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Abstract. In two dimensions, we present a new approach to the study of the semilinear equations

of the form div[A(z)∇u] = f(u), the diffusion term of which is the divergence uniform elliptic operator

with measurable matrix functions A(z), whereas its reaction term f(u) is a continuous non-linear function.

Assuming that f(t)/t → 0 as t → ∞, we establish a theorem on existence of weak C(D)∩W 1,2
loc (D) solutions

of the Dirichlet problem with arbitrary continuous boundary data in any bounded domains D without

degenerate boundary components. As consequences, we give applications to some concrete model semilinear

equations of mathematical physics, arising from modeling processes in anisotropic and inhomogeneous

media. With a view to the further development of the theory of boundary-value problems for the semilinear

equations, we prove a theorem on the solvability of the Dirichlet problem for the Poisson equation in Jordan

domains with arbitrary boundary data that are measurable with respect to the logarithmic capacity.

Keywords. Semilinear elliptic equations, quasilinear Poisson equations, anisotropic and inhomogeneous

media, conformal and quasiconformal mappings.

1. Introduction

The study of linear and non-linear elliptic partial differential equations in two dimensions by the
methods of complex analysis and quasiconformal mappings with concrete applications to the nonlin-
ear elasticity, gas flow, hydrodynamics, and other branches of the natural science was initiated by
M. A. Lavrentiev [54], C. B. Morrey [60], L. Bers [8], L. Bers and L. Nirenberg [9], I. N. Vekua [72],
B. Bojarski [11], J. Serrin [68], and others, see the references therein. The history of such equations
actually goes back as far as the celebrated works by d’Alembert on the Cauchy–Riemann systems in
hydrodynamics, by Gauss on the geometry of surfaces, by Lobachevskii on a non-Euclidean geometry,
and by the pioneer paper by Beltrami [7].

A rather comprehensive presentation of the present state of the theory is given in the excellent book
of Astala, Iwaniec, and Martin [4]. This book concerns the most modern aspects and the most recent
developments in the theory of planar quasiconformal mappings and their application in conformal
geometry, partial differential equations, and nonlinear analysis. The book contains also the exhaustive
bibliography on the topic. Among the variety of deep results in this trend, we single out the fundamental
harmonic factorization theorem, see [4], Theorem 16.2.1, for the solutions to the non-linear uniformly
elliptic divergence equations

divA(z,∇u) = 0, z ∈ D ⊂ C, (1.1)

and the corresponding regularity results. In particular, the factorization theorem claims that every
solution u ∈ W 1,2

loc (D) of Eq. (1.1) can be expressed as u(z) = h(f(z)), where f : D → G is K-
quasiconformal, and h is harmonic on G.

In a series of our recent papers [33–40], we have proposed another application of the theory of
quasiconformal mappings to the study of semilinear partial differential equations of the form

div [A(z)∇u(z)] = f(u), z ∈ D, D ⊆ C, (1.2)
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the diffusion term of which is the divergence form elliptic operator L(u), whereas its reaction term
f(u) is a non-linear function. Here, the symmetric matrix function A(z) = {aij(z)}, detA(z) = 1,
with measurable entries satisfies the uniform ellipticity condition

1

K
|ξ|2 ≤ 〈A(z)ξ, ξ〉 ≤ K|ξ|2 a.e. in D, 1 ≤ K < ∞, (1.3)

for every ξ ∈ R2. We denote the set of all such matrix functions by M2×2
K (D). In the cited papers, we

have studied the composition properties of L(u) first for sufficiently smooth functions and then in the
Sobolev spaces making use of the fundamental compositional theorems established in [28, 70]. It was
shown that, by the chain rule for the function u = U ◦ ω, the following basic formula holds:

div [A(z)∇(U(ω(z)))] = Jω(z)△U(ω(z)), (1.4)

where Jω(z) stands for the Jacobian of a quasiconformal mapping ω, agreed with the matrix function
A(z). This formula, which is understood in the sense of distributions, takes place, in particular, if
U ∈ W 1,2

loc (G), A ∈ M2×2
K (D), and ω : D → G is a quasiconformal homeomorphism satisfying the

Beltrami equation

ωz̄(z) = µ(z)ωz(z) a.e. in D. (1.5)

Here, the complex dilatation

µ(z) =
1

det (I +A)
(a22 − a11 − 2ia12), (1.6)

satisfies the uniform ellipticity condition

|µ(z)| ≤ 1 +K

1−K
. (1.7)

Vice versa, given a measurable complex–valued function µ, satisfying (1.7), one can invert the algebraic
system (1.6) to obtain

A(z) =

( |1−µ|2
1−|µ|2

−2Im µ
1−|µ|2

−2Imµ
1−|µ|2

|1+µ|2
1−|µ|2

)
. (1.8)

The compositional property (1.4) for the operator L(u) can be applied to the study of a wide range of
problems arising in the contemporary analysis in the plane. For instance, (1.4) is useful in the study
of such semilinear partial differential equations in the anisotropic case such as the heat equation

ut − div [A(z)∇u(z)] = f(z, u) (1.9)

(the same equation describes the Brownian motion, diffusion models of population dynamics, and many
other phenomena), the wave equation

utt − div [A(z)∇u(z)] = f(z, u), (1.10)

and the Schrödinger equation

iut + div [A(z)∇u(z)] = k|u|pu, (1.11)

as well as their stationary counterparts. Note also a very interesting recent preprint [27], where the
authors have developed a method for the study of spectral properties of the operators L(u) with the
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Neumann boundary condition in (non)convex domains in the complex plane. The suggested method is
based on the composition operators on Sobolev spaces with applications to the Poincaré inequalities.

The composition property (1.4) for the operator L(u) implies that the study of semilinear equations
of the form (1.2) is decomposed into the research of the proper quasilinear Poisson equation

△U(w) = J(w)f(U), w ∈ G = ω(D), (1.12)

where the weight J(w) stands for the Jacobian of the inverse quasiconformal mapping ω−1 : G → D,
and the study of the mapping ω(z) agreed with the matrix function A(z). In other words, every weak
solution u(z) to Eq. (1.2) in a domain D is represented in the form u(z) = U(ω(z)), where ω : D → G
stands for a quasiconformal mapping generated by the matrix function A(z), and U(w) is a weak
solution to the quasilinear Poisson equation (1.12) in the domain G = ω(D), see [36], Theorem 4.1.

On the one hand, this opens up new possibilities for the study of (1.12), because we can apply a
wide range of effective methods both of the potential theory and genuinely nonlinear methods which
did not belong to the world of classical harmonic analysis, see, e.g., [16, 26, 30, 51, 52, 64, 68], and the
exhaustive bibliography therein. On the other hand, a comprehensively developed theory of quasi-
conformal mappings in the plane, see, e.g., [1, 4, 12, 13, 42, 55], and also [41, 43], allows us to study
the regularity properties for solutions to Eqs. (1.2) and (1.12) and the proper representation of such
solutions in detail. A rather comprehensive treatment of the present state of the theory concerning the
semilinear equations of the form (1.12) is given in the excellent books by M. Marcus and L. Véron [58]
and L. Véron [73].

Note an important family of quasilinear Poisson equations that involves an absorption term such
that uf(u) ≥ 0. Such equations are of particular interest, because, in particular, they describe two
competing effects observed in a number of applications: the diffusion expressed by the linear differential
part and the absorption produced by the nonlinearity of the right-hand side. Among the variety of
model semilinear equations in the plane, we recall the Liouville–Bieberbach equation

△u = eu (1.13)

investigated by Bieberbach in his celebrated work [10] related to the study of automorphic functions
in the plane.

The Liouville–Bieberbach semilinear equation is one of the principal model equations in the theory
of non-linear partial differential equations and their applications, see, e.g., [58] and the references
therein. Note that the equation appears also as a model one in problems of differential geometry
in relation to the existence of surfaces with negative Gaussian curvature [72] and in studying the
equilibrium of a charged gas.

In order to illustrate our approach to the study of Eq. (1.2), we complete the introduction with
several non-trivial model examples. The corresponding proofs together with other examples have been
given in [36] and [38].

n 1. Assume that the reaction term in (1.2) is non-negative. Since u = U(ω(z)), and U satisfies Eq.
(1.12) in G = ω(D), we see, having in mind that the Jacobian J(w) of the quasiconformal mapping
ω−1(w) is non-negative almost everywhere in G, that U is a subharmonic function in G. Thus we arrive
at the following generalization of the above-mentioned harmonic factorization theorem: Every solution
u ∈ W 1,2

loc (D) of the semilinear equation (1.2) with f(u) ≥ 0 can be expressed as u(z) = U(ω(z)),
where ω : D → G is a K-quasiconformal mapping agreed with the matrix function A(z), and U is
subharmonic in G.

n 2. Let us consider the divergence form of the model Liouville–Bieberbach semilinear equation

div [A(z)∇u] = eu, z = x+ iy, (1.14)
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in the unit disk D = {z : |z| < 1}. If the matrix function A(z) has the entries

a11 = 3− 2
x2 − y2 − 2xy

(x2 + y2)
, a12 = −2

x2 − y2 + 2xy

(x2 + y2)
,

a22 = 3 + 2
x2 − y2 − 2xy

(x2 + y2)
,

it is easy to verify that the function

u(x, y) = −2 log(1− x2 − y2) + log 8

realizes the blow-up solution to Eq. (1.14) in the disk D. In this case, the matrix function A(z)
generates the well-known logarithmic spiral quasiconformal mapping

ω(z) = ze2i log |z|

which plays an important role in the study of different problems of contemporary analysis, see, e.g., [13,
§13.2], [22, 32]. This function ω maps the unit disk D onto itself and transforms radial lines into
spirals infinitely winding around the origin. Since the mapping ω is volume-preserving, problem (1.14)
is reduced to the well-known solvability result, see [10] and [58], Theorem 5.3.7, for the Liouville–
Bieberbach equation (1.13).

n 3. Let C be the complex plane, and let

A(z) =




1 ∓ 2ν(x)√
1−ν2(x)

∓ 2ν(x)√
1−ν2(x)

1+3ν2(x)
1−ν2(x)


 , (1.15)

where ν(x), x ∈ R, stands for an arbitrary measurable real-valued function such that |ν(x)| ≤ k < 1.
Then the semilinear equation

div [A(z)∇u] = uq, 0 < q < 1, z ∈ C, (1.16)

has the following solution with a “dead zone” in the complex plane:

u(x, y) =





γ

(
y ±

x∫
0

2ν(t)√
1−ν2(t)

dt

) 2
1−q

, if y > ϕ(x), x ∈ R,

0 if x ≤ ϕ(x).

(1.17)

Here,

γ =

(
(1− q)2

2(1 + q)

) 1
1−q

,

and

y = ϕ(x) = ±
x∫

0

2ν(t)dt√
1− ν2(t)

, ∞ < x < +∞,

stands for the corresponding free boundary parametrization.
In this paper, for the sake of completeness, we will collect some basic facts from our recent research

concerning semilinear partial differential equations in the plane and give a number of new results on the
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topic. The paper is organized as follows. In Section 2, we give basic facts from the potential theory. In
Sections 3 and 4, one can find existence theorems for the quasilinear Poisson equation (1.12) as well as
for the corresponding semilinear equation (1.2) without boundary conditions. We study the solvability
of the Dirichlet problem with arbitrary continuous boundary data for the quasilinear Poisson equations
(1.12) in Section 5. Section 6 is devoted to the solvability of the Dirichlet problem with continuous
boundary data for the semilinear equation (1.2), and it also contains some applications. In the rest
sections, we discuss the boundary-value problem for the Poisson equations with boundary data that
are measurable with respect to the logarithmic capacity.

2. Basic facts from the potential theory

For the sake of completeness, we repeat the fundamental results [35, 39] concerning the potential
theory in the plane and strengthen some of them.

In what follows, D denotes the unit disk {z ∈ C : |z| < 1} in the complex plane C, DR(z0) := {z ∈
C : |z − z0| < R} for z0 ∈ C and R ∈ (0,∞), DR := DR(0).

For z and w ∈ D with z 6= w, let

G(z, w) := log

∣∣∣∣
1− zw̄

z − w

∣∣∣∣ and P (z, eit) :=
1− |z|2

|1− ze−it|2 (2.1)

be the Green function and the Poisson kernel in D. If ϕ ∈ C(∂D) and g ∈ C(D), then a solution to
the Poisson equation

△f(z) = g(z) (2.2)

satisfying the boundary condition f |∂D = ϕ is given by the formula

f(z) = Pϕ(z)− Gg(z), (2.3)

where

Pϕ(z) =
1

2π

2π∫

0

P (z, eit)ϕ(e−it) dt , Gg(z) =

∫

D

G(z, w) g(w) dm(w) , (2.4)

see, e.g., [45], pp. 118-120. Here, m(w) denotes the Lebesgue measure in C.

Next, we give the representation of solutions to the Poisson equation in the form of the Newtonian
(normalized antilogarithmic) potential.

Given a finite Borel measure ν on C with compact support, its potential is the function pν : C →
[−∞,∞) defined by

pν(z) =

∫

C

ln |z − w| dν(w), (2.5)

see [64], point 3.1.1.

Remark 1. Note that the function pν is subharmonic by Theorem 3.1.2 and, consequently, is
locally integrable on C by Theorem 2.5.1 in [64]. Moreover, pν is harmonic outside of the support of ν.

This definition can be extended to finite charges ν with compact support (named also signed
measures), i.e., to real-valued sigma-additive functions on Borel sets in C, because of ν = ν+ − ν−,
where ν+ and ν− are Borel measures by the well-known Jordan decomposition, see, e.g., Theorem 0.1
in [52].
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The key fact is the following statement, see, e.g., Theorem 3.7.4 in [64].

Proposition 1. Let ν be a finite charge with compact support in C. Then

△pν = 2π · ν (2.6)

in the distributional sense, i.e.,
∫

C

pν(z)△ψ(z) dm(z) = 2π

∫

C

ψ(z) d ν(z) ∀ ψ ∈ C∞
0 (C) . (2.7)

Here as usual, C∞
0 (C) denotes the class of all infinitely differentiable functions ψ : C → R with

compact support in C, △ = ∂2

∂x2 +
∂2

∂y2 is the Laplace operator, and dm(z) corresponds to the Lebesgue
measure in C.

Corollary 1. In particular, if, for every Borel set B in C,

ν(B) :=

∫

B

g(z) dm(z), (2.8)

where g : C → R is an integrable function with compact support, then

△Ng = g , (2.9)

where

Ng(z) :=
1

2π

∫

C

ln |z − w| g(w) dm(w) , (2.10)

in the distributional sense, i.e.,
∫

C

Ng(z)△ψ(z) dm(z) =

∫

C

ψ(z) g(z) dm(z) ∀ ψ ∈ C∞
0 (C) . (2.11)

Here, the function g is called the density of the charge ν and the function Ng is said to be the
Newtonian potential of g.

The next statement on the continuity in the mean of functions ψ : C → R in Lq(C), q ∈ [1,∞),
with respect to shifts is useful in the study of the Newtonian potential, see, e.g., Theorem 1.4.3 in [69],
cf. also Theorem III(11.2) in [67]. The one-dimensional analog of the statement can be found also
in [65], Theorem 9.5.

Lemma 1. Let ψ ∈ Lq(C), q ∈ [1,∞), have a compact support. Then

lim
∆z→0

∫

C

|ψ(z +∆z)− ψ(z)|q dm(z) = 0 . (2.12)

Recall that a shift of a set E ⊂ C by a vector ∆z ∈ C is the set

E +∆z := { ξ ∈ C : ξ = z + ∆z , z ∈ E } .

We prefer to give a direct proof of this important statement that may be of independent interest.
The proof is based on arguments by contradiction and the absolute continuity of indefinite integrals.
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Proof. Let us assume that there is a sequence ∆zn ∈ C, n = 1, 2, . . ., such that ∆zn → 0 as n → ∞
and, for some δ > 0 and ψn(z) := ψ(z +∆zn), n = 1, 2, . . .,

In :=



∫

C

|ψn(z)− ψ(z)|q dm(z)




1
q

≥ δ ∀ n = 1, 2, . . . . (2.13)

Denote by K the closed disk in C centered at 0 with the minimal radius R that contains the
support of ψ. By the Luzin theorem, see, e.g., Theorem 2.3.5 in [20], for every prescribed ε > 0,
there is a compact set C ⊂ K such that g|C is continuous and m(K \ C) < ε. With no loss of
generality, we may assume that C ⊂ K∗, where K∗ is a closed disk in C centered at 0 with a radius
r ∈ (0, R), and, moreover, that Cn ⊂ K, where Cn := C − ∆zn for all n = 1, 2, . . .. Note that
m(Cn) = m(C). Then m(K \ Cn) < ε and, consequently, m(K \ C∗

n) < 2ε, where C∗
n := C ∩ Cn,

because K \ C∗
n = (K \ Cn) ∪ (K \ C).

Next, setting Kn = K−∆zn, we see that K∪Kn = C∗
n∪(K \C∗

n)∪(Kn \C∗
n) and Kn \C∗

n+∆zn =
K \ C∗

n. Hence, by the triangle inequality for the norm in Lp, the following estimate holds:

In≤4 ·




∫

K\C∗
n

|ψ(z)|qdm(z)




1
q

+



∫

C∗
n

|ψn(z)− ψ(z)|qdm(z)




1
q

∀ n = 1, 2, . . .

By construction, both terms on the right-hand side can be made to be arbitrarily small, respectively,
for small enough ε because of absolute continuity of indefinite integrals and for all large enough n
after the choice of the set C. Thus, assumption (2.13) is disproved.

Let (X, d) and (X
′
, d

′
) be metric spaces with distances d and d

′
, respectively. A family F of

mappings f : X → X
′
is called equicontinuous at a pointx0 ∈ X, if, for every ε > 0, there is δ > 0

such that d
′
(f(x), f(x0)) < ε for all f ∈ F and x ∈ X with d(x, x0) < δ. The family F is said to be

equicontinuous,if F is equicontinuous at every point x0 ∈ X.

Lemma 2. Let g : C → R be in Lp(C) for p > 1 with compact support. Then Ng is continuous. A
collection {Ng} is equicontinuous, if the collection {g} is bounded by the norm in Lp(C) with supports
in a fixed disk K. Moreover, under the latter hypothesis, on each compact set S in C,

‖Ng‖C ≤ M · ‖g‖p, (2.14)

where M is a constant depending, in general, on S, but not on g.

Proof. By the Hölder inequality with 1
q +

1
p = 1, we have

|Ng(z)−Ng(ζ)| ≤ ‖g‖p
2π

·




∫

K

| ln |z − w| − ln |ζ − w| |q dm(w)




1
q

=
‖g‖p
2π

·



∫

C

|ψζ(ξ +∆z)− ψζ(ξ) |q dm(ξ)




1
q

,

where ξ = ζ − w, ∆z = z − ζ, ψζ(ξ) := χK+ζ(ξ) ln |ξ|. Thus, the first two conclusions hold true by
Lemma 1, because the function ln |ξ| belongs to the class Lq

loc(C) for all q ∈ [1,∞).
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The third conclusion similarly follows through the direct estimate

|Ng(ζ)| ≤
‖g‖p
2π

·




∫

K

| ln |ζ − w||q dm(w)




1
q

=
‖g‖p
2π

·




∫

C

|ψζ(ξ)|q dm(ξ)




1
q

,

because the last integral is continuous in ζ ∈ C. Indeed, by the triangle inequality for the norm in
Lq(C), we see that

|‖ψζ‖q − ‖ψζ∗‖q| ≤ ‖ψζ − ψζ∗‖q =





∫

∆

| ln |ξ||q dm(ξ)





1
q

,

where ∆ denotes the symmetric difference of the disks K+ ζ and K + ζ∗. Thus, the statement follows
from the absolute continuity of the indefinite integral.

The corresponding statement on the continuity of integrals of the potential type in higher dimen-
sions can be found in [69], Theorem 1.6.1.

Proposition 2. There exist functions g ∈ L1(C) with compact support whose potentials Ng are
not continuous, furthermore, Ng /∈ L∞

loc.

Proof. Indeed, let us consider the function

ω(t) :=
1

t2(1− ln t)α
, t ∈ (0, 1] , α ∈ (1, 2) , ω(0) := ∞

and, correspondingly,

g(z) := ω(|z|) , z ∈ D , g(z) := 0 , z ∈ C \D .

Then, setting Ω(t) = t · ω(t), we see, firstly, that

∫

D

|g(w)|dm(w) = 2π lim
ρ→+0

1∫

ρ

Ω(t)d t = 2π lim
ρ→+0

1∫

ρ

d ln t

(1− ln t)α
=

2π

α− 1

and, secondly, the Newtonian potential Ng at the origin is equal to

lim
ρ→+0

1∫

ρ

Ω(t) ln t dt= lim
ρ→+0






ln 1

t

1∫

t

Ω(τ)dτ



1

ρ

+

1∫

ρ


1

t

1∫

t

Ω(τ)dτ


 dt





=
1

α− 1
· lim
ρ→+0



[

ln t

(1− ln t)α−1

]1

ρ

−
1∫

ρ

d t

t(1− ln t)α−1




=
1

α− 1
· lim
ρ→+0

[
1

(1− ln t)α−1
+

α− 1

2− α
· (1− ln t)2−α

]1

ρ

= −∞ .
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The following lemma on the Newtonian potentials is important for obtaining the solutions of a
higher regularity to the Poisson equations, as well as to the corresponding semilinear equations.

In this connection, recall the definition of the formal complex derivatives:

∂

∂z
:=

1

2

{
∂

∂x
− i · ∂

∂y

}
,

∂

∂z
:=

1

2

{
∂

∂x
+ i · ∂

∂y

}
, z = x+ iy . (2.15)

The elementary algebraic calculations show their relation to the Laplacian

△ :=
∂2

∂x2
+

∂2

∂y2
= 4 · ∂2

∂z∂z
= 4 · ∂2

∂z∂z
. (2.16)

Further, we apply the theory of the well-known integral operators

Tg(z) :=
1

π

∫

C

g(w)
dm(w)

z − w
, Tg(z) :=

1

π

∫

C

g(w)
dm(w)

z − w

defined for integrable functions with a compact support K and studied in detail. Recall the known
results on them in Chapter 1 of [71], confining the case K = D, that are relevant to the proof of
Theorem 2.

First of all, if g ∈ L1(C), then, by Theorem 1.13, the integrals Tg and Tg exist a.e. in C and
belong to Lq

loc(C) for all q ∈ [1, 2). By Theorem 1.14, they have generalized derivatives by Sobolev
(Tg)z = g = (Tg)z . Furthermore, if g ∈ Lp(C), p > 1, then, by Theorem 1.27 and (6.27), Tg and Tg
belong to Lq

loc(C) for some q > 2. Moreover, by Theorems 1.36–1.37, (Tg)z and (Tg)z also belong to
Lp
loc(C). Finally, if g ∈ Lp(C) for p > 2, then, by Theorem 1.19, Tg and Tg belong to Cα

loc(C) with
α = (p− 2)/p.

Here, given a domain D in C, a function g : D → R is assumed to be extended onto C by zero
outside of D.

Lemma 3. Let D be a bounded domain in C. Suppose that g ∈ L1(D). Then Ng ∈ W 1,q
loc (C) for

all q ∈ [1, 2), and there exist the generalized derivatives by Sobolev
∂2Ng

∂z∂z and
∂2Ng

∂z∂z and

4 · ∂
2Ng

∂z∂z
= △Ng = 4 · ∂

2Ng

∂z∂z
= g a.e. in C (2.17)

Moreover, Ng ∈ Ls
loc(C) for all s ∈ [1,∞). More precisely,

‖Ng‖s ≤ ‖g‖1 · ‖ ln |ξ|‖s ∀ s ∈ [1,∞) , (2.18)

where ‖Ng‖s is in Dr for all r ∈ (0,∞), and ‖ ln |ξ|‖s is in DR+r, if D ⊆ DR.

If g ∈ Lp(D) for some p ∈ (1, 2], then Ng ∈ W 2,p
loc (C) and

Ng ∈ W 1,γ
loc (C) ∀ γ ∈ (1, q) , where q = 2p/(2− p) > 2 . (2.19)

In addition, the collection {Ng} is locally β−Hölder equicontinuous in C for all β ∈ (0, 1 − 2/q), and
the collection {N ′

g} of its first partial derivatives is strictly compact in Lγ(D) for all γ ∈ (1, q), if the
collection {g} is bounded in Lp(D).

Finally, if g ∈ Lp(D) for some p > 2, then Ng ∈ C1,α
loc (C) with α = (p − 2)/p. Furthermore, the

collection {N ′
g} is locally Hölder equicontinuous in C with the given α, if {g} is bounded in Lp(D).
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Proof. Note that Ng is the convolution ψ ∗ g, where ψ(ξ) = ln |ξ|, and, hence, (2.18) follows, e.g.,

from Corollary 4.5.2 in [46]. Moreover, ∂ψ∗g
∂z = ∂ψ

∂z ∗ g and ∂ψ∗g
∂z = ∂ψ

∂z ∗ g, see, e.g., (4.2.5) in [46]. By
elementary calculations, we get

∂

∂z
ln |z − w| =

1

2
· 1

z − w
,

∂

∂z
ln |z − w| =

1

2
· 1

z − w
. (2.20)

Consequently,
∂Ng(z)

∂z
=

1

4
· Tg(z) , ∂Ng(z)

∂z
=

1

4
· Tg(z) . (2.21)

Thus, the rest conclusions for g ∈ L1(D) follow from Theorems 1.13–1.14 in [71].

Next, if g ∈ Lp(D) with p ∈ (1, 2], then Ng ∈ W 1,γ
loc (C) for all γ ∈ (1, q), where q = 2p/(2− p) > 2,

by Theorem 1.27, (1.27) in [71]. Moreover, Ng ∈ W 2,p
loc (C) by Theorems 1.36–1.37 in [71]. In addition,

a collection {Ng} is locally β−Hölder equicontinuous in C for all β ∈ (0, 1 − 2/q), see, e.g., Lemma
2.7 in [15], and the collection {N ′

g} of its first partial derivatives is strictly compact in Lγ(D) for all
γ ∈ (1, q), if the collection {g} is bounded by the norm in Lp(D), see, e.g., Theorem 1.4.3 in [69] and
Theorem 1.27 in [71].

Finally, if g ∈ Lp(D) for some p > 2, then Ng ∈ C1,α
loc (C) with α = (p − 2)/p by Theorem 1.19

in [71]. Furthermore, by the last theorem, the collection {N ′
g} is also locally α−Hölder equicontinuous

in C with α = (p− 2)/p, if the collection {g} is bounded by the norm in Lp(D), p > 2.

Remark 2. Note that, generally speaking, Ng /∈ W 2,1
loc in the case g ∈ L1(C), see, e.g., example 7.5

in [25], p. 141. Note also that the corresponding Newtonian potentials Ng in Rn, n ≥ 3, also belong

to W 2,p
loc , if g ∈ Lp(C) for p > 1 with compact support, see, e.g., [26], Theorem 9.9.

As above, we assume that g : D → R is extended by zero outside of D.

Corollary 2. Let D be a subdomain of D, and let g : D → R be in L1(D) and in Lp
loc(D) for

some p > 1. Then Ng satisfies (2.17) a.e. in D. Moreover, Ng ∈ W 1,q
loc (D) for q > 2, and Ng is locally

Hölder continuous in D. Furthermore, Ng ∈ C1,α
loc (D) with α = (p− 2)/p, if g ∈ Lp

loc(D) for p > 2.

In addition, the collection {Ng} is locally β−Hölder equicontinuous in D for all β ∈ (0, 1 − 2/q),
and the collection {N ′

g} of its first partial derivatives is strictly compact in Lγ
loc(D) for all γ ∈ (1, q), if

a collection {g} is bounded in L1(D) and in Lp
loc(D) for some p ∈ (1, 2], where q is defined in (2.19).

Finally, the collection {N ′
g} is locally α−Hölder equicontinuous in D with the given α, if a collection

{g} is bounded in L1(D) and in Lp
loc(D) for p > 2.

Proof. Given z0 ∈ D and 0 < R < dist (z0, ∂D), Ng = Ng1 + Ng2 with g2 := g − g1 and g1 := g · χ,
where χ is the characteristic function of the disk DR(z0). The first summand satisfies all desired
properties by Lemma 3, and the second one is a harmonic function in DR(z0), see, e.g., Theorem 3.1.2
in [64]. Thus, the first part holds. In the proof of the rest part, it is applied the same decomposition.
However, in the case we need two following explicit estimates for the second summand in a smaller
disk Dr(z0), r ∈ (0, R):

|Ng2(z2)−Ng2(z1)|≤

∣∣∣∣∣∣

z2∫

z1

∂Ng2

∂z
dz

∣∣∣∣∣∣
+

∣∣∣∣∣∣

z2∫

z1

∂Ng2

∂z̄
dz̄

∣∣∣∣∣∣
≤ 1

2π
· ‖g‖1
(R − r)

· |z2 − z1|.
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Since the function Tg2 is analytic in Dr(z0), and the function Tg2 = Tg2 (for the real-valued function
g2) is antianalytic in Dr(z0), we get similarly

|N ′
g2(z2)−N ′

g2(z1)| ≤ 1

4

∣∣∣∣∣∣

z2∫

z1

∂ Tg2
∂z

dz

∣∣∣∣∣∣
≤ 1

4π
· ‖g‖1
(R− r)2

· |z2 − z1| .

Here we denote by N ′
g2 any of the first partial derivatives of Ng2 , see (2.15):

∂

∂x
=

∂

∂z
+

∂

∂z̄
,

∂

∂y
= i ·

(
∂

∂z
− ∂

∂z̄

)
, z = x+ iy ,

take into account relation (2.20) and calculate the given integrals over the segment [z1, z2] ⊂ Dr(z0)
of straight line going through z1, z2 ∈ Dr(z0).

3. On the solvability of quasilinear Poisson equations

In this section, we study the solvability problem for quasilinear Poisson equations of the form
△U = h(z)f(U). The well-known Leray–Schauder approach allows us to reduce the problem to the
study of the corresponding linear Poisson equation from the previous section.

For the sake of completeness, we recall some definitions and basic facts of the celebrated paper [56].

First of all, Leray and Schauder define a completely continuous mapping from a metric space M1

into a metric space M2 as a continuous mapping on M1 which takes bounded subsets of M1 into
relatively compact ones of M2, i.e., with compact closures in M2. When a continuous mapping takes
M1 into a relatively compact subset of M1, it is nowadays said to be compact on M1.

Then Leray and Schauder extend the Brouwer degree to compact perturbations of the identity I in
a Banach space B, i.e., a complete normed linear space. Namely, given an open bounded set Ω ⊂ B,
a compact mapping F : B → B, and z /∈ Φ(∂Ω), Φ := I − F , the (Leray–Schauder) topological degree
deg [Φ,Ω, z] of Φ in Ω over z is constructed from the Brouwer degree, by approximating the mapping
F over Ω by mappings Fε with range in a finite-dimensional subspace Bε (containing z) of B. It is
shown that the Brouwer degrees deg [Φε,Ωε, z] of Φε := Iε − Fε, Iε := I|Bε , in Ωε := Ω ∩ Bε over z
stabilize for sufficiently small positive ε to a common value defining deg [Φ,Ω, z] of Φ in Ω over z.

This topological degree “algebraically counts” the number of fixed points of F (·) − z in Ω and
conserves the basic properties of the Brouwer degree such as the additivity and homotopy invariance.
Now, let a be an isolated fixed point of F . Then the local (Leray–Schauder) index of a is defined by
ind [Φ, a] := deg[Φ, B(a, r), 0] for small enough r > 0. If a = 0, then we say on the index of F . In
particular, if F ≡ 0, correspondingly, Φ ≡ I, then the index of F is equal to 1.

The fundamental Theorem 1 in [56] can be formulated in the following way: Let B be a Banach
space, and let F (·, τ) : B → B be a family of operators with τ ∈ [0, 1]. Suppose that the following
hypotheses hold:

(H1) F (·, τ) is completely continuous on B for every τ ∈ [0, 1] and uniformly continuous in the
parameter τ ∈ [0, 1] on every bounded set in B;

(H2) the operator F := F (·, 0) has a finite collection of fixed points whose total index is not equal
to zero;

(H3) the collection of all fixed points of the operators F (·, τ), τ ∈ [0, 1], is bounded in B.
Then the collection of all fixed points of the family of operators F (·, τ) contains a continuum along

which τ takes all values in [0, 1].
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In the proof of the next theorem, the initial operator F (·) := F (·, 0) ≡ 0. Hence, F has the single
fixed point (at the origin), and its index is equal to 1. Thus, hypothesis (H2) will be automatically
satisfied.

Theorem 1. Let h : C → R be a function in the class Lp(C) for p > 1 with compact support.
Suppose that a function f : R → R is continuous, and

lim
t→∞

f(t)

t
= 0 . (3.1)

Then there is a continuous function U : C → R in the class W 2,p
loc (C) such that

△U(z) = h(z) · f(U(z)) a.e., (3.2)

and U = Ng, where g : C → R is a function in Lp whose support is in the support of h. The upper

bound of ‖g‖p depends only on ‖h‖p and on the function f . Moreover, U ∈ W 1,q
loc (C) for some q > 2,

and U is locally Hölder continuous. Furthermore, U ∈ C1,α
loc (C) with α = (p− 2)/p, if p > 2.

In particular, U ∈ C1,α
loc (C) for all α = (0, 1), if h in Theorem 1 is bounded.

Proof. If ‖h‖p = 0 or ‖f‖C = 0, then any constant function U in C gives the desired solution of (3.2).
Thus, we may assume that ‖h‖p 6= 0 and ‖f‖C 6= 0. Set f∗(s) = max

|t|≤s
|f(t)|, s ∈ R+ := [0,∞). Then

the function f∗ : R+ → R+ is continuous and nondecreasing. Moreover, f∗(s)/s → 0 as s → ∞ by
(3.1).

By Lemma 2, we obtain the family of operators F (g; τ) : Lp
h(C) → Lp

h(C), where Lp
h(C) consists

of functions g ∈ Lp(C) with supports in the support of h,

F (g; τ) := τh · f(Ng) ∀ τ ∈ [0, 1] (3.3)

which satisfies all groups of hypotheses H1-H3 of Theorem 1 in [56]. Indeed:
H1). First of all, F (g; τ) ∈ Lp

h(C) for all τ ∈ [0, 1] and g ∈ Lp
h(C), because, by Lemma 2, the

function f(Ng) is continuous, and

‖F (g; τ)‖p ≤ ‖h‖p f∗ (M ‖g‖p) < ∞ ∀ τ ∈ [0, 1],

where M is the constant from estimate (2.14). Thus, by Lemma 2 in combination with the Arzela–
Ascoli theorem, see, e.g., Theorem IV.6.7 in [17], the operators F (g; τ) are completely continuous for
every τ ∈ [0, 1] and even uniformly continuous in the parameter τ ∈ [0, 1].

H2). The index of the operator F (g; 0) is obviously equal to 1.
H3). For solutions to the equations g = F (g; τ), we have, by Lemma 2:

‖g‖p ≤ ‖h‖p f∗ (M ‖g‖p)

i.e.,
f∗(M ‖g‖p)
M ‖g‖p

≥ 1

M ‖h‖p
, (3.4)

and, hence, ‖g‖p should be bounded in view of condition (3.1).
Thus, by Theorem 1 in [56], there is a function g ∈ Lp

h(D) with F (g; 1) = g, and, by Lemma 3,
the function U := Ng gives the desired solution of (3.2).

844



Corollary 3. Let D be a subdomain of D, h : D → R be in L1(D) and in Lp
loc(D) for some p > 1.

Suppose that a function f : R → R satisfies the hypothesis of Theorem 1. Then there is a weak solution
u : D → R of the quasilinear Poisson equation (3.2) which is locally Hölder continuous in D.

Proof. Let Dk be an expanding sequence of domains in C with Dk ⊂ D, k = 1, 2, . . ., exhausting D,

i.e.,
∞⋃
k=1

Dk = D. Let us extend h by zero outside of D. Set hk = hχk, where χk is a characteristic

function of Dk in C, and Uk = Ngk , where gk corresponds to hk by Theorem 1. Note that the sequence
‖gk‖p, k = 1, 2, . . ., is bounded on each Dm, m = 1, 2, . . ., by Theorem 1. Hence, by Lemma 2,
the sequence |Ngk |C is also bounded on each Dm, m = 1, 2, . . .. Now, by Corollary 2, the family
of functions {Ngk} is Hölder equicontinuous on each Dm, m = 1, 2, . . .. Thus, by the Arzela–Ascoli
theorem, see, e.g., Theorem IV.6.7 in [17], the family of functions {Ngk} is compact on each Dm,
m = 1, 2, . . ..

Without loss of generality, we may assume that p ∈ (1, 2]. Then, by Corollary 2, the Newtonian
potential {Ngk}, m = 1, 2, . . ., is in the class W 1,q

loc for some q > 2, and the family {N ′
gk
} is also compact

on each Dm, m = 1, 2, . . ., by the norm of Lq. Consequently, the sequence {Ngk} is compact on each
Dm, m = 1, 2, . . ., by any norm ‖ · ‖ of W 1,q, too, see, e.g., Theorem 2.5.1 in [59].

Next, let us apply the so-called diagonal process. Namely, let u
(1)
k , k = 1, 2, . . ., be a subsequence

of {Ngk} that converges uniformly and, by the norm ‖ · ‖, on the domain D1 to a function u : D1 → R.

Of course, we may assume that ‖u(1)k − u‖C < 1/k, as well as ‖u(1)k − u‖ < 1/k for all k = 1, 2, . . ..

Similarly, a subsequence u
(2)
k of u

(1)
k with respect to the domain D2 can be defined. Let us continue

the process by induction and, finally, consider the diagonal subsequence um := u
(m)
m , m = 1, 2, . . ., of

the sequence Ngk .
It is clear by construction that um|D converges to a function u : D → R locally uniformly, and,

in W 1,q
loc (D), q > 2. Thus, u ∈ C(D) ∩W 1,q

loc (D), and, consequently, u is locally Hölder continuous in
D. Moreover, u is a weak solution to Eq. (3.2) in the domain D. Indeed, by Corollary 1 and the
definition of generalized derivatives, we have that um satisfy the relations

∫

D

〈∇um(z),∇ψ(z)〉 dm(z) +

∫

D

hm(z)f(um(z))ψ(z) dm(z)

= 0 ∀ψ ∈ C∞
0 (D).

Passing to the limit as m → ∞, we obtain the desired conclusion.

4. On the solvability of semilinear equations

In this section, we study the solvability problem for semilinear equations of the form div [A(z)∇u] =
f(u). Following work [36], as a weak solution to this equation, we understand a function u ∈ C(D) ∩
W 1,2

loc (D) such that
∫

D
〈A(z)∇u(z), ∇ϕ(z)〉 dm(z) +

∫

D
f(u(z))ϕ(z) dm(z) = 0 (4.1)

for all ϕ ∈ C(D) ∩W 1,2
0 (D).

Theorem 2. Let D be a domain in C with a finite area that is not dense in C. Suppose that
A ∈ M2×2

K (D), and a continuous function f : R → R satisfies condition (3.1). Then a weak solution
u : D → R to the equation

div [A(z)∇u(z)] = f(u) (4.2)
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exists and is locally Hölder-continuous in D.

Proof. Let us extend, by definition, A ≡ I (the unit matrix) outside of D. By Theorem 4.1 in [36], if
u is a weak solution of (4.2), then u = U ◦ ω, where ω := Ω|D, and Ω is a quasiconformal mapping of
C onto itself, Ω(∞) = ∞ agreed with the extended A, and U is a weak solution to (3.2) with h = J ,
where J is the Jacobian of the mapping ω−1 : D∗ → D, D∗ := ω(D).

Note that C\D contains a nondegenerate (connected) component C, because D is not dense in C,
see, e.g., Corollary IV.2 and the point II.4.D in [47], see also Lemma 5.1 in [48] or Lemma 6.3 in [57].
Hence, C \D∗ contains a component C∗ := Ω(C) whose boundary is a nondegenerate continuum, see
again Lemma 5.1 in [48] or Lemma 6.3 in [57]. By the Riemann theorem, there is a conformal mapping
H of C \ C∗ onto D.

Setting H∗ = H|D∗ , we see that H∗ maps D∗ into D. Moreover, the quasiconformal mapping
ω∗ := H∗ ◦ ω : D → D∗ := H∗(D∗) is also agreed with A in D. Thus, by Theorem 4.1 in [36],
u = U∗ ◦ ω∗, where U∗ is a weak solution to (3.2) with h = J∗ in D∗ ⊆ D. Here, J∗ is the Jacobian of
the mapping ω−1

∗ : D∗ → D.

By Remark 4.1 in [36], inversely, if U∗ is a weak solution to (3.2) with h = J∗ in D∗, then u := U∗◦ω∗
is a weak solution to (4.2) in D. The latter implication allows us to reduce the proof of Theorem 2 to
that of Corollary 3 with the special h = J∗.

Indeed, J∗ ∈ L1(D∗), because its integral is equal to the area of the domain D, see, e.g., Theorem
3.2 in [12] and Theorem II.B.3 in [1]. Moreover, J∗ ∈ Lp

loc(D∗) for some p > 1, because, by the Bojarski
result (see [11] and [12]), the first partial derivatives of the quasiconformal mapping ω∗ := ω−1

∗ : D∗ →
D are locally integrable with a power q > 2, and J∗ = |ω∗

w|2 − |ω∗
w̄|2, see, e.g., I.A(9) in [1].

Remark 3. Note that it is easy to construct a set C in C of the Cantor type which is dense in the
plane C whose completion has a finite area, furthermore, an arbitrarily small area.

Indeed, let us cover the plane by a collection S consisting of closed squares with unit sides oriented
along the coordinate axes x and y, z = x+ iy ∈ C, that can intersect each other only by their common
sides. Let Sn, n = 1, 2, . . ., be some enumeration of the squares in S, and let ε ∈ (0, 1) be arbitrary.

First, let us remove narrow symmetric strips of the same width in S1 along its sides whose total area
is less than ε/4. We have a central square in the rest. Then we cut out narrow centralized horizontal
and vertical corridors of the same width in the last square whose total area is less than ε/8. These
corridors form a cross that splits the last square into 4 squares. In turn, from these squares, we remove
the similar crosses of the total area ε/16 that split them on the whole into 42 squares. Repeating the
procedure by induction, we remove from S1 corridors with the total area ε/2, and the intersection of
all mentioned squares gives a totally disconnected compactum C1 6= ∅ of the Cantor type, see, e.g.,
4.41(2′) in [50].

Similarly, we are able to construct such the set Cn ⊂ Sn with its completion in Sn whose area is

less than ε/21+n for each n = 1, 2, . . .. Then the set C :=
∞⋃
n=1

Cn has the completion in C whose area

is less than ε. Note that, by our construction, the set C is totally disconnected. Thus, its topological
dimension is equal to 0, see, e.g., Proposition II.4.D in [47]. It is clear that D := C \ C is a domain,
see, e.g., Theorem IV.4 in [47].

Finally, note that our example of a set C of the Cantor type in the plane with its topological
dimension 0 is essentially different from the well-known Sierpinski cover whose topological dimension
is equal to 1.
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5. Dirichlet problem with continuous data for quasilinear Poisson equations

Let D be a bounded domain in C without degenerate boundary components, i.e., any connected
component of the boundary of D is not degenerated to a single point. Given a continuous boundary
function ϕ : ∂D → R, we denote, by Dϕ, the harmonic function in D that has the continuous extension
to D with ϕ as its boundary data. Such a function exists, and it is unique, see, e.g., Corollary 4.1.8
and Theorem 4.2.2 in [64]. Thus, the Dirichlet operator Dϕ is well defined in the given domains. We
do not need its explicit description for our goals.

By Lemma 3, we come to the following result on the existence, regularity, and representation of
solutions to the Poisson equation for the Dirichlet problem in arbitrary bounded domains D in C

without degenerate boundary components, where we assume that the charge density g is extended by
zero outside of D.

Theorem 3. Let D be a bounded domain in C without degenerate boundary components, let
ϕ : ∂D → R be a continuous function, and let g : D → R belong to the class Lp(D) for p > 1. Then
the function

U := Ng − DN∗
g

+ Dϕ , N∗
g := Ng|∂D , (5.1)

is continuous in D with U |∂D = ϕ, belongs to the class W 2,p
loc (D), and satisfies the Poisson equation

△U = g a.e. in D. Moreover, U ∈ W 1,q
loc (D) for some q > 2, and U is locally Hölder-continuous in

D. Furthermore, U ∈ C1,α
loc (D) with α = (p− 2)/p, if g ∈ Lp(D) for p > 2.

Remark 4. Note that a generalized solution to the Poisson equation for the Dirichlet problem in
the class C(D) ∩W 1,2

loc (D) is unique at all, see, e.g., Theorem 8.30 in [26], and (5.1) gives the effective
representation of this unique solution.

The case of quasilinear Poisson equations is reduced to the case of the linear Poisson equations
again by the Leray–Schauder approach, as in the last section.

Theorem 4. Let D be a bounded domain in C without degenerate boundary components, let
ϕ : ∂D → R be a continuous function, and let h : D → R be a function in the class Lp(D) for p > 1.
Suppose that a function f : R → R is continuous and

lim
t→∞

f(t)

t
= 0 . (5.2)

Then there is a continuous function U : D → R with U |∂D = ϕ and U |D ∈ W 2,p
loc such that

△U(z) = h(z) · f(U(z)) for a.e. z ∈ D . (5.3)

Moreover, U ∈ W 1,q
loc (D) for some q > 2, and U is locally Hölder-continuous. Furthermore, U ∈

C1,α
loc (D) with α = (p− 2)/p if p > 2.

In particular, the last statement in Theorem 4 implies that U ∈ C1,α
loc (D) for all α = (0, 1), if h is

bounded.

Proof. If ‖h‖p = 0 or ‖f‖C = 0, then the Dirichlet operator Dϕ gives the desired solution to Eq.
(5.3) for the Dirichlet problem, see, e.g., I.D.2 in [49]. Hence, we may assume further that ‖h‖p 6= 0
and ‖f‖C 6= 0. Set f∗(s) = max

|t|≤s
|f(t)|, s ∈ R+. Then the function f∗ : R+ → R+ is continuous and

nondecreasing, and, moreover, f∗(s)/s → 0 as s → ∞ by (5.2).
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By Lemma 2 and the maximum principle for harmonic functions, we obtain the family of operators
F (g; τ) : Lp(D) → Lp(D), τ ∈ [0, 1]:

F (g; τ) := τh · f(Ng −DN∗
g
+Dϕ) , N∗

g := Ng|∂D , ∀ τ ∈ [0, 1] (5.4)

which satisfies all groups of hypotheses H1-H3 of Theorem 1 in [56]. Indeed:

H1). First of all, F (g; τ) ∈ Lp(D) for all τ ∈ [0, 1] and g ∈ Lp(D), because,, by Lemma 2,
f(Ng −DN∗

g
+Dϕ) is a continuous function, and, moreover,

‖F (g; τ)‖p ≤ ‖h‖p f∗ ( 2M ‖g‖p + ‖ϕ‖C ) < ∞ ∀ τ ∈ [0, 1] .

Thus, by Lemma 2 in combination with the Arzela–Ascoli theorem, see, e.g., Theorem IV.6.7 in [17],
the operators F (g; τ) are completely continuous for each τ ∈ [0, 1] and even uniformly continuous in
the parameter τ ∈ [0, 1].

H2). The index of the operator F (g; 0) is obviously equal to 1.

H3). By Lemma 2 and the maximum principle for harmonic functions, we have the estimate for
solutions g ∈ Lp to the equations g = F (g; τ):

‖g‖p ≤ ‖h‖p f∗ ( 2M ‖g‖p + ‖ϕ‖C ) ≤ ‖h‖p f∗( 3M ‖g‖p)

whenever ‖g‖p ≥ ‖ϕ‖C/M , i.e., then it should be

f∗( 3M ‖g‖p)
3M ‖g‖p

≥ 1

3M ‖h‖p
. (5.5)

Hence, ‖g‖p should be bounded in view of condition (5.2).

Thus, by Theorem 1 in [56], there is a function g ∈ Lp(D) such that g = F (g; 1), and, consequently,
by Lemma 3, the function U := Ng − DN∗

g
+Dϕ gives the desired solution to the quasilinear Poisson

equation (5.3) for the Dirichlet problem.

Remark 5. As is clear from the proof, condition (5.2) can be replaced by the following weaker
condition with M from the estimate in Lemma 2:

lim sup
s→∞

f∗(s)
s

<
1

3M‖h‖p
. (5.6)

Theorem 4 can be applied to some physical problems. The first circle of such applications is relevant
to reaction-diffusion problems. Problems of this type are discussed in [16], p. 4, and in [3] in details. A
nonlinear system is obtained for the density u and the temperature T of the reactant. By eliminating
T, the system can be reduced to the equation

△u = λ · f(u) (5.7)

with h(z) ≡ λ > 0. For isothermal reactions, f(u) = uq, where q > 0 is called the order of the reaction.
It turns out that the density of the reactant u may be zero in a subdomain called a dead core. A
particularization of results in Chapter 1 of [16] shows that a dead core may exist just iff 0 < q < 1 and
λ is large enough (see the corresponding examples in [36]). In this connection, the following statements
may be of independent interest.
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Corollary 4. Let D be a bounded domain in C without degenerate boundary components, let
ϕ : ∂D → R be a continuous function, and let h : D → R be a function in the class Lp(D), p > 1.
Then there exists a continuous function u : D → R with u|∂D = ϕ such that u ∈ W 2,p

loc (D), and

△u(z) = h(z) · uq(z) , 0 < q < 1 (5.8)

a.e. in D. Moreover, u ∈ W 1,β
loc (D) for some β > 2, and u is locally Hölder-continuous in D. Further-

more, u ∈ C1,α
loc (D) with α = (p− 2)/p if p > 2.

Corollary 5. Let D be a bounded domain in C without degenerate boundary components, and let
ϕ : ∂D → R be a continuous function. Then there is a continuous function u : D → R with u|∂D = ϕ
such that u ∈ C1,α

loc (D) for all α ∈ (0, 1), u ∈ W 2,p
loc (D) for all p ∈ [1,∞), and

△u(z) = uq(z) , 0 < q < 1 , a.e. in D . (5.9)

Note also that certain mathematical models of a thermal evolution of a heated plasma lead to
nonlinear equations of the type (5.7). Indeed, it is known that some of them have the form △ψ(u) =
f(u) with ψ′(0) = ∞ and ψ′(u) > 0, if u 6= 0, as, for instance, ψ(u) = |u|q−1u for 0 < q < 1, see,
e.g., [16]. With the replacement of the function U = ψ(u) = |u|q ·signu, we have that u = |U |Q ·signU ,
Q = 1/q, and, with the choice f(u) = |u|q2 ·signu, we come to the equation △U = |U |q ·signU = ψ(U).

Corollary 6. Let D be a bounded domain in C without degenerate boundary components, and let
ϕ : ∂D → R be a continuous function. Then there is a continuous function U : D → R with U |∂D = ϕ
such that U ∈ C1,α

loc (D) for all α ∈ (0, 1), u ∈ W 2,p
loc (D) for all p ∈ [1,∞), and

△U(z) = |U(z)|q−1U(z) , 0 < q < 1 , a.e. in D . (5.10)

Finally, we recall that, in the combustion theory, see, e.g., [5], [62], and the references therein, the
model equation

∂u(z, t)

∂t
=

1

δ
· △u + eu , t ≥ 0, z ∈ D, (5.11)

takes a special place. Here, u ≥ 0 is the temperature of the medium, and δ is a certain positive
parameter. We restrict ourselves here by the stationary case, although our approach makes it possible
to study the parabolic equation (5.11), see [36]. Namely, Eq. (5.3) is appeared here with h ≡ δ > 0
and the function f(u) = e−u that is bounded.

Corollary 7. Let D be a bounded domain in C without degenerate boundary components, and let
ϕ : ∂D → R be a continuous function. Then there is a continuous function U : D → R with U |∂D = ϕ
such that U ∈ C1,α

loc (D) for all α ∈ (0, 1), u ∈ W 2,p
loc (D) for all p ∈ [1,∞), and

△U(z) = δ · eU(z) , a.e. in D . (5.12)

Due to the factorization theorem in [36], we extend these results to semilinear equations describing
the corresponding physical phenomena in anisotropic and inhomogeneous media in any bounded domain
without degenerate boundary components, see the next section.
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6. Dirichlet problem with continuous data for semilinear equations

By the factorization theorem from [36] mentioned in Introduction, the study of semilinear equations
(4.2) in bounded domains without degenerate boundary componentss D is reduced, by means of a
suitable quasiconformal change of variables, to the study of the corresponding quasilinear Poisson
equations (5.3).

Theorem 5. Let D be a bounded domain in C without degenerate boundary components, let
A ∈ M2×2

K (D), ϕ : ∂D → R be an arbitrary continuous function, and let f : R → R be a continuous
function such that

lim
t→∞

f(t)

t
= 0 . (6.1)

Then there is a weak solution u : D → R of the class C(D) ∩W 1,2
loc (D) to the equation

div [A(z)∇u] = f(u)

which is locally Hölder-continuous in D and continuous in D with u|∂D = ϕ.

Proof. Let us extend, by definition, A ≡ I outside of D. By Theorem 4.1 in [36], if u is a weak
solution to the equation, then u = U ◦ ω, where ω := Ω|D, Ω is a quasiconformal mapping of C onto
itself agreed with the extended A, and U is a weak solution to Eq. (5.3) with h = J , where J is the
restriction of the Jacobian of the mapping Ω−1 : C → C to the domain D∗ := Ω(D).

Inversely, by Remark 4.1 in [36], we see that if U is a weak solution to (5.3) with h = J , then
u = U ◦ω is a weak solution to our equation. The latter allows us to reduce Theorem 5 to Theorem 4.
Indeed, D∗ = Ω(D) is compact, and, by the celebrated Bojarski result, see [11] and [12], the generalized
derivatives of the quasiconformal mapping Ω∗ := Ω−1 : C → C are locally integrable with some power
q > 2. Note also that the Jacobian J of its restriction ω∗ := Ω∗|D∗ is equal to |ω∗

w|2 − |ω∗
w̄|2, see, e.g.,

I.A(9) in [1]. Consequently, J ∈ Lp(D∗) for some p > 1.

Specifying the reaction term f(u) of the semilinear equation, we arrive at the following statements
concerning some concrete problems of mathematical physics in inhomogeneous and anisotropic media.

Corollary 8. Let D be a bounded domain in C without degenerate boundary components, A ∈
M2×2

K (D) and ϕ : ∂D → R be a continuous function. Then there is a continuous function u : D → R

with u|∂D = ϕ which is locally Hölder-continuous in D, and it is a weak solution in D to the equation

div [A(z)∇u(z) ] = uq(z) , 0 < q < 1 . (6.2)

Corollary 9. Let D be a bounded domain in C without degenerate boundary components, let
A ∈ M2×2

K (D), and let ϕ : ∂D → R be a continuous function. Then there is a continuous function
u : D → R with u|∂D = ϕ which is locally Hölder-continuous in D, and it is a weak solution in D to
the equation

div [A(z)∇u(z) ] = |u(z)|q−1u(z) , 0 < q < 1 . (6.3)

Corollary 10. Let D be a bounded domain in C without degenerate boundary components, let
A ∈ M2×2

K (D), and let ϕ : ∂D → R be a continuous function. Then there is a continuous function
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u : D → R with u|∂D = ϕ which is locally Hölder-continuous in D, and it is a weak solution in D to
the equation

div [A(z)∇u(z) ] = eαu(z) , α ∈ R . (6.4)

Note that the statements given above remain valid, if the reaction terms in Eqs. (6.2)–(6.4) are
multiplied by functions C ∈ L∞(D).

The rest of the paper is devoted to the study of the Dirichlet problem for the Poisson equation
with measurable boundary data. We start with the notion of a logarithmic capacity.

7. Definition and preliminary remarks on a logarithmic capacity

Given a bounded Borel set E in the plane C, the mass distribution on E is a nonnegative completely
additive function ν of a set defined on its Borel subsets with ν(E) = 1. The function

Uν(z) :=

∫

E

log

∣∣∣∣
1

z − ζ

∣∣∣∣ dν(ζ) (7.1)

is called a logarithmic potential of the mass distribution ν at a point z ∈ C. The logarithmic capacity
C(E) of the Borel set E is the quantity

C(E) = e−V , V = inf
ν

Vν(E) , Vν(E) = sup
z

Uν(z) . (7.2)

The following geometric characterization of the logarithmic capacity is well known, see, e.g., point
110 in [61]:

C(E) = τ(E) := lim
n→∞

V
2

n(n−1)
n , (7.3)

where Vn denotes the supremum of the product

V (z1, . . . , zn) =

l=1,...,n∏

k<l

|zk − zl| (7.4)

taken over all collections of points z1, . . . , zn in the set E. Following Fékete, see [21], the quantity τ(E)
is called the transfinite diameter of the set E.

Remark 6. Thus, we see that if C(E) = 0, then C(f(E)) = 0 for an arbitrary mapping f that
is continuous by Hölder and, in particular, for quasiconformal mappings on compact sets, see, e.g.,
Theorem II.4.3 in [55].

In order to introduce sets that are measurable with respect to the logarithmic capacity, we define,
following [18], inner C∗ and outer C∗ capacities:

C∗(E) : = sup
F⊆E

C(F ), C∗(E) : = inf
E⊆O

C(O), (7.5)

where the supremum is taken over all compact sets F ⊂ C, and infimum is taken over all open sets
O ⊂ C. The set E ⊂ C is called measurable with respect to the logarithmic capacity, if C∗(E) = C∗(E).
The common value of C∗(E) and C∗(E) is denoted by C(E).
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A function ϕ : E → C defined on a bounded set E ⊂ C is called measurable with respect to the
logarithmic capacity, if, for all open sets O ⊆ C, the sets {z ∈ E : ϕ(z) ∈ O} are measurable with
respect to the logarithmic capacity. It is clear from the definition that the set E is itself measurable
with respect to the logarithmic capacity.

Note that the sets with zero logarithmic capacity coincide with sets of the so-called absolute har-
monic measure equal to zero introduced by Nevanlinna, see Chapter V in [61]. Hence, the set E has
the zero (Hausdorff) length, if C(E) = 0, see Theorem V.6.2 in [61]. However, there exist sets of length
zero having a positive logarithmic capacity, see, e.g., Theorem IV.5 in [18].

Remark 7. It is known that Borel sets and, in particular, compact and open sets are measurable
with respect to the logarithmic capacity, see, e.g., Lemma I.1 and Theorem III.7 in [18]. Moreover,
by definition, any set E ⊂ C with finite logarithmic capacity can be represented as the union of a
sigma-compactum (union of a countable collection of compact sets) and a set with zero logarithmic
capacity. Thus, the measurability of functions with respect to the logarithmic capacity is invariant
under a Hölder-continuous change of variables.

It is also known that the Borel sets and, in particular, compact sets are measurable with respect to
all Hausdorff’s measures and, in particular, with respect to the measure of length, see, e.g., theorem
II(7.4) in [67]. Consequently, any set E ⊂ C with finite logarithmic capacity is measurable with respect
to the measure of length. Thus, on such a set, any function ϕ : E → C measurable with respect to the
logarithmic capacity is also measurable with respect to the measure of length on E. However, there
exist functions that are measurable with respect to the measure of length, but not measurable with
respect to the logarithmic capacity, see, e.g., Theorem IV.5 in [18].

Dealing with measurable boundary functions ϕ(ζ) with respect to the logarithmic capacity, we will
use the abbreviation q.e. (quasieverywhere) on a set E ⊂ C, if a property holds for all ζ ∈ E except
its subset with zero logarithmic capacity, see [52].

8. Dirichlet problem with measurable data in the unit disk for the Poisson

equations

We start with the following analog of the known Luzin theorem on the primitive, see, e.g., Theorem
VII(2.3) in [67], in terms of the logarithmic capacity.

Proposition 3. [19]. Let ϕ : [a, b] → R be a measurable function with respect to the logarithmic
capacity. Then there is a continuous function Φ : [a, b] → R with Φ′(x) = ϕ(x) q.e. on (a, b).
Furthermore, Φ can be chosen with Φ(a) = Φ(b) = 0 and |Φ(x)| ≤ ε under arbitrary prescribed ε > 0
for all x ∈ [a, b].

As a consequence of Proposition 3, we obtain the following statement.

Proposition 4. Let ϕ : ∂D → R be a measurable function with respect to the logarithmic capacity.
Then there is a continuous function Φ : ∂D → R such that Φ′(eit) = ϕ(eit) q.e. on R.

The Poisson–Stieltjes integral

ΛΦ(z) :=
1

2π

π∫

−π

Pr(ϑ− t) dΦ(eit) , z = reiϑ, r < 1 , ϑ ∈ R (8.1)

is well-defined for arbitrary continuous functions Φ : ∂D → R, see, e.g., Section 3 in [66].
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Directly by the definition of the Riemann–Stieltjes integral and the Weierstrass-type theorem for
harmonic functions, see, e.g., Theorem I.3.1 in [29], ΛΦ is a harmonic function in the unit disk D :=
{z ∈ C : |z| < 1}, because the function Pr(ϑ − t) is the real part of the analytic function

Aζ(z) :=
ζ + z

ζ − z
, ζ = eit, z = reiϑ , r < 1 , ϑ and t ∈ R . (8.2)

By Theorem 1 in [66] we have the following useful conclusion.

Proposition 5. Let ϕ : ∂D → R be a measurable function with respect to the logarithmic capacity,
and let Φ : ∂D → R be a continuous function with Φ′(eit) = ϕ(eit) q.e. on R. Then ΛΦ has the angular
limit

lim
z→ζ

ΛΦ(z) = ϕ(ζ) q.e. on ∂D . (8.3)

Thus, by Lemma 3 and Proposition 5 and the known Poisson formula, see, e.g., I.D.2 in [49], we
come to the following result on the existence, regularity, and representation of solutions to the Poisson
equation for the Dirichlet problem with measurable data in the unit disk D. We assume that the charge
density g is extended by zero outside of D in the next theorem.

Theorem 6. Let a function ϕ : ∂D → R be measurable with respect to the logarithmic capacity,
and let a continuous function Φ correspond to ϕ by Proposition 4. Suppose that a function g : D → R

is in the class Lp(D) for p > 1. Then the function

U := Ng − PN∗
g

+ ΛΦ , N∗
g := Ng|∂D , (8.4)

belongs to the class W 2,p
loc (D), satisfies the Poisson equation △U = g a.e. in D, and has the angular

limit
lim
z→ζ

U(z) = ϕ(ζ) q.e. on ∂D . (8.5)

Moreover, U ∈ W 1,q
loc (D) for some q > 2, and U is locally Hölder-continuous. Furthermore, U ∈

C1,α
loc (D) with α = (p− 2)/p, if g ∈ Lp(D) for p > 2.

Remark 8. Note that, by the Luzin result, see also Theorem 2 in [66], the statement of Theorem
6 is valid in terms of the length measure, as well as the harmonic measure on ∂D.

9. Dirichlet problem with measurable data in almost smooth domains

We say that a Jordan curve Γ in C is almost smooth, if Γ has a tangent q.e. Here, it is said that a
straight line L in C is tangent to Γ at a point z0 ∈ Γ, if

lim sup
z→z0,z∈Γ

dist (z, L)

|z − z0|
= 0 . (9.1)

In particular, Γ is almost smooth, if Γ has a tangent at all its points except a countable set. The
nature of such Jordan curves Γ is complicated enough, because the countable set can be everywhere
dense in Γ.

Given a domain D in C, kD(z, z0) denotes the quasihyperbolic distance,

kD(z, z0) := inf
γ

∫

γ

ds

d(ζ, ∂D)
, (9.2)

853



introduced in paper [24]. Here, d(ζ, ∂D) denotes the Euclidean distance from the point ζ ∈ D to ∂D,
and the infimum is taken over all rectifiable curves γ joining the points z and z0 in D.

Next, it is said that a domain D satisfies the quasihyperbolic boundary condition, if

kD(z, z0) ≤ a ln
d(z0, ∂D)

d(z, ∂D)
+ b ∀ z ∈ D (9.3)

for constants a and b and a point z0 ∈ D. The last notion was introduced in [23], but, before it, was
first applied in [6].

Remark 9. Consider a Jordan domain D in C with the almost smooth boundary satisfying the
quasihyperbolic boundary condition. By the Riemann theorem, see, e.g., Theorem II.2.1 in [29], there is
a conformal mapping f : D → D that is extended to a homeomorphism f̃ : D → D by the Carathéodory
theorem, see, e.g., Theorem II.3.4 in [29]. Moreover, f∗ := f̃ |∂D, as well as f−1

∗ , is Hölder-continuous
by Corollary to Theorem 1 in [6]. Thus, by Remark 7, a function ϕ : ∂D → R is measurable with
respect to the logarithmic capacity, iff the function ψ := ϕ ◦ f−1

∗ : ∂D → R is so. Set Φ := Ψ ◦ f∗,
where Ψ : ∂D → R is a continuous function corresponding to ψ by Proposition 4.

Proposition 6. Let D be a Jordan domain in C with the almost smooth boundary satisfying
the quasihyperbolic boundary condition. Suppose that ϕ : ∂D → R is measurable with respect to the
logarithmic capacity, and Φ : ∂D → R is the continuous function corresponding to ϕ by Remark 9.
Then the harmonic function LΦ(z) := ΛΦ◦f−1

∗
(f(z)) has the angular limit ϕ q.e. on ∂D.

Proof. Indeed, by Remark 9 and Proposition 5, there is the angular limit

lim
w→ξ

ΛΨ(w) = ψ(ξ) q.e. on ∂D . (9.4)

By the Lindelöf theorem, see, e.g., Theorem II.C.2 in [49], if ∂D has a tangent at a point ζ, then

arg [f̃(ζ)− f̃(z)]− arg [ζ − z] → const as z → ζ .

After the change of variables ξ := f̃(ζ) and w := f̃(z), we have that

arg [ξ − w]− arg [f̃−1(ξ)− f̃−1(w)] → const as w → ξ .

In other words, the conformal images of sectors in D with a vertex at ξ are asymptotically the same
as sectors in D with a vertex at ζ. Thus, the nontangential paths in D are transformed under f̃−1

into nontangential paths in D.

Recall that, firstly, the almost smooth Jordan curve ∂D has a tangent q.e. Secondly, by Remark
6, the mappings f∗ and f−1

∗ are Hölder-continuous, and, thirdly, by Remark 7, they transform the sets
with zero logarithmic capacity zero into sets with zero logarithmic capacity. Thus, (9.4) implies the
desired conclusion.

Finally, by Lemma 3, Proposition 6, and the Poisson formula, we come to the following result
on the existence, regularity, and representation of solutions to the Poisson equation for the Dirichlet
problem with measurable data in the Jordan domains. We assume here that the charge density g is
extended by zero outside of D in the next theorem.

Theorem 7. Let D be a Jordan domain in C with the almost smooth boundary satisfying the
quasihyperbolic boundary condition, let a function ϕ : ∂D → R be measurable with respect to the
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logarithmic capacity, and let a continuous function Φ correspond to ϕ by Remark 9. Suppose that a
function g : D → R is in the class Lp(D) for p > 1. Then the function

U := Ng − DN∗
g

+ LΦ , N∗
g := Ng|∂D , (9.5)

belongs to the class W 2,p
loc (D), satisfies the Poisson equation △U = g a.e. in D, and has the angular

limit
lim
z→ζ

U(z) = ϕ(ζ) q.e. on ∂D . (9.6)

Moreover, U ∈ W 1,q
loc (D) for some q > 2, and U is locally Hölder-continuous. Furthermore, U ∈

C1,α
loc (D) with α = (p− 2)/p, if g ∈ Lp(D) for p > 2.

Remark 10. Note that, by the Luzin result, see also Theorem 3 in [66], the statement of Theorem 7
is valid in terms of the length measure on rectifiable ∂D. Indeed, by the Riesz theorem, length f−1

∗ (E) =
0 whenever E ⊂ ∂D with |E| = 0, see, e.g., Theorem II.C.1 and Theorem II.D.2 in [49]. Conversely,
by the Lavrentiev theorem, |f∗(E)| = 0 whenever E ⊂ ∂D and length E = 0, see [53] and point III.1.5
in [63].

However, by the well-known Ahlfors—Beurling example, see [2], the sets with zero length, as well
as with zero harmonic measure, are not invariant with respect to quasiconformal changes of variables.
The last circumstance does not make it is possible to apply the result in the future for the extension
of the statement to generalizations of the Poisson equation in anisotropic and inhomogeneous media.
Hence, we prefer to use the logarithmic capacity.
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