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CONVERGENCE OF THE NEWTON–KURCHATOV METHOD  
UNDER WEAK CONDITIONS 

S. M. Shakhno  and  H. P. Yarmola  UDC 519.6 

We study the semilocal convergence of the combined Newton–Kurchatov method to a locally unique  
solution of the nonlinear equation under weak conditions imposed on the derivatives and first-order di-
vided differences.  The radius of the ball of convergence is established and the rate of convergence of  
the method is estimated.  As a special case of these conditions, we consider the classical Lipschitz con-
ditions. 

Introduction 

Consider an equation  

 H (x) ≡ F(x)+G(x) = 0 , (1) 

where  F   and  G   are nonlinear operators defined on an open convex set  D of the Banach space X   with values 
in the Banach space  Y .  Let  F   be a Frèchet differentiable operator and let  G   be a continuous operator whose 
differentiability is, generally speaking, not required. 

In view of the properties of the operator  H ,  Eq. (1) cannot be solved by using the classical Newton meth-
od.  As a rule, for this purpose, the researchers use either a Newton-type method [8, 14]  

 xn+1 = xn − [ ′F (xn )]
−1H (xn ), n ≥ 0, 

or difference methods, e.g., the method of chords (secants) [6, 9] 

 xn+1 = xn − [H (xn ; xn−1)]
−1H (xn ), n ≥ 0 , 

or the Kurchatov method of linear interpolation [1, 5, 12] 

 xn+1 = xn − [H (2xn − xn−1; xn−1)]
−1H (xn ), n ≥ 0 , 

or the method developed in [11] 

 xn+1 = xn − [F(2xn − xn−1; xn−1)+G(xn ; xn−1)]
−1H (xn ), n ≥ 0 , 
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or the combined method [7, 10]  

 xn+1 = xn − [ ′F (xn )+G(xn ; xn−1)]
−1H (xn ), n ≥ 0 . 

Here,  G(x; y)  is the divided difference of the first order for the operator  G   at the points  x   and  y . 
In [3, 4, 13], the authors proposed a one-step iterative process  

 xn+1 = xn − [ ′F (xn )+G(2xn − xn−1; xn−1)]
−1H (xn ), n ≥ 0 , (2) 

and studied the properties of local and semilocal convergence of this method for the classical and generalized 
Lipschitz conditions.  Method (2) is, in fact, a combination of the Newton method [2] and the difference method 
of linear interpolation [1, 5, 12]. 

In the present work, we study the convergence of method (2) under weak conditions [8, 9, 11].  In the case 
of conditions of type  ω , we assume that the derivatives of the operator  F   and the first-order divided differ-
ences of the operator  G   satisfy the conditions 

 
 
A0
−1( ′F (x)− ′F (y)) ≤ ω1( x − y ), x, y ∈D, (3) 

 
 
A0
−1(G(x; y)−G(u;v)) ≤ ω2( x − u , y − v ), x, y,u,v ∈D . (4) 

Here,  ω1  is a nondecreasing positive function on the segment  [0,R]  and   ω2 :R+ ×R+ → R+   is a continuous 
nondecreasing function of two arguments.  In addition, the function  ω1  satisfies the condition   

 ω1(tr) ≤  h(t )ω1(r),  t ∈[0,1],  r ∈[0,R],   

where   h:[0,1]→ R .  The properties of the function  h   were described in [8].  
Note that conditions (3) and (4) generalize the classical Lipschitz and Hölder conditions and, generally 

speaking, do not require the differentiability of the operator  G .  
Another option is given by conditions of type  ε .  For the Frèchet derivative and divided differences of the 

first order, they take the form 

 A0
−1( ′F (x)− ′F (y)) ≤ ε1, x, y ∈D , (5) 

 A0
−1(G(x; y)−G(u;v)) ≤ ε2 , x, y,u,v ∈D . (6) 

1.  Semilocal Convergence of the Combined Method (2) 

Let  x ∈D .  We denote 

  B(x ,R) = {x ∈X : x − x < R},       B(x ,R) = {x ∈X : x − x ≤ R},  

 Φ = h(t )dt
0

1

∫ . 
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Theorem 1.  Assume that  F   and  G   are nonlinear operators defined on an open convex set  D   of the Ba-
nach space  X   with values in the Banach space  Y ,  ′F   is the Frèchet derivative of the operator  F ,  and  G(⋅;⋅)   
is the first-order divided difference of the operator  G   on the set  D.  Suppose that  

 – the linear operator  A0 = ′F (x0 )+G(2x0 − x−1; x−1) ,  where  x−1   and  x0   are points from  D,  is in-
vertible; 

 – the numbers  η > 0   and  α > 0   are such that  

 A0
−1(F(x0 )+G(x0 )) ≤ η, x0 − x−1 ≤ α; (7) 

 – conditions (3) and (4) are satisfied on  D; 

 – the equation 

 u 1− m
1− ω1(u)− ω2 (3u +α,u +α)

⎛
⎝⎜

⎞
⎠⎟ − η = 0 ,  

  where   m = Φω1(η)+max{ω2 (η+α,α),ω2 (2η,η)} ,  has at least one positive root and  R   is its 
least positive root.  

If 

 ω1(R)+ω2 (3R +α,R +α) < 1, M = m
1− ω1(R)− ω2 (3R +α,R +α) < 1,  

 B(x0 , 3R)⊂ D ,      α < R,   

then the sequence   {xn}n≥0   generated by the iteration process (2) is well defined.  Moreover, it is contained 
in  B(x0 ,R)  and converges to the unique solution  x∗ ∈B(x0 ,R)  of Eq. (1).  

The theorem is proved by induction.  Thus, we denote   

 An = ′F (xn )+  G(2xn − xn−1; xn−1) .   

Note that if  xn , xn−1 ∈B(x0 ,R),  n ≥ 0,  then the inequality  

 (2xn − xn−1)− x0 ≤ 2xn − 2x0 + xn−1 − x0 < 3R  

implies that  2xn − xn−1 ∈B(x0 , 3R)⊂ D .  Thus, we can show that all  An ,  n ≥ 1,  are invertible operators. 
In view of (2) and (7), for  n = 0 ,  we get  

 x1 − x0 ≤ A0
−1(F(x0 )+G(x0 )) ≤ η < R . 

Hence,  x1 ∈B(x0 ,R) . 
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By using conditions (3) and (4), we obtain   

 I − A0
−1A1 = A0

−1(A0 − A1)  

   ≤ ω1( x1 − x0 )+ω2( 2x0 − x−1 −2x1 + x0 , x−1 − x0 ) 

  ≤ ω1(η)+ω2 (2η+α,α) ≤ ω1(R)+ω2 (2R +α,α) 

  ≤ ω1(R)+ω2 (3R +α,R +α) < 1. 

By the Banach inverse theorem, we conclude that  A1
−1A0   exists and  

 A1
−1A0 ≤ 1

1− ω1(R)− ω2 (3R +α,R +α) . 

Thus, we can write  

  A0
−1(F(x1)+G(x1)) = A0

−1(F(x1)− F(x0 )− ′F (x0 )(x1 − x0 ))  

    + A0
−1(G(x1)−G(x0 )−G(2x0 − x−1; x−1)(x1 − x0 ))  

  
 
= A0

−1( ′F (x0 + t(x1 − x0 ))− ′F (x0 ))dt(x1 − x0 )
0

1

∫  

    + A0
−1(G(x1; x0 )−G(2x0 − x−1; x−1))(x1 − x0 ), 

whence, in view of conditions (3) and (4), we find  

 x2 − x1 = A1
−1(F(x1) +G(x1))  

 ≤ A1
−1A0 A0

−1(F(x1) +G(x1))  

  
 
≤
Φω1( x1 − x0 )+ω2( 2x0 − x−1 − x1 , x−1 − x0 )

1− ω1(R)− ω2 (3R +α,R +α) x1 − x0  

  ≤
Φω1(η)+ω2 (η+α,α)

1− ω1(R)− ω2 (3R +α,R +α) x1 − x0 ≤ M x1 − x0 < η. 

On the other hand,  

 x2 − x0 ≤ x2 − x1 + x1 − x0  
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  ≤ (M +1) x1 − x0 ≤ (M +1)η = 1−M 2

1−M η < 1
1−M η = R . 

Hence,  x2 ∈B(x0 ,R). 
Assume that, for   k = 1,…,n −1,  the following assertions are true:  

 — Ak
−1A0    exists and   

 Ak
−1A0 ≤ 1

1− ω1(R)− ω2 (3R +α,R +α) ; 

 — xk+1 − xk ≤ M xk − xk−1 ≤ M k x1 − x0 < η;  

 — xk+1 ∈B(x0 ,R). 

Thus, by virtue of conditions (3) and (4), for  k = n ,  we obtain  

 I − A0
−1An = A0

−1(A0 − An )  

   ≤ ω1( x0 − xn )+ω2( 2x0 − x−1 − 2xn + xn−1 , x−1 − xn−1 )  

  ≤ ω1(R)+ω2 (3R +α,R +α) < 1. 

By the Banach theorem,  An
−1A0   exists and, in addition,  

 An
−1A0 ≤ 1

1− ω1(R)− ω2 (3R +α,R +α) . 

In view of the equality 

  A0
−1(F(xn )+G(xn )) = A0

−1(F(xn )− F(xn−1)− ′F (xn−1)(xn − xn−1)) 

    + A0
−1(G(xn )−G(xn−1)−G(2xn−1 − xn−2 ; xn−2 )(xn − xn−1))  

  
 
= A0

−1( ′F (xn−1 + t(xn − xn−1))− ′F (xn−1))dt(xn − xn−1)
0

1

∫  

    + A0
−1(G(xn ; xn−1)−G(2xn−1 − xn−2 ; xn−2 ))(xn − xn−1)  

and conditions (3) and (4), we find  

 xn+1 − xn = An
−1(F(xn ) +G(xn ))  
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 ≤ An
−1A0 A0

−1(F(xn ) +G(xn ))  

  
 
≤ 1
1− ω1(R)− ω2 (3R +α,R +α)(Φω1( xn − xn−1 ) 

    +ω2( 2xn−1 − xn−2 − xn , xn−1 − xn−2 )) xn − xn−1  

  ≤
Φω1(η)+ω2 (2η,η)

1− ω1(R)− ω2 (3R +α,R +α) xn − xn−1  

  ≤ M xn − xn−1 ≤ M n x1 − x0 < η. 

We now show that  xn+1 ∈B(x0 ,R).  Indeed,  

  xn+1 − x0 ≤ xn+1 − xn + xn − xn−1 +…+ x1 − x0  

  
 
≤ (M n +M n−1 +…+M +1) x1 − x0 ≤ 1−M n+1

1−M η < 1
1−M η = R , 

and  xn+1 ∈B(x0 ,R).  
Let us show that   {xn}n≥0   is the Cauchy sequence. Indeed, for  p ≥ 1,  we get 

 
 
xn+ p − xn ≤ xn+ p − xn+ p−1 + xn+ p−1 − xn+ p−2 +…+ xn+1 − xn  

   ≤ (M p−1 +M p−2 +…+1) xn+1 − xn  

  = 1−M p

1−M xn+1 − xn ≤ 1−M p

1−M M nη < M n

1−M η. 

Hence,   {xn}n≥0   is a fundamental sequence that converges to  x∗ ∈B(x0 ,R). 

We now show that  x∗   is a unique solution of Eq. (1).  Since  

 
 
A0
−1H (xn ) ≤ (Φω1(η)+ω2 (2η,η)) xn − xn−1  

and  xn − xn−1 → 0   as  n→∞ ,  we conclude that  H (x∗ ) = 0 . 
The uniqueness of solution is proved by contradiction.  Assume that there exists y∗ ∈B(x0 ,R) ,  y∗ ≠ x∗ ,  

and  H (y∗ ) = 0.  We denote  

 
 
A = ′F (x∗ + t(y∗ − x∗ ))dt +G(y∗; x∗ )

0

1

∫ . 
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In view of conditions (3) and (4), we get  

 
 
A0
−1(A0 − A) ≤ ω1( x0 − x∗ − t(y∗ − x∗ ) )dt

0

1

∫  

    +ω2( 2x0 − x−1 − y∗ , x−1 − x∗ ) 

  
 
≤

0

1

∫ω1((1− t ) x0 − x∗ + t x0 − y∗ )dt  

    +ω2( x0 − x−1 + x0 − y∗ , x−1 − x0 + x0 − x∗ ) 

  ≤ ω1(R)+ω2 (R +α,R +α) < 1 . 

By the Banach theorem, the operator  A−1  exists.  Since  A   is invertible, the identity  

 A(y∗ − x∗ ) = H (y∗ )− H (x∗ ) 

implies that  y∗ = x∗ .  
The theorem is proved. 

Theorem 2.  Let  F   and  G   be nonlinear operators defined on an open convex set  D   of the Banach 
space  X   with values in the Banach space  Y ,  let  ′F   be the Frèchet derivative of the operator  F ,  and let  
G(⋅;⋅)   be the first-order divided difference of the operator  G   on  D .  Assume that  

 — the linear operator  A0 = ′F (x0 )+G(2x0 − x−1; x−1) ,  where  x−1   and  x0   are points from  D,  is in-
vertible; 

 — conditions (5) and (6) are satisfied on  D; 

 — the numbers  η > 0 ,  γ > 0 ,  and  R > 0   are such that  

 
 
A0
−1(F(x0 )+G(x0 )) ≤ η, x0 − x−1 < R, 

 γ =
ε1 + ε2

1− (ε1 + ε2 )
< 1, η

1− γ < R, B(x0 , 3R)⊂ D . 

Then the iterative process (2) is well defined and the sequence   {xn}n≥0   generated by this process is con-
tained in  B(x0 ,R)  and converges to the unique solution  x∗ ∈B(x0 ,R)  of Eq. (1).  Furthermore, the following 
estimate is true:  
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 xn − x∗ ≤ γ n

1− γ η. (8) 

The proof of convergence of method (2) to the unique solution  x∗   of Eq. (1) is carried out by induction as 
in Theorem 1. 

We now show that estimate (8) is true.  For   n, p ∈N ,  we obtain  

 
 
xn+ p − xn ≤ xn+ p − xn+ p−1 + xn+ p−1 − xn+ p−2 +…+ xn+1 − xn  

   ≤ (γ p−1 + γ p−2 +…+1) xn+1 − xn  

  ≤ 1− γ p

1− γ γ nη . 

Thus, passing to the limit as  p→∞ ,  we arrive at (8).  
The theorem is proved. 

Let 

   ω1( x − y ) = 2ℓ x − y       and       ω2( x − u , y − v ) = p( x − u + y − v ). 

Hence, Theorem 1 implies the convergence of the method under the Lipschitz conditions. 

Corollary 1.  Let  F   and  G   be nonlinear operators defined on an open convex set  D  of the Banach 
space  X   with values in the Banach space  Y ;  let  ′F   be the Frèchet derivative of the operator  F ,  and let  
G(⋅;⋅)   be the first-order divided difference of the operator  G   on  D .  Assume that  

 — the linear operator  A0 = ′F (x0 )+G(2x0 − x−1; x−1),  where  x−1  and  x0   are points from  D,  is in-
vertible; 

 — the numbers  η > 0   and  α > 0   are such that  

 A0
−1(F(x0 )+G(x0 )) ≤ η ,      x0 − x−1 ≤ α ; 

 — the Lipschitz conditions  

 
  
A0
−1( ′F (x)− ′F (y)) ≤ 2ℓ x − y , 

 
 
A0
−1(G(x; y)−G(u;v)) ≤ p( x − u + y − v ) 

  hold on the set  D; 

 — the equation  
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u 1− m

1− 2ℓu − p(4u + 2α)
⎛
⎝⎜

⎞
⎠⎟ − η = 0 , 

where   

   m = ℓη+max{p(η+ 2α), 3pη} ,   

has at least one positive root, and  R   is its least positive root.  
If 

 
 
2ℓR + p(4R + 2α) < 1, M = m

1− 2ℓR − p(4R + 2α) < 1,  

 B(x0 , 3R)⊂ D ,      and      α < R,   

then the sequence   {xn}n≥0   generated by the iterative process (2) is well defined. Moreover, it is contained 
in  B(x0 ,R)  and converges to the unique solution  x∗ ∈B(x0 ,R)  of Eq. (1).  

Note that, for  F(x) = 0 , method (2) turns into the Kurchatov method.  At the same time, if  G(x) = 0 ,  then 
we get the Newton method.  Hence, by virtue of Theorems 1  and 2 and Corollary 1, we get the semilocal con-
vergence theorems for the base methods.  These results do not contradict the results obtained earlier. 

The results of numerical investigations of method  (2) can be found in [3].  

CONCLUSIONS 

We apply the combined Newton–Kurchatov method to the solution of nonlinear equations with nondifferen-
tiable operator.  The semilocal convergence of the method under weak conditions that do not require the differ-
entiability of the nonlinear operator is analyzed and the rate of convergence of this method is estimated. 
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