of integrating dissipative systems in explicit
form.

This work has been supported by the Russian Foundation for Basic Research (Grant 15–01–00848–a).
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