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WEAKLY NONLINEAR BOUNDARY-VALUE PROBLEMS FOR THE FREDHOLM
INTEGRAL EQUATIONS WITH DEGENERATE KERNELS IN BANACH SPACES

V. F. Zhuravlev UDC 517.983

We consider weakly nonlinear boundary-value problems for the Fredholm integral equations with degen-
erate kernel in Banach spaces, establish necessary and sufficient conditions for the existence of solutions
of these problems, and construct convergent iterative procedures for the determination of solutions of
these boundary-value problems.

The present paper is a continuation of our investigations of the conditions of solvability and construction of
the solutions of weakly nonlinear integral Fredholm equations with degenerate kernels in Banach spaces originated
in [1].

Constructive methods for the analysis of weakly nonlinear boundary-value problems for systems of functional-
differential and other equations traditionally occupy one of important places in the qualitative theory of differential
equations and continue the development of the methods of perturbation theory and, in particular, of the methods of
Lyapunov–Poincaré small parameter [2, 3].

These methods were successfully developed in [4, 5] and applied to the study of weakly nonlinear boundary-
value problems for systems of ordinary differential equations [6] and to the construction of bounded solutions of
weakly nonlinear differential equations in Banach spaces [7].

In finite-dimensional Euclidean spaces, weakly nonlinear integrodifferential equations and Fredholm integral
equations with nondegenerate kernels, which are not always solvable, were studied in [8, 9].

A specific feature of the investigation of boundary-value problems for systems of integral equations in Banach
spaces is connected with the fact that their linear part is an operator that does not have the inverse operator [10],
which significantly complicates the study of boundary-value problems for equations of this kind. Therefore, the
problem of investigation of the conditions of existence and construction of the general solutions of weakly nonlinear
boundary-value problems for Fredholm integral equations with degenerate kernel that are not always solvable in
Banach spaces is topical.

Statement of the Problem

We consider a weakly nonlinear boundary-value problem

.Lz/.t/ WD z.t/ �M.t/

bZ

a

N.s/z.s/ds D f .t/C "

bZ

a

K.t; s/Z.z.s; "/; s; "/ds; (1)

`z.�/ D ˛ C "J.z.�; "/; "/: (2)

Here, the operator-valued functions M.t/ and N.t/ are defined on a finite interval I D Œa; bç; act from the
Banach space B into the same space, and are strongly continuous with the norms
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jjjM jjj D sup
t2I

kM.t/kB D M0 < 1 and jjjN jjj D sup
t2I

kN.t/kB D N0 < 1:

The operator-valued function K.t; s/ is defined in the square I ⇥ I; acts from the Banach space B into the same
space with respect to each variable, and is strongly continuous with respect to each variable with the norm

jjjKjjj D sup
t2I

kK.t; s/kB D K0 < 1:

Moreover, Z.z.t; "/; t; "/ is a nonlinear z bounded operator function, J.z.�; "/; "/ is a nonlinear z vector func-
tional, which has a strongly continuous Fréchet derivative with respect to z in a neighborhood of the generating
solution kz � z0k  q and is continuous in the set of variables z; t; "; q and "0 (these are sufficiently small
constants); Z.0; t; 0/ D 0; Z

0
z.0; t; 0/ D 0; J.0; 0/ D 0; J

0
z.0; 0/ D 0I f .t/ is a vector-valued function in the

Banach space C.I;B/ of continuous vector functions on the interval I; and ˛ is an element of the Banach space
B1W˛ 2 B1:

Parallel with the problem (1), (2) we consider a linear generating boundary-value problem

z0.t/ �M.t/

bZ

a

N.s/z0.s/ds D f .t/; (3)

`z0.�/ D ˛; (4)

which is obtained from (1), (2) for " D 0:

The problem is to establish necessary and sufficient conditions for the existence of solutions of the weakly non-
linear boundary-value problem (1), (2). We seek solutions in the class of vector-valued functions z.t; "/ continuous
both in the variable t and in the parameter " and turning into the generating solution of the linear boundary-value
problem (3), (4) for " D 0 .

Auxiliary Information

Suppose that a bounded linear operator

D D IB �
Z b

a

N.s/M.s/ ds; DWB ! B

is generalized invertible. Then there exist (see [11, 12]) a bounded projector PN.D/WB ! N.D/ that projects a
Banach space B onto the null space N.D/ of the operator D , a bounded projector PYD

WB ! YD that projects
a Banach space B onto the subspace YD D B R.D/; and a bounded generalized inverse operator D� for the
operator D [5, 4, 13].

The class of bounded linear generalized invertible operators acting from the Banach space B into the Banach
space B is denoted by GI.B;B/: It is obvious that the operator belonging to GI.B;B/ is normally solvable [14].

It is shown in [15] that if the operator D 2 GI.B;B/; then, under the condition

M.t/PYD

bZ

a

N.s/f .s/ds D 0
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and only under this condition, the operator gather (3) is solvable and has a family of solutions

z0.t/ D M.t/PN.D/c C .L

�
f /.t/; (5)

where c is an arbitrary element of the Banach space B and

.L

�
f /.t/ D f .t/CM.t/D

�
bZ

a

N.s/f .s/ds

is a bounded generalized operator inverse to the integral operator L [10].
Substituting the solution (5) of the inhomogeneous operator gather (3) in the boundary condition (4), we arrive

at the operator gather

Qc C f̀ .�/C `M.�/D�
bZ

a

N.s/f .s/ds D ˛;

where Q D `M.�/PN.D/WB ! B1 is a bounded linear operator.
Let the operator Q 2 GI.B;B1/: Also let PN.Q/WB ! N.Q/ be a bounded projector of the Banach space B

onto the null space N.Q/ of the operator Q; let PYQ
WB1 ! YQ be a bounded projector of the Banach space B1

onto the subspace YQ D B1  R.Q/; and let Q� be a bounded generalized operator inverse to the operator Q:

Theorem 1 [15]. Let D 2 GI.B;B/ and Q 2 GI.B;B1/:

Then the homogeneous .f .t/ D 0; ˛ D 0/ boundary-value problem corresponding to (3), (4) has a family of
solutions

z.t/ D f
M .t/c;

where f
M .t/ D M.t/PN.D/PN.Q/ and c is an arbitrary element of the Banach space B:

The inhomogeneous boundary-value problem (3), (4) is solvable for those and only those f .t/ 2 C.I;B/ and
˛ 2 B1 that satisfy the system of conditions

8
ˆ̂̂
<̂

ˆ̂̂
:̂

M.t/PYD

Z b

a

N.s/f .s/ds D 0;

PYQ

"
˛ � f̀ .�/ � `M.�/D�

Z b

a

N.s/f .s/ds

#
D 0:

(6)

Moreover, this boundary-value problem has a family of solutions

z0.t/ D f
M.t/c C .Gf /.t/CM.t/PN.D/Q

�
˛; (7)

where

.Gf /.t/ WD ⇥
f .t/ �M.t/PN.D/Q

�
f̀ .�/⇤
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CM.t/

⇥
IB � PN.D/Q

�
`M.�/⇤D�

bZ

a

N.s/f .s/ds (8)

is a generalized Green operator of the semihomogeneous .˛ D 0/ boundary-value problem corresponding to (3),
(4).

It is worth noting that the first condition in (6) is always satisfied if the condition

PYD

bZ

a

N.s/f .s/ds D 0

is satisfied.
To solve the problem, we need information about the conditions of solvability and about the representation of

solutions of the operator gathers with a linear operator B0; i.e., with an operator matrix

B0 D

B1

B2

�
;

where B1WB ! B and B2WB ! B1 are linear bounded generalized invertible operators [11].
In this case [11, 12], there are bounded projectors PN.B1/WB ! N.B1/ and PN.B2/WB ! N.B2/ onto the

null spaces of the operators B1 and B2; the bounded projectors PYB1
WB ! YB1

and PYB2
WB1 ! YB2

onto the
subspaces YB1

D B  R.B1/ and YB2
D B1  R.B2/; respectively, and also the bounded generalized inverse

operators B�
1 and B

�
2 :

Thus, by using [16] for the system of operator equations

B0c D

B1

B2

�
c D


b1

b2

�
; b1 2 B; b2 2 B1; (9)

we conclude that the following theorem is true:

Theorem 2 [17]. Let B1 2 GI.B;B/ and B2 2 GI.B;B1/: Then the system of operator gathers (9) is
solvable if and only if col Œb1; b2ç satisfies the condition

PYB0


b1

b2

�
D 0;

under which this system has a family of solutions

c D PN.B0/ Oc C B

�
0


b1

b2

�
;

where

PYB0
D


IB � B1PN.B2/B

�
1 �B1B

�
2

0 PYB2

�
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is a bounded projector onto the subspace YB0
D IB⇥B1

 R.B0/; PN.B0/ D PN.B2/PN.B1/ is a bounded projector
onto the null space N.B0/ of the operator B0; Oc is an arbitrary element of the Banach space B; and

B

�
0 D ⇥

PN.B2/B
�
1 B

�
2

⇤

is a bounded generalized operator inverse to the operator B0:

Main Result

Using the generalized Green operator (8) of a linear semihomogeneous boundary-value problem, we seek the
existence conditions for the solutions z D z.t; "/ of the boundary-value problem (1), (2) defined in the class of
vector functions z.�; "/ 2 C.I;B/; z.t; �/ 2 C.0; "0ç; which turn into one of the generating solutions z0.t; c/ for
" D 0:

In (1), (2), we perform the change of variables

z.t; "/ D z0.t; c/C x.t; "/:

As a result, for the deviation x.t; "/ from the generating solution, we obtain the following boundary-value problem:

x.t/ �M.t/

bZ

a

N.s/x.s/ds D "

bZ

a

K.t; s/Z.z0.s; c/C x.s; "/; s; "/ ds; (10)

`x.�/ D "J

�
z0.�; c/C x.�; "/; "�: (11)

We now establish a necessary condition for the existence of solutions z.t; "/ of the boundary-value problem
(1), (2), which turns, for " D 0 , into one of the generating solutions z0.t; c/ 2 C.I;B/ of the generating boundary-
value problem (3), (4).

Suppose that the boundary-value problem (1), (2) has a solution z.t; "/: Then, by Theorem 1, the following
system of solvability conditions must be valid:

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
ˆ̂̂
:̂

PYD

Z b

a

N.s/

"
f .t/C "

Z b

a

K.s; ⌧/Z.z.⌧; "/; ⌧; "/d⌧

#
ds D 0;

PYQ

"
˛ C "J.z.�; "/; "/ � f̀ .�/

� `M.�/D�
Z b

a

N.s/

"
f .s/C "

Z b

a

K.s; ⌧/Z.z.⌧; "/; ⌧; "/d⌧

#
ds

#
D 0:

In view of (6) and the fact that " ¤ 0; this system takes the form

8
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂:

PYD

"Z b

a

N.s/

Z b

a

K.s; ⌧/Z.z.⌧; "/; ⌧; "/d⌧

#
ds D 0;

PYQ

"
J.z.�; "/; "/ � `M.�/D�

Z b

a

N.s/

Z b

a

K.s; ⌧/Z.z.⌧; "/; ⌧; "/d⌧ ds

#
D 0:

(12)
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Taking into account the continuity of the operator-valued functions Z.z; t; "/ and J.z.�; "/; "/ with respect
to the totality of variables z; t; and " and passing to the limit at " ! 0 in system (12), we obtain the following
necessary condition for the existence of solutions of the boundary-value problem (1), (2):

F.c/ D

8
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂:

PYD

"Z b

a

N.s/

Z b

a

K.s; ⌧/Z.z0.⌧; c/; ⌧; 0/d⌧

#
ds D 0;

PYQ

"
J.z0.�; c/; 0/ � `M.�/D�

Z b

a

N.s/

Z b

a

K.s; ⌧/Z.z0.⌧; c/; ⌧; 0/d⌧ ds

#
D 0:

Thus, the following theorem is valid for the boundary-value problem (1), (2):

Theorem 3. Suppose that, under the conditions imposed above, the boundary-value problem (1), (2) has a
solution z.t; "/ continuous on " 2 Œ0; "0ç; which turns, for " D 0; into a generating solution z0.t; c/ of the form
(7) obtained for c D c0: Then the element c0 2 B1 satisfies the system of gathers

F.c0/ D

8
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂:

PYD

Z b

a

N.s/

Z b

a

K.s; ⌧/Z..z0.⌧; c0//; ⌧; "/d⌧ds D 0;

PYQ

"
J.z0.�; c0// � `M.�/D�

Z b

a

N.s/

Z b

a

K.s; ⌧/Z.z0.s; c0//; ⌧; "/d⌧ ds

#
D 0:

(13)

By analogy with weakly nonlinear problems for ordinary differential gathers [2, 4, 5], the system of gathers
(13) is called a system of equations for generating constants.

Therefore, if the system of equations (13) has a solution c D c0 2 B; then the element c0 determines the
generating solution z0.t; c0/ that can be associated with the solution z.t; "/ of the original nonlinear boundary-
value problem (1), (2). If the system of equations (13) does not have solutions, then the boundary-value problem
(1), (2) does not have the desired solution. Thus, the necessary condition for the existence of a solution of the
boundary-value problem (1), (2) is satisfied by choosing the constant c in the generating solution (7) as the real
root of the system of equations (13).

To prove sufficiency, by using the conditions imposed on the nonlinear operator-valued functions Z.z; t; "/

and J.z; "/; we separate the linear parts with respect to x and the terms of order zero with respect to ": As a result,
we get the expansions

Z.z0.t; c0/C x.t; "/; t; "/ D Z0.t; c0/C T .t/x.t; "/CR.x.t; "/; t; "/;

J.z0.�; c0/C x.�; "/; "/ D J0.�; c0/C `1x.�; "/CR1.x.�; "/; "/;

where

Z0.t; c0/ D Z.z0.t; c0/; t; 0/ 2 C.I;B/;

J0.�; c0/ D J0.z0.�; c0/; 0/ 2 B1I

T .t/ D T .t; c0/ D @Z.z; t; 0/

@z

ˇ̌
ˇ̌
zDz.t;c0/

2 C.I;B/;
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`1 D @J.z; 0/

@z

ˇ̌
ˇ̌
zDz.�;c0/

; `1WC.I;B/ ! B1I

R.x.t; "/; t; "/ is a nonlinear vector-valued function, and R1.x.�; "/; "/ is a nonlinear vector-valued functional.
We now consider the nonlinearities in the boundary-value problem (10), (11) as inhomogeneities and apply

Theorem 1 to this problem. This yields the following expression for the representation of its solution x.t; "/ :

x.t; "/ D f
M .t/c C Nx.t; "/:

In this case, the unknown vector c D c."/ 2 B1 is determined from the solvability conditions of the form (12),
namely,

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂:

PYD

Z b

a

N.s/

Z b

a

K.s; ⌧/

¸
Z0.⌧; c0/C T .⌧/x.⌧; "/

CR.x.⌧; "/; ⌧; "/

π
d⌧ ds D 0;

PYQ

"
J0.�; c0/C `1x.�; "/CR1.x.�; "/; "/

�`M.�/D�
Z b

a

N.s/

Z b

a

K.s; ⌧/

º
Z0.⌧; c0/

C T .⌧/x.⌧; "/CR.x.⌧; "/; ⌧; "/

Ω
d⌧ds

#
D 0:

(14)

The unknown vector function Nx.t; "/ is defined by the formula

Nx.t; "/ D "

0

@
G

bZ

a

K.�; s/ fZ0.s; c0/C T .s/x.s; "/CR.x.s; "/; s; "/g ds
1

A
.t/

CM.t/Q

�⇥
J0.�; c0/C `1x.�; "/CR1.x.�; "/; "/

⇤
;

where the operator G acts upon the vector function

'.t; "/ D
bZ

a

K.t; s/

¶
Z0.s; c0/C T .s/x.s; "/CR.x.s; "/; s; "/

·
ds

by the rule (8).
Substituting the expression x.t; "/ for f

M .t/cC Nx.t; "/ in (14), isolating the terms containing the constant c;
and taking into account (13), we obtain the operator equation
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B0c D �

2

6666666664

PYD

Z b

a

N.s/

Z b

a

K.s; ⌧/R.x.⌧; "/; Nx.⌧; "/; ⌧; "/d⌧ ds;

PYQ

"
R1.x.�; "/; Nx.�; "/; "/

� `M.�/D�
Z b

a

N.s/

Z b

a

K.s; ⌧/R.x.⌧; "/; Nx.⌧; "/; ⌧; "/d⌧ ds
#

3

7777777775

;

where

B0 D

B1

B2

�
;

B1 D PYD

bZ

a

N.s/

bZ

a

K.s; ⌧/T .⌧/

f
M.⌧/d⌧ds;

B2 D PYQ

2

4
`1
f
M.�/ � `M.�/D�

bZ

a

N.s/

bZ

a

K.s; ⌧/T .⌧/

f
M.⌧/d⌧ds

3

5
;

R.x.s; "/; Nx.s; "/; s; "/ WD T .s/ Nx.s; "/CR.x.s; "/; s; "/;

R1.x.�; "/; Nx.�; "/; "/ WD `1 Nx.�; "/CR1.x.�; "/; "/:

The operator B0 acts from the Banach space B into the direct product of the Banach spaces B and B1; i.e.,
B0WB ! B ⇥ B1:

In view of the fact that the vector constant c0 2 B1 satisfies the system of equations for the generating
constants (13), in order to find a continuous (in ") solution x.�; "/ 2 C.I;B/; x.t; 0/ D 0; of the weakly nonlinear
boundary-value problem (1), (2), we consider the equivalent operator system

x.t; "/ D f
M.t/c."/C Nx.t; "/;

"
B1

B2

#
c D �

2

66666666664

PYD

Z b

a

N.s/

Z b

a

K.s; ⌧/R.x.⌧; "/; Nx.⌧; "/; ⌧; "/d⌧ds;

PYQ

"
R1.x.�; "/; Nx.�; "/; "/

� `M.�/D�
Z b

a

N.s/

Z b

a

K.s; ⌧/R.x.⌧; "/; Nx.⌧; "/; ⌧; "/d⌧ ds
#

3

77777777775

; (15)
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Nx.t; "/ D "

0

@
G

bZ

a

K.�; s/ ŒZ0.s; c0/C T .s/x.s; "/CR.x.s; "/; s; "/ç ds

1

A
.t/

CM.t/Q

�⇥
J0.�; c0/C `1x.�; "/CR1.x.�; "/; "/

⇤
;

Let B1 2 GI.B;B/ and B2 2 GI.B;B1/: Then, by Theorem 2, in view of the normal solvability, the second
equation of the operator system (15) is solvable if and only if its right-hand side satisfies the condition

"
ePYB1

B12

0 PYB2

#

2

66666666664

PYD

Z b

a

N.s/

Z b

a

K.s; ⌧/R.x.⌧; "/; Nx.⌧; "/; ⌧; "/d⌧ ds;

PYQ

"
R1.x.�; "/; Nx.�; "/; "/ � `M.�/D�

Z b

a

N.s/

Z b

a

K.s; ⌧/

⇥R.x.⌧; "/; Nx.⌧; "/; ⌧; "/d⌧ ds
#

3

77777777775

D 02⇥1; (16)

where 02⇥1 is a dimensional zero matrix, eP YB1
D IB � B1PN.B2/B

�
1 ; and B12 D �B1B

�
2 :

For

"ePYB1
B12

0 PYB2

#"
PYD

PYQ

#
D 02⇥1; (17)

condition (16) is always satisfied and, by Theorem 2, the second equation of the operator system (15) possesses a
family of solutions

c."/ D PN.B0/ Oc �
⇥
PN.B2/B

�
1 B

�
2

⇤

⇥

2

6666666664

PYD

Z b

a

N.s/

Z b

a

K.s; ⌧/R.x.⌧; "/; Nx.⌧; "/; ⌧; "/d⌧ ds;

PYQ

"
R1.x.�; "/; Nx.�; "/; "/

�`M.�/D�
Z b

a

N.s/

Z b

a

K.s; ⌧/R.x.⌧; "/; Nx.⌧; "/; ⌧; "/d⌧ ds
#

3

7777777775

;

where PN.B0/ D PN.B2/PN.B1/ is the projector onto the null space N.B0/ of the operator B0; Oc is an arbitrary
element of the Banach space B; and

⇥
PN.B2/B

�
1 B

�
2

⇤
is a generalized operator inverse to the operator

B0 D

B1

B2

�
:
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We set Oc ⌘ 0: If conditions (17) are satisfied, then one solution of the second equation in the operator system
(15) takes the form

c."/ D e
B

�
1

bZ

a

N.s/

bZ

a

K.s; ⌧/R.x.⌧; "/; Nx.⌧; "/; ⌧; "/d⌧ ds

C e
B

�
2

"
R1.x.�; "/; Nx.�; "/; "/

� `M.�/D�
bZ

a

N.s/

bZ

a

K.s; ⌧/R.x.⌧; "/; Nx.⌧; "/; ⌧; "/d⌧ ds
#
;

where e
B

�
1 D �PN.B2/B

�
1 PYD

and e
B

�
2 D �B�

2 PYQ
:

Thus, if conditions (17) are satisfied, then the operator system (15) takes the form

x.t; "/ D f
M.t/c."/C Nx.t; "/;

c."/ D e
B

�
1

bZ

a

N.s/

bZ

a

K.s; ⌧/R.x.⌧; "/; Nx.⌧; "/; ⌧; "/d⌧ ds

C e
B

�
2

"
R1.x.�; "/; Nx.�; "/; "/ �

� `M.�/D�
bZ

a

N.s/

bZ

a

K.s; ⌧/R.x.⌧; "/; Nx.⌧; "/; ⌧; "/d⌧ ds
#
;

(18)

Nx.t; "/ D "

0

@
G

bZ

a

K.�; s/ fZ0.s; c0/C T .s/x.s; "/CR.x.s; "/; s; "/g ds
1

A
.t/

CM.t/Q

�⇥
J0.�; c0/C `1x.�; "/CR1.x.�; "/; "/

⇤
:

By analogy with [1, 4, 5, 9], it can be shown that the operator system (18) belongs to the class of systems for
which it is possible to apply the convergent method of simple iterations.

Theorem 4. Suppose that the generating boundary-value problem (3), (4) with conditions (6) has a family
of generating solutions (7). Then, for each element c0 2 B1 satisfying the system of equations for the generating
constants (13) with the following conditions:

PN.B0/ ¤ 0;

"
ePYB1

B12

0 PYB2

#
PYD

PYQ

�
D 02⇥1
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the boundary-value problem (1), (2) has at least one solution z.t; "/ D z0.t; c0/C x.t; "/ continuous in "; which
turns into a generating solution z0.t; c0/ for " D 0: This solution can be found as a result of convergence to
Œ0; "⇤ç ⇢ Œ0; "0ç of the iterative process

zkC1.t; "/ D z0.t; c0/C xkC1.t; "/;

xkC1.t; "/ D f
M.t/ck."/C NxkC1.t; "/; k D 0; 1; 2; : : : ;

ck."/ D e
B

�
1

bZ

a

N.s/

bZ

a

K.s; ⌧/R.xk.⌧; "/; Nxk.⌧; "/; ⌧; "/d⌧ ds

C e
B

�
2

"
R1.xk.�; "/; Nxk.�; "/; "/

� `M.�/D�
bZ

a

N.s/

bZ

a

K.s; ⌧/R.xk.⌧; "/; Nxk.⌧; "/; ⌧; "/d⌧ ds
#
;

(19)

NxkC1.t; "/ D "

2

4
G

0

@
bZ

a

K.�; s/
º
Z0.s; c0/

C T .s/

⇥f
M.s/ck."/C Nxk.s; "/

⇤CR.xk.s; "/; s; "/ds/

9
=

;

1

A
.t/

CM.t/Q

� ¶
J0.�; c0/C `1

⇥f
M.�/ck."/C Nxk.�; "/

⇤CR1.xk.�; "/; "/
·
3

5
:

Remark 1. If PN.B0/ ¤ 0 and

"
ePYB1

B12

0 PYB2

#
D 02⇥1;

then the operator B0 is d -normal. In this case, condition (17) is always satisfied, the second equation of the
operator system (15) is always solvable, and the generalized inverse operator B�

0 is a right inverse operator .B0/
�1
r

[13]. Then the boundary-value problem (1), (2) has at least one solution determined by the convergent iterative
process (19) in which B

�
0 D .B0/

�1
r :

Remark 2. If PN.B0/ D 0 and

PYB0
D

"
ePYB1

B12

0 PYB2

#
¤ 02⇥1;
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then the operator B0 is n-normal. In this case, the generalized inverse operator B�
0 is the left inverse operator

.B0/
�1
l

and, under condition (17), the second equation in the operator system (15) is definitely solvable [13]. Then,
for each c0 in the system for generating constants (13), the boundary-value problem (1), (2) has a single solution
determined by the convergent iterative process (19) in which B

�
0 D .B0/

�1
l

:
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