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NON-KEPLERIAN BEHAVIOR AND INSTABILITY OF MOTION OF TWO BODIES
CAUSED BY THE FINITE VELOCITY OF GRAVITATION

V. Yu. Slyusarchuk UDC 517.958:531–133

It is shown that the motion of two bodies described with regard for the finite velocity of gravitation does
not obey the Kepler laws and that this motion is unstable.

1. Introduction

The present paper is devoted to the investigation of motion of two bodies under the action of the law of
gravitation with regard for the finite velocity of gravitation.

Since the influence of gravitation of one body upon another body cannot be instantaneous and a certain time is
required for the gravitational field to travel the distance between the bodies, it is quite natural that the mathematical
models of motion of the systems of two bodies should be described by the systems of equations with aftereffect.
For the investigation of these systems, it seems to be most convenient to use the mathematical tools based on the
theory of differential equations with delayed argument.

By using these equations, it becomes possible to show that the motion of two bodies in the real space does not
obey the Kepler laws and that this motion is unstable.

2. Problem of Two Bodies in the Classical Celestial Mechanics

Since the discovery of the law of gravitation by Newton (1643–1727) published in his famous “Philosophiae
Naturalis Principia Mathematica” in 1687, the investigation of motion of the bodies was carried out by using ordi-
nary differential equations because it was assumed that the velocity of gravitation is infinite and the gravitational
field instantaneously propagates from the source independently of the distance.

The problem of two bodies is the simplest problem of classical celestial mechanics. By the second Newton’s
law and Newton’s law of gravitation, the differential equations of motion of the bodies used in this problem take
the following form in a fixed Cartesian coordinate system:

8
ˆ̂̂
<̂

ˆ̂̂
:̂

m1
REr1.t/ D � Gm1m2ˇ̌Er2.t/ � Er1.t/

ˇ̌3
�Er1.t/ � Er2.t/

�
;

m2
REr2.t/ D � Gm1m2ˇ̌Er2.t/ � Er1.t/

ˇ̌3
�Er2.t/ � Er1.t/

�
;

(1)

where G is the gravitational constant, m1 and m1 are the masses of bodies, and jEr2.t/ � Er1.t/j is the Euclidean
length of the vector Er2.t/ � Er1.t/ . It is clear that the equations of this system can be divided by m1 and m2;

respectively.
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Passing from the coordinates Er1 to Er2 to the absolute coordinates of the Newton center of inertia (center of
mass) of the system of bodies and the coordinates of the first body relative to the second body, i.e.,

Er0 D m1

m1 Cm2
Er1 C m2

m1 Cm2
Er2; Er D Er1 � Er2;

we reduce system (1) to the following two simple systems

REr0 D 0; (2)

REr D �G.m1 Cm2/

jEr j3 Er: (3)

As follows from Eq. (2), the motion of the center of inertia of the system of two bodies is uniform and
rectilinear. System (3) describes the motion of a body with mass m1 relative to the central body with mass m2:

This system was studied in numerous works (see, e.g., [1–3]).
The general solution of the problem of two bodies was found by Newton. He also gave the geometric interpre-

tation of the solution (the trajectories of motion of one body relative to the other and relative to the center of mass
are canonical sections).

3. Kepler Laws

The kinematic behavior of motion of the bodies (in particular, planets) in the classical celestial mechanics is
described by the following three Kepler laws [4, p. 138]:

1. The orbit of each planet is an ellipse and the Sun is located at one of its foci.

2. The line joining a planet and the Sun sweeps out identical areas for the identical time intervals.

3. The ratio of the squared periods of rotation of the planets around the Sun is equal to the ratio of the cubes
of major semiaxes of their orbits.

Note that Newton established his law of gravity by analyzing these regularities [3, p. 42].
The application of Kepler’s laws to the investigation of motion of celestial bodies with regard for the finite

velocity of gravitation leads to certain errors.

4. Principle of Delay of the Gravitational Field and the Mathematical Model of Motion of Two Bodies with
Regard for the Finite Velocity of Gravitation

In the real world, the velocity of gravitation cannot be infinite as in Newton’s theory. This statement agrees
with the Einstein theory of relativity according to which the velocity of gravitation is equal to the velocity of light
and with the Kopeikin and Fomalont results concerning the fundamental limit of the velocity of gravitation [5]. On
the basis of this property of gravitation, it is possible to construct a mathematical model of motion of two bodies
based on the differential equations with delayed argument instead of the ordinary differential equations, as in the
classical celestial mechanics, and establish new properties of motion of these bodies.

To explain the influence of delay of the gravitational field, we consider the interaction of two points M1 and
M2 with masses m1 and m2; respectively. The motion of these points is described in the inertial rectangular
coordinate system x; y; z centered at the point O: The locations of points M1 and M2 at time t are specified by
the radius vectors Eri .t/; i D 1; 2:
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Fig. 1. Locations of the points M1 and M2 at the times t and t � ⌧2.t/:

If the velocity of gravitation is infinite (as in the Newton theory), then, according to the law of gravity, a point
M2 attracts a point M1 at time t with a force

EF .t/ D Gm1m2ˇ̌Er2.t/ � Er1.t/
ˇ̌3

�Er2.t/ � Er1.t/
�

(4)

(the direction of this force coincides with the direction of the vector Er2.t/ � Er1.t/ [2, 3]).
However, in view of the finite velocity of gravitation, the force applied to the point M1 is different

EF1.t/ D Gm1m2

jEr2.t � ⌧2.t// � Er1.t/j3
�Er2.t � ⌧2.t// � Er1.t/

�
: (5)

The delay of gravitation ⌧2.t/ in (5) is determined as follows:

c⌧2.t/ D
ˇ̌Er2.t � ⌧2.t// � Er1.t/

ˇ̌
; (6)

where c is the velocity of gravitation. Indeed, assume that the points M2 and M1 move along the corresponding
trajectories (parts of these trajectories are depicted in Fig. 1) with velocities Ev2.t/ D PEr2.t/ and Ev1.t/ D PEr1.t/;
respectively, and that, at the time t � ⌧2.t/; where ⌧2.t/ satisfies (6), they are located at the points C and D;
respectively. For the time Œt � ⌧2.t/; t ç; the point M2 moves from the point C to the point A; while the point M1

moves from the point D to the point B: This time interval is sufficient for the gravitational field to propagate with
velocity c from the point C to the point B: Hence, at time t; the force acting upon the point B is described by
relation (5) but not by (4).

Similarly, in view of the finite velocity of gravitation, the point M2 is subjected to the action of the force

EF2.t/ D Gm1m2ˇ̌Er1.t � ⌧1.t// � Er2.t/
ˇ̌3

�Er1.t � ⌧1.t// � Er2.t/
�
: (7)
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The delay of gravitation ⌧1.t/ in (7) is determined as follows:

c⌧1.t/ D
ˇ̌Er1.t � ⌧1.t// � Er2.t/

ˇ̌
: (8)

The existence of the functions ⌧2.t/ and ⌧1.t/ satisfying relations (6) and (7) was proved in [6]. By the
theorems on implicit function [7, pp. 449–453], these functions are continuous and differentiable.

In view of this reasoning, the second Newton’s law, the law of gravity, and relations (5) and (7), we arrive at
the system of equations

8
ˆ̂̂
<̂

ˆ̂̂
:̂

m1
REr1.t/ D Gm1m2ˇ̌Er2.t � ⌧2.t// � Er1.t/

ˇ̌3
�Er2.t � ⌧2.t// � Er1.t/

�
;

m2
REr2.t/ D Gm2m1ˇ̌Er1.t � ⌧1.t// � Er2.t/

ˇ̌3
�Er1.t � ⌧1.t// � Er2.t/

�
;

(9)

which describes the motion of the points M1 and M2 with masses m1 and m2; respectively. This is a system of
differential equations with delayed argument (the delays ⌧2.t/ and ⌧1.t/ depend on the locations of the points M1

and M2 in the space and on the velocity of gravitation) and noticeably differs from system (1).
Elements of the theory of differential equations with delayed argument can be found in [8–11].
Dividing the equations of system (9) by the nonzero masses m1 and m2; respectively, we get

8
ˆ̂̂
<̂

ˆ̂̂
:̂

REr1.t/ D Gm2ˇ̌Er2.t � ⌧2.t// � Er1.t/
ˇ̌3

�Er2.t � ⌧2.t// � Er1.t/
�
;

REr2.t/ D Gm1ˇ̌Er1.t � ⌧1.t// � Er2.t/
ˇ̌3

�Er1.t � ⌧1.t// � Er2.t/
�
:

(10)

For the complete description of motion of the points M1 and M2; system (10) should be supplemented with
additional initial or boundary conditions, as this is done in the problems presented in what follows.

Problem 1. We fix arbitrary values of time t0 and vector functions E'0;i .s/ and E'1;i .s/; i D 1; 2; continuous
on the segments Œt0 � ⌧i .t0/; t0ç; i D 1; 2; respectively. It is necessary to find the solutions Eri .t/; i D 1; 2; of
system (10) satisfying the initial conditions

8
<

:
Eri .s/ D E'0;i .s/; s 2 Œt0 � ⌧i .t0/; t0ç;

PEri .s/ D E'1;i .s/; s 2 Œt0 � ⌧i .t0/; t0ç;
i D 1; 2: (11)

Problem 2. Let t1 and t2 be arbitrary times such that t1 < t2 � ⌧i .t2/ for i D 1; 2: We consider twice
continuously differentiable vector functions E 1;i .s/ and E 2;i .s/; i D 1; 2; on the segments Œt1 � ⌧i .t1/; t1ç and
Œt2�⌧i .t2/; t2ç; i D 1; 2; respectively. It is necessary to find the solutions Eri .t/; i D 1; 2; of system (10) satisfying
the conditions

8
<

:
Eri .s1/ D E 1;i .s1/; s1 2 Œt1 � ⌧i .t1/; t1ç;

Eri .s2/ D E 2;i .s2/; s2 2 Œt2 � ⌧i .t2/; t2ç;
i D 1; 2: (12)
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The system of equations (6), (8), and (10), together with conditions (11) or (12), can be regarded as a mathe-
matical model of motion of two bodies with regard for the finite velocity of gravitation.

Thus, the principle of delay of the gravitational field considered above is very important for the construction of
the mathematical model of two bodies. According to this principle, at time t; the point M1 (point B ) is attracted
not to the point M2 (point A) but to the point C that coincides with the point M2 at the time t � ⌧2.t/ , where
⌧2.t/ satisfies (6). The force acting upon the point M1 is given by relation (5).

5. Some Consequences of the Principle of Delay of Gravitational Field and the Main Aim of the Present
Paper

The formulations of Kepler’s laws in celestial mechanics should be corrected if we take into account the finite
velocity of gravitation.

Indeed, according to the principle of delay of the gravitational field, in the course of motion of a planet around
the Sun, the attracting point for a planet at time t ( t is an arbitrary point of time) is not Sun’s center as in the
first Kepler law but a different point of the space, where Sun’s center was located at time t � ⌧.t/; where ⌧.t/ is
a delay depending on the locations of the planet and the Sun and similar to the delays ⌧2.t/ and ⌧1.t/ given by
relations (6) and (8), respectively. Hence, the revolution of the planet at time t is realized not around the current
Sun’s center but around the point where it was located at time t � ⌧.t/ .

Thus, the motion of planets around the Sun does not obey the first Kepler law, which has already been indicated
in [6].

The results of simple calculations carried out in [6] show that each planet moves (revolves) around “its own”
attracting point that does not coincide with Sun’s center and all these points are pairwise different.

In this connection, it is important to analyze applicability of Kepler’s laws in the nonclassical celestial me-
chanics.

Thus, the aim of the present paper is to show that:

1. The motion of two bodies also does not obey the second and third Kepler laws.

2. For the distance d.M1;M2/ between the points M1 and M2; we have either

lim inf
t!C1

d.M1;M2/ D 0

(in this case, we observe a collision of two bodies with nonzero sizes for a finite period of time) or

lim sup
t!C1

d.M1;M2/ D C1:

3. The trajectories of motion of the bodies are unstable.

These statements are substantiated in Secs. 7–11.

6. Law of Increase in the Sector Velocity

We now consider one property of motion of the material points important for our subsequent representation.
We use the system of equations (10) that describes the motion of the points M1 and M2 with masses m1 and

m2; respectively, with regard for the finite velocity of gravitation. The locations of these points are specified by the
vector functions Er1.t/ and Er2.t/ and their velocities are given by the functions Ev1.t/ D PEr1.t/ and Ev2.t/ D PEr2.t/;
respectively.
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Assume that trajectories of motion of the points M1 and M2 lie in a certain plane E:
We describe the behavior of a vector function

Ev� .t/ D 1

2

�Er1.t/ � Er2.t/
� ⇥

⇣ PEr1.t/ � PEr2.t/
⌘
;

where ⇥ is the vector product of the corresponding vectors. Note that this function is the sector velocity of motion
of the point M1 relative to the point M2 at time t . In the classical mechanics, we have Ev� .t/ ⌘ Ev� .t0/ (i.e., the
sector velocity is constant; see [4, p. 134]). Here, t0 is an arbitrary (fixed) time.

By using the properties of the vector product and the equations of system (10), we conclude that

2
d Ev� .t/
dt

D
⇣ PEr1.t/ � PEr2.t/

⌘
⇥
⇣ PEr1.t/ � PEr2.t/

⌘
C �Er1.t/ � Er2.t/

� ⇥
⇣ REr1.t/ � REr2.t/

⌘

D �Er1.t/ � Er2.t/
� ⇥

⇣ REr1.t/ � REr2.t/
⌘

D �Er1.t/ � Er2.t/
� ⇥

 
Gm2ˇ̌Er2.t � ⌧2.t// � Er1.t/

ˇ̌3
�Er2.t � ⌧2.t// � Er1.t/

�

� Gm1ˇ̌Er1.t � ⌧1.t// � Er2.t/
ˇ̌3

�Er1.t � ⌧1.t// � Er2.t/
�
!

D �Er1.t/ � Er2.t/
�

⇥
 

Gm2ˇ̌Er2.t � ⌧2.t// � Er1.t/
ˇ̌3

�
.Er2.t � ⌧2.t// � Er2.t// � .Er1.t/ � Er2.t//

�

� Gm1ˇ̌Er1.t � ⌧1.t// � Er2.t/
ˇ̌3

�
.Er1.t � ⌧1.t// � Er1.t//C .Er1.t/ � Er2.t//

�
!
:

Hence,

d Ev� .t/
dt

D 1

2

�Er1.t/ � Er2.t/
� ⇥

 
Gm2ˇ̌Er2.t � ⌧2.t// � Er1.t/

ˇ̌3
�Er2.t � ⌧2.t// � Er2.t/

�

C Gm1

jEr1.t � ⌧1.t// � Er2.t/j3
�Er1.t/ � Er1.t � ⌧1.t//

�◆
: (13)

By using the vectors

����!
M2M1 D Er1.t/ � Er2.t/;

�����!
M ⇤

1M1 D Er1.t/ � Er1.t � ⌧1.t//; and
�����!
M2M

⇤
2 D Er2.t � ⌧2.t// � Er2.t/;
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Fig. 2. Trajectories of motion of the points M1 and M2 and the velocities of these points.

where M ⇤
1 and M ⇤

2 are points of the space at which the points M1 and M2 are located at the times t � ⌧1.t/ and
t � ⌧2.t/; respectively (Fig. 2), and relations (5)–(8), we obtain

d Ev� .t/
dt

D 1

2

�Er1.t/ � Er2.t/
� ⇥

✓
1

m1c⌧2.t/

ˇ̌
ˇ EF1.t/

ˇ̌
ˇ
�����!
M2M

⇤
2 C 1

m2c⌧1.t/

ˇ̌
ˇ EF2.t/

ˇ̌
ˇ
�����!
M⇤

1M1

◆
: (14)

Let ⌧.t/ D maxf⌧1.t/; ⌧2.t/g: We analyze the case of validity of the relation

Ev� .s/ 6D E0 for all s 2 Œt0 � ⌧.t0/; t0ç: (15)

Note that, for the used inertial coordinate system, we can always choose another inertial coordinate system in
which the angle between the vectors Ev1.t0 ) and Ev2.t0/ belongs to the interval .⇡=2;⇡/ (as in Fig. 2). To do this,
it is necessary to perform a proper transformation of the direction of constant velocity of motion of the point O: In
passing to a different inertial coordinate system, the sector velocity of motion of the point M1 relative to the point
M2 remains constant because the vectors Er1.t0/ � Er2.t0/ and Ev1.t0/ � Ev2.t0/ are invariant under transformations
of inertial coordinate systems.

In Fig. 2, M ⇤
1 and M ⇤

2 are points of the space where the points M1 and M2 are located at the times t � ⌧1.t/

and t � ⌧2.t/; respectively.
For our subsequent representation, we need some notation. Let LM1;M2

be the straight line passing through
the points M1 and M2; let EC

M1;M2
be a half plane that contains the end point of the vector Ev1.t/ (with origin at

the point M1 ) but does not contain points of the straight line LM1;M2
; and let

E�
M1;M2

D E n
⇣
EC
M1;M2

[
LM1;M2

⌘

be a half plane that contains the end point of the vector Ev2.t/ (with origin at the point M2 ) but does not contain
points of the straight line LM1;M2

:

We study the motion of the points M1 and M2 under the assumption that the following condition is satisfied:

Condition A. For all t � t0; the end point of the vector Ev1.t/ and the point M ⇤
1 lie on EC

M1;M2

and E�
M1;M2

S
LM1;M2

; respectively, while the end point of the vector Ev2.t/ and the point M ⇤
2 lie on E�

M1;M2
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and EC
M1;M2

S
LM1;M2

; respectively. Moreover, the trajectories of motion of the points M1 and M2 are not
subsets of the same straight line.

The requirement of validity of this condition is natural. Thus, for planets of the Solar system and the Sun, this
condition is satisfied due to small velocities of the planets and the Sun as compared with the velocity of gravitation
c [12] and the closeness of their trajectories of motion to elliptic trajectories.

Note that the trajectories of motion of the points M1 and M2 do not have points of inflection because the
motion of each point is realized under the action of nonzero forces. Hence, these trajectories are convex, except
the case where the points move along a straight line. This property of trajectories simplifies the investigation of
motion of the points M1 and M2:

It is clear that, under the condition A, the pairs of vectors
����!
M2M1 and Ev1.t/� Ev2.t/; ����!M2M1 and

�����!
M ⇤

1M1; and����!
M2M1 and

�����!
M2M

⇤
2 ; have the same orientation for t � t0 (in Fig. 2, these pairs of vectors are right).

By using relations (13) and (14) and condition A, we conclude that the following statement holds:

Proposition 1 (law of increase in the sector velocity). If relation (15) is true and the condition A is satisfied,
then the sector velocity Ev� .t/ of motion of the point M1 relative to the point M2 is nonzero for all t > t0
[according to (14)]. Moreover, this velocity is strictly increasing.

How to describe the motion of points M1 and M2 if

Ev� .s/ D E0 for all s 2 Œt0 � ⌧.t0/; t0ç‹ (16)

In this case, Ev1.s/ � Ev2.s/ D E0 or Ev1.s/ � Ev2.s/ 6D E0 and the vectors Er1.s/ � Er2.s/ and Ev1.s/ � Ev2.s/ are
collinear for any s 2 Œt0 � ⌧.t0/; t0ç: This implies that, at time t0; the points M1; M

⇤
1 ; M2; and M ⇤

2 lie on the
same straight line, which passes through the end points of the vectors Er1.t0/ and Er2.t0/ whose origins coincide
with the point O: Thus, in view of (13) and (14), the subsequent motion of the points M1 and M2 under the action
of gravity forces is realized along the indicated straight line.

The following statement is true:

Proposition 2. If relation (16) is true, then the sector velocity Ev� .t/ of motion of the point M1 relative to
the point M2 is nonzero at any time t � t0 and the points M1 and M2 move along a straight line.

Note that, for the sector velocity Ev� .t/ of motion of the point M1 relative to the point M2; the relation
Ev� .t/ ⌘ Ev� .t0/ 6D E0 cannot be true. Indeed, if this relation holds, then, according to (13) and (14),

d Ev� .t/
dt

⌘ E0:

Hence, the points M1; M
⇤
1 ; M2; and M ⇤

2 lie on the same straight line for all t � t0; which contradicts the
condition A.

We now clarify the physical causes of increase in the sector velocity observed in the case where the condition A
is satisfied. We assume that this velocity is nonzero at the initial time t0 and consider Fig. 3. The point M1 is

subjected to the action of the force EF1.t/ described by relation (5). This force and the vector
�����!
M1M

⇤
2 have the

same direction. In a similar way, the force EF2.t/ [see relation (7)] acts upon the point M2: The direction of this

force coincides with the direction of the vector
�����!
M2M

⇤
1 : Thus,

EF1.t/ D EF1;⇤.t/C EF1;⇤⇤.t/ and EF2.t/ D EF2;⇤.t/C EF2;⇤⇤.t/;
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Fig. 3. Radial and transverse components of the forces EF1.t/ and EF2.t/:

where EF1;⇤.t/; EF2;⇤.t/ and EF1;⇤⇤.t/; EF2;⇤⇤.t/ are the radial and transverse components of the forces EF1.t/ and
EF2.t/; respectively (the vectors EF1;⇤.t/ and EF2;⇤.t/ are collinear to the vector

����!
M1M2; while the vectors EF1;⇤⇤.t/

and EF2;⇤⇤.t/ are orthogonal to this vector and make acute angles with the vectors Ev1.t/ and Ev2.t/; respectively).
The nonzero components EF1;⇤⇤.t/ and EF2;⇤⇤.t/ of the forces EF1.t/ and EF2.t/ caused by the delay of the

gravitational field lead to the displacements of attracting points for the points M1 and M2; affect the behavior of
the sector velocity of motion of the point M1 relative to the point M2; and are responsible for the increase in the
value of this velocity.

In view of the fact that

d.Er1.t/ � Er2.t// ⇥
⇣ PEr1.t/ � PEr2.t/

⌘

dt
D .Er1.t/ � Er2.t// ⇥

⇣ REr1.t/ � REr2.t/
⌘

and

.Er1.t/ � Er2.t// ⇥
⇣ REr1.t/ � REr2.t/

⌘

D .Er1.t/ � Er2.t// ⇥
✓
1

m1

EF1.t/ � 1

m2

EF2.t/

◆

D .Er1.t/ � Er2.t// ⇥
✓
1

m1

⇣ EF1;⇤.t/C EF1;⇤⇤.t/
⌘
� 1

m2

⇣ EF2;⇤.t/C EF2;⇤⇤.t/
⌘◆

D .Er1.t/ � Er2.t// ⇥
✓
1

m1

EF1;⇤⇤.t/ � 1

m2

EF2;⇤⇤.t/
◆
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�
here, we have used the collinearity of the vectors Er1.t/ � Er2.t/; 1

m1

EF1;⇤.t/; and
1

m2

EF2;⇤.t/
�
; we can represent

relation (13) in the form

d Ev� .t/
dt

D 1

2
.Er1.t/ � Er2.t// ⇥

✓
1

m1

EF1;⇤⇤.t/ � 1

m2

EF2;⇤⇤.t/
◆
:

The obtained relation is more convenient for applications from the physical point of view than relation (13).

Since the vectors Er1.t/ � Er2.t/ and 1

m1

EF1;⇤⇤.t/ � 1

m2

EF2;⇤⇤.t/ are orthogonal and the sector velocity in-

creases, we conclude that

d
ˇ̌Ev� .t/

ˇ̌

dt
D
ˇ̌Er1.t/ � Er2.t/

ˇ̌

2

ˇ̌
ˇ̌ 1
m1

EF1;⇤⇤.t/ � 1

m2

EF2;⇤⇤.t/
ˇ̌
ˇ̌ :

Moreover, the vectors EF1;⇤⇤.t/ and � EF2;⇤⇤.t/ have the same direction (Fig. 3). This yields

ˇ̌
ˇ̌ 1
m1

EF1;⇤⇤.t/ � 1

m2

EF2;⇤⇤.t/
ˇ̌
ˇ̌ D 1

m1

ˇ̌
ˇ EF1;⇤⇤.t/

ˇ̌
ˇC 1

m2

ˇ̌
ˇ EF2;⇤⇤.t/

ˇ̌
ˇ

and

d
ˇ̌Ev� .t/

ˇ̌

dt
D
ˇ̌Er1.t/ � Er2.t/

ˇ̌

2

✓
1

m1

ˇ̌
ˇ EF1;⇤⇤.t/

ˇ̌
ˇC 1

m2

ˇ̌
ˇ EF2;⇤⇤.t/

ˇ̌
ˇ
◆
: (17)

These relations remain true in the case where relation (16) is valid. Thus, we get

1

m1

ˇ̌
ˇ EF1;⇤⇤.t/

ˇ̌
ˇC 1

m2

ˇ̌
ˇ EF2;⇤⇤.t/

ˇ̌
ˇ ⌘ 0

and

EF1;⇤⇤.t/ ⌘ EF2;⇤⇤.t/ ⌘ E0: (18)

Hence, the points M1 and M2; are subjected solely to the action of forces EF1;⇤.t/ and EF2;⇤.t/ , respectively, and
move along the straight line passing through the end points of the vectors Er1.t0/ and Er2.t0/ (the origins of these
vectors coincide with the point O ). Identity (18) means that the points M1; M2; M

⇤
1 ; and M

⇤
2 move along the

same straight line.

7. Impossibility of Motion of Two Bodies According to the Second Kepler Law

By the law of increase in the sector velocity (under the condition A), the point M1 cannot move relative to
the point M2 according to the second Kepler law because the motion of points obeying the Kepler laws is periodic
and Ev� .t/ ⌘ Ev� .t0/ 6D E0 but, for each periodic motion (the periodicity of the velocities of points is also taken into
account), the sector velocity cannot be an increasing function.

Hence, the Earth cannot move around the Sun according to the second Kepler law.
How to describe the motion of the point M1 relative to the point M2 ? The answer to this question is given in

the next sections.
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8. The Distance Between the Points M1 and M2 Approaches either 0 or C1 as t ! C1 if the Sector
Velocity Is Equal to Zero

We consider the velocity Ev.t/ D Ev1.t/ � Ev2.t/ of motion of the point M1 relative to the point M2: In the
general case, this velocity can be represented in the form of a sum

Ev.t/ D Ev⇤.t/C Ev⇤⇤.t/; (19)

where Ev⇤.t/ is the radial component of the velocity Ev.t/ parallel to the vector ����!M2M1 and Ev⇤⇤.t/ is the transverse
component of the velocity orthogonal to the vector

����!
M2M1:

We study the motion of the points M1 and M2 in the case where relation (16) is true.
According to Proposition 2, the definition of the sector velocity, and the equalities

jEv� .t/j D 1

2

ˇ̌ �Er1.t/ � Er2.t/
� ⇥ �Ev1.t/ � Ev2.t/

� ˇ̌ D 1

2

ˇ̌Er1.t/ � Er2.t/
ˇ̌ ˇ̌Ev⇤⇤.t/

ˇ̌
; t � t0; (20)

we conclude that Ev⇤⇤.t/ ⌘ E0 for all t � t0: Therefore, Ev1.t/ � Ev2.t/ ⌘ Ev⇤.t/ and the points M1 and M2 are
subjected solely to the action of the forces EF1.t/ ⌘ EF1;⇤.t/ and EF2.t/ ⌘ EF2;⇤.t/; respectively (Fig. 3), because
EF1;⇤⇤.t/ ⌘ EF2;⇤⇤.t/ ⌘ E0: Then the points M1; M2; M

⇤
1 ; and M

⇤
2 lie on the same straight line (Fig. 4).

Under the action of the forces EF1.t/ and EF2.t/; the following motions of the point M1 relative to the point
M2 are possible:

(i) the distance jEr1.t/ � Er2.t/j monotonically decreases for t � t0 ;

(ii) the distance jEr1.t/ � Er2.t/j increases for a certain period Œt0; t1ç and decreases for t � t1 ;

(iii) the distance jEr1.t/ � Er2.t/j monotonically increases for t � t0:

The behavior of the quantity jEr1.t/ � Er2.t/j depends on the vectors Ev1.t0/ � Ev2.t0/ and Er1.t0/ � Er2.t0/:
If Ev1.t0/ � Ev2.t0/ D E0 or Ev1.t0/ � Ev2.t0/ 6D E0 and the direction of the vector Ev1.t0/ � Ev2.t0/ coincides with

the direction of the vector
����!
M1M2; then the motion of the point M1 relative to the point M2 corresponds to the

first case. In this case, the quantity jEv1.t/ � Ev2.t/j monotonically increases because the direction of the vector
Ev1.t/ � Ev2.t/ coincides with the direction of the vector EF1;⇤.t/ � EF2;⇤.t/: We fix an arbitrarily small number
" 2 .0; jEr1.t0/� Er2.t0/j/: Since jEv1.t/� Ev2.t/j increases, we arrive at the equality jEr1.t1/� Er2.t1/j D " at a certain
time t1 > t0: Therefore, in view of the arbitrariness of the choice of "; this yields

lim
t!C1

jEr1.t/ � Er2.t/j D 0: (21)

If Ev1.t0/ � Ev2.t0/ 6D E0 and the direction of the vector Ev1.t0/ � Ev2.t0/ coincides with the direction of the
vector

����!
M2M1; then the motion of the point M1 relative to the point M2 corresponds to the second (or third) case.

Indeed, under the action of the force EF1;⇤.t/ directed opposite to the vector
����!
M1M2; the velocity of the point M1

decreases, whereas the velocity of the point M2 increases. The distance d.M1;M2/ between the points M1 and
M2 increases within a certain interval .t0; t1/ (at time t1; the velocity Ev1.t1/� Ev2.t1/ is equal to E0). This motion
is possible if the quantity jEv1.t0/ � Ev2.t0/j is small (it depends on jEr1.t0/ � Er2.t0/j). Stating from time t1; the
point M1 moves toward the point M2 (as in the first case). As a result, we also get relation (21).
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Fig. 4. Motion of the points M1 and M2 in the case where Ev� .t/ ⌘ E0:

Note that the motion of the points M1 and M2 for which

jEv1.t/ � Ev2.t/j > 0 and jEv1.t/j � jEv2.t/j > 0 for all t 2 .t0;C1/ (22)

(the distance between the points M1 and M2 monotonically increases),

lim
t!C1

jEv1.t/ � Ev2.t/j D 0 (23)

and

lim
t!C1

jEr1.t/ � Er2.t/j 2 .0;C1/; (24)

i.e., the trajectory of motion of the point M1 relative to the point M2 is bounded, is impossible. Indeed, by virtue
of the inequalities

jEv2.t0/j < jEv2.t/j < jEv1.t/j < jEv1.t0/j < c; t > t0; (25)

which follow from (22) and the monotonicity of the quantities jEv2.t/j and jEv1.t/j on Œt0;C1/; the inequalities

c

c � jEv1.t0/j
ˇ̌Er1.t/ � Er2.t/

ˇ̌ � ˇ̌Er2.t � ⌧2.t// � Er1.t/
ˇ̌ � ˇ̌Er1.t/ � Er2.t/

ˇ̌
; t � t0; (26)

ˇ̌Er1.t/ � Er2.t/
ˇ̌ � ˇ̌Er1.t � ⌧1.t// � Er2.t/

ˇ̌ � jEr1.t/ � Er2.t/j
2

; t � t0; (27)

and relation (24), the following relation is true:

sup
t�t0

¶ˇ̌Er1.t/ � Er2.t � ⌧2.t//
ˇ̌
;
ˇ̌Er2.t/ � Er1.t � ⌧1.t//

ˇ̌·
< C1: (28)

Inequalities (26) follow from (25) and the fact that, for all t � t0;

ˇ̌
ˇ̌�����!M1M

⇤
2

ˇ̌
ˇ̌ �

ˇ̌
ˇ
����!
M1M2

ˇ̌
ˇ
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and

ˇ̌
ˇ̌�����!M1M

⇤
2

ˇ̌
ˇ̌ D

ˇ̌
ˇ
����!
M1M2

ˇ̌
ˇC

ˇ̌
ˇ̌�����!M2M

⇤
2

ˇ̌
ˇ̌ 

ˇ̌
ˇ
����!
M1M2

ˇ̌
ˇC jEv2.t/j

c

ˇ̌
ˇ̌�����!M1M

⇤
2

ˇ̌
ˇ̌ 

ˇ̌
ˇ
����!
M1M2

ˇ̌
ˇC jEv1.t0/j

c

ˇ̌
ˇ̌�����!M1M

⇤
2

ˇ̌
ˇ̌ :

At the same time, inequalities (27) follow from the fact that

ˇ̌
ˇ
����!
M1M2

ˇ̌
ˇ �

ˇ̌
ˇ̌�����!M2M

⇤
1

ˇ̌
ˇ̌ D

ˇ̌
ˇ
����!
M1M2

ˇ̌
ˇ �

ˇ̌
ˇ̌�����!M1M

⇤
1

ˇ̌
ˇ̌ and

ˇ̌
ˇ̌�����!M1M

⇤
1

ˇ̌
ˇ̌  ⌧1.t/c D

ˇ̌
ˇ̌�����!M2M

⇤
1

ˇ̌
ˇ̌

for all t � t0:

By using relations (5) and (7), relation (28), and the fact that the vectors EF1.t/ and EF2.t/ have the opposite
directions for some number ı > 0; we get

ı < inf
t�t0

ˇ̌
ˇ̌ 1
m1

EF1.t/ � 1

m2

EF2.t/

ˇ̌
ˇ̌ D inf

t�t0

✓
1

m1

ˇ̌
ˇ EF1.t/

ˇ̌
ˇC 1

m2

ˇ̌
ˇ EF2.t/

ˇ̌
ˇ
◆
: (29)

In view of the equations of system (10), we conclude that, for all sufficiently large t > t0;

�Ev1.t C 1/ � Ev2.t C 1/
� � �Ev1.t/ � Ev2.t/

� D
tC1Z

t

✓
1

m1

EF1.s/ � 1

m2

EF2.s/

◆
ds:

Therefore, in view of (29), we get

ˇ̌ �Ev1.t C 1/ � Ev2.t C 1/
� � �Ev1.t/ � Ev2.t/

� ˇ̌
> ı

for all sufficiently large t > t0; which is impossible according to (23).
Hence, the motion of the points M1 and M2 described by relations (22)–(24) is impossible.
Finally, we consider the third case of motion of the points M1 and M2 in which the quantity jEr1.t/ � Er2.t/j

monotonically increases in the interval Œt0;C1/: By Ee we denote the vector whose direction coincides with the
direction of the vector Ev1.t0/ � Ev2.t0/ and jEe j D 1 (Fig. 4).

Further, we show that if

jEv1.t0/ � Ev2.t0/j2 > 2G.4m1 Cm2/ˇ̌Er1.t0/ � Er2.t0/
ˇ̌ ; (30)

then

lim
t!C1

jEr1.t/ � Er2.t/j D C1: (31)

By using the equations of system (10), we obtain

.Ev1.t/ � Ev2.t// ⌘ .Ev1.t0/ � Ev2.t0//C
tZ

t0

✓
1

m1

EF1.s/ � 1

m2

EF2.s/

◆
ds: (32)
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According to the restrictions imposed on Er1.t/ � Er2.t/; Ev1.t/ � Ev2.t/; EF1.t/; EF2.t/; and Ee; we find

Er1.t/ � Er2.t/ ⌘ jEr1.t/ � Er2.t/jEe;

Ev1.t/ � Ev2.t/ ⌘ jEv1.t/ � Ev2.t/jEe;

and

1

m1

EF1.t/ � 1

m2

EF2.t/ ⌘ �
ˇ̌
ˇ̌ 1
m1

EF1.t/ � 1

m2

EF2.t/

ˇ̌
ˇ̌ Ee ⌘ �

✓
1

m1

ˇ̌
ˇ EF1.t/

ˇ̌
ˇC 1

m2

ˇ̌
ˇ EF2.t/

ˇ̌
ˇ
◆
Ee:

Thus, in view of (32), we get

jEv1.t/ � Ev2.t/j ⌘ jEv1.t0/ � Ev2.t0/j �
tZ

t0

✓
1

m1

ˇ̌
ˇ EF1.s/

ˇ̌
ˇC 1

m2

ˇ̌
ˇ EF2.s/

ˇ̌
ˇ
◆
ds:

Since the function
1

m1

ˇ̌
ˇ EF1.t/

ˇ̌
ˇC 1

m2

ˇ̌
ˇ EF2.t/

ˇ̌
ˇ is continuous on Œt0;C1/; we obtain

d jEv1.t/ � Ev2.t/j
dt

⌘ � 1

m1

ˇ̌
ˇ EF1.t/

ˇ̌
ˇ � 1

m2

ˇ̌
ˇ EF2.t/

ˇ̌
ˇ :

This yields

d jEv1.t/ � Ev2.t/j2
dt

⌘ �2
✓
1

m1

ˇ̌
ˇ EF1.t/

ˇ̌
ˇC 1

m2

ˇ̌
ˇ EF2.t/

ˇ̌
ˇ
◆
jEv1.t/ � Ev2.t/j

and

jEv1.t/ � Ev2.t/j2 ⌘ jEv1.t0/ � Ev2.t0/j2

� 2
tZ

t0

✓
1

m1

ˇ̌
ˇ EF1.s/

ˇ̌
ˇC 1

m2

ˇ̌
ˇ EF2.s/

ˇ̌
ˇ
◆
jEv1.s/ � Ev2.s/j ds: (33)

We now estimate the integral

tZ

t0

✓
1

m1

ˇ̌
ˇ EF1.s/

ˇ̌
ˇC 1

m2

ˇ̌
ˇ EF2.s/

ˇ̌
ˇ
◆
jEv1.s/ � Ev2.s/j ds

from above. By using relations (5) and (7), inequalities (26) and (27), and the formula

jEv1.s/ � Ev2.s/j ds D d jEr1.s/ � Er2.s/j; s � t0;
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we find

1

m1

ˇ̌
ˇ EF1.t/

ˇ̌
ˇ D Gm2

jEr1.t/ � Er2.t � ⌧2.t//j2  Gm2

jEr1.t/ � Er2.t/j2 ;

1

m2

ˇ̌
ˇ EF2.t/

ˇ̌
ˇ D Gm1

jEr2.t/ � Er1.t � ⌧1.t//j2  4Gm1

jEr1.t/ � Er2.t/j2 ;

and

tZ

t0

✓
1

m1

ˇ̌
ˇ EF1.s/

ˇ̌
ˇC 1

m2

ˇ̌
ˇ EF2.s/

ˇ̌
ˇ
◆
jEv1.s/ � Ev2.s/j ds 

✓
G.4m1 Cm2/

jEr1.t0/ � Er2.t0/j �
G.4m1 Cm2/

jEr1.t/ � Er2.t/j
◆
:

By using these results and relation (33), we get

jEv1.t/ � Ev2.t/j2 � jEv1.t0/ � Ev2.t0/j2 � 2G.4m1 Cm2/

jEr1.t0/ � Er2.t0/j :

In the case where inequality (30) is true, we obtain

inf
s�t0

jEv1.s/ � Ev2.s/j > 0:

Since

jEr1.t/ � Er2.t/j � jEr1.t0/ � Er2.t0//j C .t � t0/ inf
s�t0

jEv1.s/ � Ev2.s/j; t � t0;

relation (31) is true.
Thus, in the case where inequality (30) is true, the distance between the points M1 and M2 tends to C1 as

t ! C1:

Thus, we have proved the assertion that the distance between the points M1 and M2 tends either to 0 or to
C1 as t ! C1 in the case where the sector velocity is equal to zero.

9. Impossibility of Bounded Motion of the Point M1 Relative to the Point M2 that Cannot Be Arbitrarily
Close in the Case of Nonzero Sector Velocity

We fix arbitrary positive numbers a; a1; a2; and b: Let a1 < a2 and b < c:
Assume that there exists a motion of the points M1 and M2 such that

jEr1.t/j  a; t � t0; (34)

a1  jEr1.t/ � Er2.t/j  a2; t � t0;

jEv1.t/ � Ev2.t/j  b; t � t0;

maxfjEv1.t/j; jEv2.t/jg  b; t � t0; (35)
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and

0 6D jEv� .t0/j:

Thus, according to (20), the transverse component Ev⇤⇤.t/ of the velocity of motion Ev.t/ D Ev1.t/ � Ev2.t/ of
the point M1 relative to the point M2 satisfies the relation

2jEv� .t0/j
a2

 2jEv� .t/j
a2

 jEv⇤⇤.t/j  2jEv� .t/j
a1

; t � t0: (36)

This yields

0 < inf
t�t0

jEv1.t/ � Ev2.t/j: (37)

According to inequalities (34)–(35) and (37), there exist positive numbers Å; ƒ1; ƒ2 (ƒ1 < ƒ2 ), and ‡
such that

maxf⌧1.t/; ⌧2.t/g  Å; t � t0;

ƒ1  min
¶jEr1.t � ⌧1.t// � Er2.t/j; jEr2.t � ⌧2.t// � Er1.t/j

·

 max
¶jEr1.t � ⌧1.t// � Er2.t/j; jEr2.t � ⌧2.t// � Er1.t/j

·  ƒ2; t � t0;

max
¸ˇ̌
ˇ EF1.t/

ˇ̌
ˇ ;
ˇ̌
ˇ EF2.t/

ˇ̌
ˇ
π
 ‡; t � t0: (38)

Moreover, in view of the fact that the sector velocity increases, by using equality (17), we get

1

m1

ˇ̌
ˇ EF1;⇤⇤.t/

ˇ̌
ˇC 1

m2

ˇ̌
ˇ EF2;⇤⇤.t/

ˇ̌
ˇ > 0 for all t � t0: (39)

Relation (39) means that the sector velocity of revolution of the point M1 around the point M2 is nonzero at any
time t � t0:

We now show that

inf
t�t0

✓
1

m1

ˇ̌
ˇ EF1;⇤⇤.t/

ˇ̌
ˇC 1

m2

ˇ̌
ˇ EF2;⇤⇤.t/

ˇ̌
ˇ
◆
> 0: (40)

Consider the set M of ordered quadruples of functions
�Er1.t/; Er2.t/; Ev1.t/; Ev2.t/

�
continuous on the segment

Œt0 �Å; t0 CÅç; where Ev1.t/ D PEr1.t/ and Ev2.t/ D PEr2.t/; each of which describes the motion of the points M1

and M2 on the segment Œt0 �Å; t0 CÅç and satisfies relations (34)–(38).
In view of relations (34)–(38) and the equations of system (10) used to describe the motion of the points

M1 and M2; the quadruples .Er1.t/; Er2.t/; Ev1.t/; Ev2.t// of functions from the set M are uniformly bounded and
equicontinuous [13] on the segment Œt0 �Å; t0 CÅç and, hence, the set M is closed. By virtue of the generalized
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Arzela theorem [13], the bounded and closed set M is compact. According to relations (5) and (7) and the
equations of system (38), the scalar quantity

min
t2Œt0;t0CÅç

✓
1

m1

ˇ̌
ˇ EF1;⇤⇤.t/

ˇ̌
ˇC 1

m2

ˇ̌
ˇ EF2;⇤⇤.t/

ˇ̌
ˇ
◆

continuously depends on .Er1.t/; Er2.t/; Ev1.t/; Ev2.t// 2 M: Hence, by the Weierstrass theorem on maximum and
minimum values (see [7, p. 176] and [14, p. 34]), there exists a point .Er⇤1 .t/; Er⇤2 .t/; Ev⇤1 .t/; Ev⇤2 .t// 2 M at which

min
t2Œt0;t0CÅç

✓
1

m1

ˇ̌
ˇ EF1;⇤⇤.t/

ˇ̌
ˇC 1

m2

ˇ̌
ˇ EF2;⇤⇤.t/

ˇ̌
ˇ
◆

takes the minimum value. According to the condition A, this value cannot be equal to zero. Hence, the motion of
the points M1 and M2 described by the vector functions Er1.t/ and Er2.t/ and considered at the beginning of this
section satisfies relation (40).

Thus,
ˇ̌Ev� .t/

ˇ̌! C1 as t ! C1; which contradicts (36) and the inequalities
ˇ̌Ev⇤⇤.t/

ˇ̌
< c; t � t0:

Therefore, the assumption about the existence of a bounded motion of the point M1 relative to the point M2

that cannot be arbitrarily close is not true.

We now describe the motion of the point M1 relative to the point M2 under the condition A.

Proposition 3. We have either lim inft!C1 d.M1;M2/ D 0 (in this case, two bodies whose sizes are not
equal to zero collide within a finite time interval) or lim supt!C1 d.M1;M2/ D C1:

This implies that the motion of the point M1 relative to the point M2 under the condition A does not obey the
third Kepler law because the trajectory of motion of the point M1 relative to the point M2 is not an ellipse.

Therefore, according to the results obtained in Secs. 5 and 7–9, the motions of planets in the Solar system do
not obey the Kepler laws.

In view of relation (39) (in this case, the sector velocity of the point M1 relative to the point M2 is strictly
increasing), the trajectories of motion of the point M1 relative to the point M2 in Proposition 3 are spiral on finite
time intervals.

10. Existence of Unbounded Spiral Trajectories

First, we show that the set of trajectories of motion of the points M1 and M2 each of which does not belong
to the straight line and d.M1;M2/! C1 as t ! C1 is nonempty.

We now use relation (19) to represent the velocity Ev.t/ D Ev1.t/ � Ev2.t/ via the radial and transverse compo-
nents Ev⇤.t/ and Ev⇤⇤.t/:

Consider two vectors Ea1 and Ea2 satisfying the conditions presented in what follows.

We now show that, in the case where the vectors Ea1 � Ea2 and Er1.t0/ � Er2.t0/ have the same direction, the
quantities jEa1 � Ea2j and jEr1.t0/ � Er2.y0/j are sufficiently large, the quantity

" D sup
s2Œt0�⌧1.t0/;t0ç

jEv1.s/ � Ea1j C sup
s2Œt0�⌧2.t0/;t0ç

jEv2.s/ � Ea2j

C sup
s2Œt0�⌧1.t0/;t0ç

jEr1.s/ � Er1.t0/j C sup
s2Œt0�⌧2.t0/;t0ç

jEr2.s/ � Er2.t0/j (41)
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is sufficiently small,

Ev� .t0/ 6D E0; (42)

and the inequality

.
ˇ̌Ea1 � Ea2

ˇ̌ � "/2 > 16G.m1 Cm2/ˇ̌Er1.t0/ � Er2.t0/
ˇ̌ (43)

is true, we can write

lim
t!C1

ˇ̌Er1.t/ � Er2.t/
ˇ̌ D C1: (44)

We use the relation

d.Ev1.t/ � Ev2.t//
dt

D 1

m1

EF1.t/ � 1

m2

EF2.t/; t � t0: (45)

In view of (5) and (7), this relation follows from the equations of system (10). By virtue of (45), for all t � t0; we
get

Ev.t/ D Ev.t0/C
tZ

t0

✓
1

m1

EF1.s/ � 1

m2

EF2.s/

◆
ds: (46)

By
�Ea; Eb � we denote the scalar product of the vectors Ea and Eb:

We now scalarly multiply both sides of equality (46) by the vector Ea1 � Ea2: This yields

�Ea1 � Ea2; Ev.t/
� D �Ea1 � Ea2; Ev.t0/

�C
0

@Ea1 � Ea2;
tZ

t0

✓
1

m1

EF1.s/ � 1

m2

EF2.s/

◆
ds

1

A; t � t0:

This implies that

�Ea1 � Ea2; Ev⇤.t/
� D �Ea1 � Ea2; Ea1 � Ea2

�C �Ea1 � Ea2; Ev.t0/ � .Ea1 � Ea2/
�

C
0

@Ea1 � Ea2;
tZ

t0

✓
1

m1

EF1.s/ � 1

m2

EF2.s/

◆
ds

1

A; t � t0;

whence we get

jEa1 � Ea2j jEv⇤.t/j D jEa1 � Ea2j2 C
�Ea1 � Ea2; Ev.t0/ � .Ea1 � Ea2/

�
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C
0

@Ea1 � Ea2;
tZ

t0

✓
1

m1

EF1.s/ � 1

m2

EF2.s/

◆
ds

1

A; t � t0: (47)

Since the vectors Ea1 � Ea2 and Er1.t0/ � Er2.t0/ have the same direction, the points M1 and M2 attract each
other by the gravity force, the quantity " is sufficiently small, the function Ev.t/ is continuous, and there exists an
interval Œt0; t1/ on which the quantity jEv⇤.t/j monotonically decreases and

jEv⇤.t/j > 0 for all t 2 Œt0; t1/: (48)

Assume that

ˇ̌Ev⇤.t1/
ˇ̌ D 0: (49)

In view of relations (41) and (47), we find

jEa1 � Ea2j
ˇ̌Ev⇤.t/

ˇ̌ � jEa1 � Ea2j2 � jEa1 � Ea2j"

� jEa1 � Ea2j
tZ

t0

ˇ̌
ˇ̌ 1
m1

EF1.s/ � 1

m2

EF2.s/

ˇ̌
ˇ̌ ds; t 2 Œt0; t1/:

Hence,

jEv⇤.t/j � jEa1 � Ea2j � " �
tZ

t0

ˇ̌
ˇ̌ 1
m1

EF1.s/ � 1

m2

EF2.s/

ˇ̌
ˇ̌ ds; t 2 Œt0; t1/: (50)

We now estimate the quantity

tZ

t0

ˇ̌
ˇ̌ 1
m1

EF1.s/ � 1

m2

EF2.s/

ˇ̌
ˇ̌ ds

from above for t 2 Œt0; t1/: To this end, we use the equalities

ˇ̌
d jEr1.s/ � Er2.s/j

ˇ̌ D
ˇ̌
ˇ̌d
q
.x1.s/ � x2.s//2 C .y1.s/ � y2.s//2 C .z1.s/ � z2.s//2

ˇ̌
ˇ̌

D
ˇ̌
ˇ̌
ˇ

�Er1.s/ � Er2.s/; Ev1.s/ � Ev2.s/
�

jEr1.s/ � Er2.s/j ds

ˇ̌
ˇ̌
ˇ D

ˇ̌Ev⇤.s/
ˇ̌
ds; t 2 Œt0; t1/; (51)

and the fact that, according to (51),

tZ

t0

ˇ̌
ˇ̌ 1
m1

EF1.s/ � 1

m2

EF2.s/

ˇ̌
ˇ̌ ds D

tZ

t0

ˇ̌
ˇ̌ 1
m1

EF1.s/ � 1

m2

EF2.s/

ˇ̌
ˇ̌
ˇ̌
d jEr1.s/ � Er2.s/j

ˇ̌

jEv⇤.s/j ; t 2 Œt0; t1/:
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Since
ˇ̌
ˇ̌�����!M1M

⇤
1

ˇ̌
ˇ̌C

ˇ̌
ˇ̌�����!M ⇤

1M2

ˇ̌
ˇ̌ �

ˇ̌
ˇ
����!
M1M2

ˇ̌
ˇ ;

ˇ̌
ˇ̌�����!M2M

⇤
2

ˇ̌
ˇ̌C

ˇ̌
ˇ̌�����!M ⇤

2M1

ˇ̌
ˇ̌ �

ˇ̌
ˇ
����!
M1M2

ˇ̌
ˇ

(by virtue of the triangle inequality; see Fig. 3),

ˇ̌
ˇ
����!
M1M2

ˇ̌
ˇ D jEr1.t/ � Er2.t/j;

ˇ̌
ˇ̌�����!M ⇤

1M2

ˇ̌
ˇ̌ D jEr1.t � ⌧1.t// � Er2.t/j;

ˇ̌
ˇ̌�����!M⇤

2M1

ˇ̌
ˇ̌ D jEr2.t � ⌧2.t// � Er1.t/j;

and
ˇ̌
ˇ̌�����!M1M

⇤
1

ˇ̌
ˇ̌ 

ˇ̌
ˇ̌�����!M⇤

1M2

ˇ̌
ˇ̌ ;

ˇ̌
ˇ̌�����!M2M

⇤
2

ˇ̌
ˇ̌ 

ˇ̌
ˇ̌�����!M ⇤

2M1

ˇ̌
ˇ̌

(because the velocities of the points M1 and M2 cannot exceed the velocity of gravitation c/; we obtain

jEr1.t � ⌧1.t// � Er2.t/j � jEr1.t/ � Er2.t/j
2

and jEr2.t � ⌧2.t// � Er1.t/j � jEr1.t/ � Er2.t/j
2

; t � t0:

Therefore,

ˇ̌
ˇ̌ 1
m1

EF1.t/ � 1

m2

EF2.t/

ˇ̌
ˇ̌ 

ˇ̌
ˇ EF1.t/

ˇ̌
ˇ

m1
C
ˇ̌
ˇ EF2.t/

ˇ̌
ˇ

m2

D Gm2

jEr2.t � ⌧2.t// � Er1.t/j2 C Gm1

jEr1.t � ⌧1.t// � Er2.t/j2

 4G.m1 Cm2/

jEr1.t/ � Er2.t/j2 ; t � t0:

By using relations (48) and (51) and the fact that the function jEv⇤.t/j on Œt0; t1/ monotonically decreases, we
get

tZ

t0

ˇ̌
ˇ̌ 1
m1

EF1.s/ � 1

m2

EF2.s/

ˇ̌
ˇ̌ ds D

tZ

t0

ˇ̌
ˇ̌ 1
m1

EF1.s/ � 1

m2

EF2.s/

ˇ̌
ˇ̌ jd.Er1.s/ � Er2.s//j

jEv⇤.s/j


tZ

t0

4G.m1 Cm2/

jEr1.s/ � Er2.s/j2
jd jEr1.s/ � Er2.s/jj

jEv⇤.s/j

 4G.m1 Cm2/

jEv⇤.t/j
ˇ̌
ˇ̌ 1

jEr1.t0/ � Er2.t0/j �
1

jEr1.t/ � Er2.t/j
ˇ̌
ˇ̌
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for all t 2 Œt0; t1/: According to (50), we find

jEv⇤.t/j � jEa1 � Ea2j � " � 1

jEv⇤.t/j
ˇ̌
ˇ̌ 4G.m1 Cm2/

jEr1.t0/ � Er2.t0/j �
4G.m1 Cm2/

jEr1.t/ � Er2.t/j
ˇ̌
ˇ̌ ; t 2 Œt0; t1/: (52)

In view of (48), the quantity jEr1.t/� Er2.t/j is strictly increasing on the segment Œt0; t1ç: By virtue of (52), we
arrive at the following relation:

jEv⇤.t/j � jEa1 � Ea2j � " � 4G.m1 Cm2/

jEv⇤.t/j jEr1.t0/ � Er2.t0/j ; t 2 Œt0; t1/: (53)

We now estimate the quantity jEv⇤.t/j on the interval Œt0; t1/ from below. In view of (48) and (53), we find

jEv⇤.t/j2 � .jEa1 � Ea2j � "/jEv⇤.t/j � � 4G.m1 Cm2/

jEr1.t0/ � Er2.t0/j ; t 2 Œt0; t1/:

Hence,

✓
jEv⇤.t/j � jEa1 � Ea2j � "

2

◆2

� .jEa1 � Ea2j � "/2
4

� 4G.m1 Cm2/

jEr1.t0/ � Er2.t0/j ; t 2 Œt0; t1/:

By using relations (43), (50), and (53), we get

jEv⇤.t/j � jEa1 � Ea2j � "
2

C
s
.jEa1 � Ea2j � "/2

4
� 4G.m1 Cm2/

jEr1.t0/ � Er2.t0/j ; t 2 Œt0; t1/: (54)

Since the function jEv⇤.t/j is continuous and the number

� D jEa1 � Ea2j � "
2

C
s
.jEa1 � Ea2j � "/2

4
� 4G.m1 Cm2/

jEr1.t0/ � Er2.t0/j

is positive, inequality (54) contradicts (49).
Thus, the assumption of validity of relation (49) is not true.
Hence, inequality (48) is true for t1 D C1:

Further, since the inequality jEv⇤.t/j � � is true for any t � t0; it is clear that relation (44) takes place.
Thus, the set of trajectories of motion of the points M1 and M2 for each of which d.M1;M2/ ! C1 as

t ! C1 and Ev� .t/ 6D E0; t � t0; is nonempty. In view of (42) (in this case, jEv⇤⇤.t/j > 0 for all t � t0 ), all
trajectories of motion of the point M1 relative to the point M2 from this set are spiral.

11. Instability of Unbounded Motions of the Bodies

According to the results presented above, the motion of two bodies in the real space with finite velocity of
gravitation does not obey the Kepler laws. Indeed, the bodies either collide or the trajectories of motion of one
body relative to the other body become unbounded.

We study the instability of motion of these bodies.
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By

Eri .t; t0; E'0;1; E'0;2; E'1;1; E'1;2/; i D 1; 2; (55)

we denote the solutions of the system of equations (10) satisfying the initial conditions (11).
A motion of the points M1 and M2 described by the vector functions (55) is called Lyapunov stable if, for

any arbitrarily small number " > 0; there exists a number ı > 0 such that, for any other motion of these points
described by the vector functions

EOri
⇣
t; t0; EO'0;1; EO'0;2; EO'1;1; EO'1;2

⌘
; i D 1; 2 (56)

�
here, EO'0;1; EO'0;2; EO'1;1; and EO'1;2 are continuous vector functions similar to the functions E'0;1; E'0;2; E'1;1; and
E'1;2

�
, the inequality

sup
s2Œt0�⌧1.t0/;t0ç

⇣ˇ̌
ˇ E'0;1.s/ � EO'0;1.s/

ˇ̌
ˇC

ˇ̌
ˇ E'1;1.s/ � EO'1;1.s/

ˇ̌
ˇ
⌘

C sup
s2Œt0�⌧2.t0/;t0ç

⇣ˇ̌
ˇ E'0;2.s/ � EO'0;2.s/

ˇ̌
ˇC

ˇ̌
ˇ E'1;2.s/ � EO'1;2.s/

ˇ̌
ˇ
⌘
< ı (57)

implies that

2X

iD1

ˇ̌
ˇEri

�
t; t0; E'0;1; E'0;2; E'1;1; E'1;2

� � EOri
⇣
t; t0; EO'0;1; EO'0;2; EO'1;1; EO'1;2

⌘ˇ̌
ˇ < "; t � t0:

A motion of the points M1 and M2 described by the vector functions (55) is called Lyapunov unstable if
there exists a number " > 0 such that, for any arbitrarily small number ı > 0; there exist motions of these points
described by the vector functions (56) and time t1 > t0 for which relations (57) and

2X

iD1

ˇ̌
ˇEri

�
t1; t0; E'0;1; E'0;2; E'1;1; E'1;2

� � EOri
⇣
t1; t0; EO'0;1; EO'0;2; EO'1;1; EO'1;2

⌘ˇ̌
ˇ > "

are true.
It is clear that the motion of points M1 and M2 described by the vector functions (55) is unstable if the motion

of point M1 relative to the point M2 is unstable, i.e., there exists a number " > 0 such that, for any arbitrarily
small number ı > 0; these exist a motion of these points described by the vector functions (56) and time t1 > t0
for which relations (57) are true and, for the functions

Er �t; t0; E'0;1; E'0;2; E'1;1; E'1;2
� D Er1

�
t; t0; E'0;1; E'0;2; E'1;1; E'1;2

� � Er2
�
t; t0; E'0;1; E'0;2; E'1;1; E'1;2

�
;

EOr
⇣
t; t0; EO'0;1; EO'0;2; EO'1;1; EO'1;2

⌘
D EOr1

⇣
t; t0; EO'0;1; EO'0;2; EO'1;1; EO'1;2

⌘
� EOr2

⇣
t; t0; EO'0;1; EO'0;2; EO'1;1; EO'1;2

⌘
;

the following inequality is true:

ˇ̌
ˇEr �t1; t0; E'0;1; E'0;2; E'1;1; E'1;2

� � EOr
⇣
t1; t0; EO'0;1; EO'0;2; EO'1;1; EO'1;2

⌘ˇ̌
ˇ > ":
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In what follows, we demonstrate the instability of motion of the point M1 relative to the point M2 in the case
where the trajectories of motion of these points are unbounded.

Assume that the vector function Er.t; t0; E'0;1; E'0;2; E'1;1; E'1;2/ is unbounded, i.e.,

lim sup
t!C1

d.M1;M2/ D C1:

Without loss of generality, we can assume that the trajectory of motion of the point M1 relative to the point
M2 is two-dimensional and lies in a certain plane E containing the center of mass of the points M1 and M2 (point
O ). In the plane E; we introduce a Cartesian coordinate system centered at the point O:

We fix an arbitrary angle ! 2 .0; 2⇡ç and consider the operator A! of rotation of points of the plane E

around the center of rotation (point O ) by an angle ! . This operator is given by the matrix
✓
cos! � sin!
sin! cos!

◆

[15, p. 286]. This means that if Eb D A! Ea and Ea D .a1; a2/; then Eb D .a1 cos! � a2 sin!; a1 sin! C a2 cos!/;
where a1 and a2 are the coordinates of the vector Ea:

Consider a function Er.t; t0; A! E'0;1; A! E'0;2; A! E'1;1; A! E'1;2/: Here, A! E'0;1; A! E'0;2; A! E'1;1; and A! E'1;2
are functions A! E'0;1.s/; A! E'0;2.s/; A! E'1;1.s/; and A! E'1;2.s/; respectively, such that

Eri
�
s; t0; A! E'0;1; A! E'0;2; A! E'1;1; A! E'1;2

� D A! E'0;i .s/; s 2 Œt0 � ⌧i .t0/; t0ç; i D 1; 2; (58)

PEr �s; t0; A! E'0;1; A! E'0;2; A! E'1;1; A! E'1;2
� D A! E'1;i .s/; s 2 Œt0 � ⌧i .t0/; t0ç; i D 1; 2: (59)

It is easy to see that the vector functions

A!Eri
�
t; t0; E'0;1; E'0;2; E'1;1; E'1;2

�
; i D 1; 2;

such that

A!Eri
�
s; t0; E'0;1; E'0;2; E'1;1; E'1;2

� D A! E'0;i .s/; s 2 Œt0 � ⌧i .t0/; t0ç; i D 1; 2;

and
�
A!Eri

�
s; t0; E'0;1; E'0;2; E'1;1; E'1;2

��0 D A! E'1;i .s/; s 2 Œt0 � ⌧i .t0/; t0ç; i D 1; 2;

are also solutions of the system of equations (10).
In view of the uniqueness of solution of the system of equations (10) satisfying conditions (58) and (59), the

equalities

Eri
�
t; t0; A! E'0;1; A! E'0;2; A! E'1;1; A! E'1;2

� D A!Eri
�
t; t0; E'0;1; E'0;2; E'1;1; E'1;2

�
; i D 1; 2; (60)

are true. Hence,

A!Er
�
t; t0; E'0;1; E'0;2; E'1;1; E'1;2

� D Er �t; t0; A! E'0;1; A! E'0;2; A! E'1;1; A! E'1;2
�
:

Consider the trajectories of motion of the point M1 relative to the point M2 corresponding to the functions

Er �t; t0; E'0;1; E'0;2; E'1;1; E'1;2
�

(61)
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Fig. 5. Spiral motion of the point M1 relative to the point M2:
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Fig. 6. Rectilinear motion of the point M1 relative to the point M2:

and

Er �t; t0; A! E'0;1; A! E'0;2; A! E'1;1; A! E'1;2
�

(62)

(see Fig. 5 for the case of spiral motion and Fig. 6 for the case of rectilinear motion).
The trajectories with points A1 and A2 correspond to functions (61), while the trajectories with points B1

and B2 correspond to functions (62).
In view of (60), the second trajectories are obtained from the first trajectories by the anticlockwise rotation by

an angle ! about the point O:
Note that

��!
OA1 D Er �t0; t0; E'0;1; E'0;2; E'1;1; E'1;2

�
;

��!
OA2 D Er �t; t0; E'0;1; E'0;2; E'1;1; E'1;2

�
;

(63)

��!
OB1 D Er �t0; t0; A! E'0;1; A! E'0;2; A! E'1;1; A! E'1;2

�
;

��!
OB2 D Er �t; t0; A! E'0;1; A! E'0;2; A! E'1;1; A! E'1;2

�
(64)

and the angles between the vectors
��!
OA1 and

��!
OB1 and between the vectors

��!
OA2 and

��!
OB2 are equal to !:
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Since the trajectory of motion of the point M1 relative to the point M2 is unbounded, for any ! > 0; we
have

lim sup
t!C1

d.A2; B2/ D C1

and, according to (63) and (64),

lim sup st!C1
ˇ̌
ˇEr�t; t0; E'0;1; E'0;2; E'1;1; E'1;2

�

� Er�t; t0; A! E'0;1; A! E'0;2; A! E'1;1; A! E'1;2
�ˇ̌
ˇ D C1 for all ! > 0: (65)

Note that lim
!!0

A! Ea D Ea for every vector Ea: In view of the continuity of the functions E'0;1.s/ and E'1;1.s/ on
Œt0 � ⌧1.t0/; t0ç and the functions E'0;2.s/ and E'1;2.s/ on Œt0 � ⌧2.t0/; t0ç; we get

lim
!!0

 
sup

s2Œt0�⌧1.t0/;t0ç

.jA! E'0;1.s/ � E'0;1.s/j C jA! E'1;1.s/ � E'1;1.s/j/

C sup
s2Œt0�⌧2.t0/;t0ç

.jA! E'0;2.s/ � E'0;2.s/j C jA! E'1;2.s/ � E'1;2.s/j/
!
D 0:

Thus, relation (65) is true for an arbitrarily small quantity

ı D sup
s2Œt0�⌧1.t0/;t0ç

.jA! E'0;1.s/ � E'0;1.s/j C jA! E'1;1.s/ � E'1;1.s/j/

C sup
s2Œt0�⌧2.t0/;t0ç

.jA! E'0;2.s/ � E'0;2.s/j C jA! E'1;2.s/ � E'1;2.s/j/ > 0:

This means that the motion of the point M1 relative to the point M2 is unstable if the trajectory of motion of
M1 relative to M2 is unbounded.

If the trajectory of motion of one body relative to another body is bounded, then the bodies collide within a
finite period of time. The motion of bodies in this case can be also regarded as unstable because the states of the
bodies undergo qualitative changes at the time of their collision.

12. Conclusions and Remarks

1. The results of our investigations of the motion of two bodies of arbitrary masses show that, in the real
world with finite velocity of gravitation, the celestial bodies move according to the laws that differ from the laws
of classical celestial mechanics.

2. For two bodies, the typical trajectories of motion are spiral. In celestial mechanics, the attention given to
trajectories of this type is insufficient because they do not agree with the Kepler laws. The set of these motions is
nonempty, which is confirmed, e.g., by the presence of spiral galaxies, including, in particular, our galaxy and the
Andromeda Nebula. According to the results of our investigations, binary stars and the systems formed by a star
and a black hole also move along spiral or rectilinear curves and do not obey the Kepler laws.
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3. On the basis of the data of observations of celestial objects, it is difficult to detect the deviations of the
actual trajectories of motion from the trajectories of motion given by the Kepler laws. The indicated deviations can
be very small (these deviations depend on the states of celestial objects at the “initial” time). Thus, for one year,
the distances between the Earth and the Sun and between the Earth and the Moon increase by about 15 cm and
3.82 cm, respectively [16].

The deviations from the elliptic (Kepler) trajectories of motion of two bodies are explained by the increase in
the sector velocity of one body relative to the other body caused by the finite velocity of gravitation. Note that, in
[16], the increase in the distances between the Earth and the Sun and between the Earth and the Moon is explained
by the tidal interaction. However, even in the ideal case where the masses of bodies are concentrated at the centers
of mass (in this case, the tidal interaction is absent), according to the presented theory of motion of the bodies, the
distance between bodies may also increase (or decrease). This shows that the causes of increase in the distance
between celestial objects discussed in [16] are incomplete and that it is reasonable to consider the law of increase
in the sector velocity as one of these causes.

The indicated deviations (15 cm and 3.82 cm) are very small as compared with the distances between the
Earth and the Sun and between the Earth and the Moon (1:495978706960 ⇥ 1011 ˙ 0:1 m and 3:844 ⇥ 108 m,
respectively). The application of Kepler’s laws to actual systems with finite velocity of gravitation whose sizes are
similar to the sizes of Solar system does not lead to noticeable errors for small time intervals. However, for large
time intervals (first of all, in the case of unbounded trajectories of motion of the bodies), the errors can be quite
large.

4. The application of the ordinary differential equations (1) for the investigation of the dynamics of motion of
two bodies for large time intervals may lead to significant differences between the results of theoretical analysis and
the actual data of observations. These deviations can be removed by using the differential equations with delayed
argument (10). Moreover, the instability of the unbounded trajectories of motion of the bodies should also be taken
into account.
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