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CONFORMAL LIMIT FOR DIMER MODELS ON THE
HEXAGONAL LATTICE

D. Keating,∗ N. Reshetikhin,† and A. Sridhar‡ UDC 517.9

In this note, we derive the asymptotical behavior of local correlation functions in dimer models
on a domain of the hexagonal lattice in the continuum limit, when the size of the domain goes to
infinity and the parameters of the model scale appropriately. Bibliography: 8 titles.

Dedicated to the 70th birthday of M. Semenov-Tian-Shansky

1. Introduction

In this note, we study the asymptotics of local correlation functions for dimer models on
special domains of the hexagonal lattice. The main result is a formula for the asymptotics of
the inverse to the Kasteleyn operator computed in two different ways: from the integral formula
and from the definition. This note is a research report. Missing details will be completed in
an extended version which will be also posted on the arXiv.

Asymptotical formulas for local correlation functions of height functions in dimer models
were computed in a number of papers for various regions and lattices, see, for example, [1–3].

Here we emphasize the relation to Dirac fermions, rather than to a Gaussian field, as
it was done, for example, in [1–3]. Dirac fermions can be written in terms of a Gaussian
field due to the Bose–Fermi correspondence in two-dimensional space-time, but the resulting
expression is nonlocal. However, in many ways it is preferable to think of Dirac fermions as
more fundamental objects.

Here is the plan of the paper. The first section is the introduction. In the second section, we
recall basic facts about dimer models on the hexagonal lattice. We compute the asymptotic of
correlation functions for special domains using the integral representation in the third section.
In Sec. 4, we compute the same asymptotic using the definition of the inverse to the Kasteleyn
operator in terms of the difference equation. In the fifth section, we state the asymptotical
behavior of Kastelyn fermions in the continuum limit. The details will be given in an extended
version of the paper.

2. Dimers on the hexagonal lattice and the Kasteleyn operator

2.1. Dimer models on the hexagonal lattice. Let H be the hexagonal lattice with the
bipartite structure shown in Fig. 1 and Γ ⊂ H be a finite subgraph that is a connected, simply
connected domain in H without 1-valent vertices. In other words, Γ is a connected, simply
connected domain assembled from elementary hexagons.

A dimer configuration on D is a perfect matching on vertices connected by edges. In other
words, it is a partition of edges into two groups, occupied by a dimer and not occupied, such
that each vertex should be occupied by a dimer and two dimers never share a common vertex.
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Fig. 1. The hexagonal lattice with bipartite structure.

The Boltzmann weight of a dimer configuration is

w(D) =
∏

e∈D
w(e),

where the product is taken over the occupied edges in the dimer configuration D, and w(e) > 0
are weights of edges, which should be fixed in order to define the model.

The Boltzmann weights define a probability distribution on dimer configurations on Γ, with

Prob(D) =
w(D)

Z
,

where Z is the partition function

Z =
∑

D⊂Γ

w(D).

The characteristic function of an edge e on the space of dimer configurations is the function
σe that takes on D the value 1 if e is occupied and 0 if e is not occupied. Local correlation
functions for dimer models are expectation values of products of characteristic functions:

E(e1, . . . , en) =
∑

D⊂Γ

Prob(D)

n∏

i=1

σei .

It is clear that the dimer probability distribution and, therefore, local correlation functions
are invariant with respect to transformations of the form w(e) �→ s(e+)w(e)s(e−) where s is
any function on vertices with positive values and e± are the endpoints of e.

For the hexagonal lattice (our terminology will match Fig. 1), this means that we can choose
the weights of the tilted NW-SE edges and of the horizontal edges to be 1. And we will denote
the remaining weights of the SW-NE edges by x(e).

2.2. The Kasteleyn operator. As discovered in the 1960s, the partition function and cor-
relation functions of dimer models can be computed in terms of determinants. For details, see
the original references [4, 5] and the expository part of [6].

To define such a determinantal solution, we should choose a special orientation of edges, a
Kasteleyn orientation. On the hexagonal lattice, it can be chosen as shown in Fig. 2. In order
to have determinants, not Pfaffians, one should choose an identification of black and white
vertices. We assume that they are identified by horizontal edges.

Choose an embedding of the hexagonal lattice into the square grid as shown in Fig. 2. We
will denote the coordinates of centers of horizontal edges by (t, h). Here h ∈ 1

2Z and t ∈ Z.

Let D ⊂ Z× 1
2Z be a domain in the hexagonal lattice embedded into the square grid.
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Fig. 2. The hexagonal lattice with the Kasteleyn orientation which we use and
with the coordinates of horizontal edges which are identified with adjacent
vertices.

The Kasteleyn operator is a linear operator (a difference operator) acting on the vertices of
the graph. After the identification of black and white vertices by horizontal dimers, it becomes
a difference operator on a domain in the square grid with coordinates (t, h) ∈ D, acting as

(Kf)(h, t) = f(t, h)− f
(
t− 1, h+

1

2

)
+ x

(
t− 1

2
, h

)
f
(
t− 1, h− 1

2

)
. (1)

It is convenient to think of such functions as functions on an extended domain D̃, where we
add edges with 1-valent vertices to the boundary vertices and define f(v) = 0 for each 1-valent
vertex v. According to the Kasteleyn theorem, the partition function Z is the absolute value of
the determinant of K, and local correlation functions can be computed in terms of the inverse
to K.

Let R(t, h|t′, h′) be the kernel of the inverse to the Kasteleyn operator on D ⊂ Z× 1
2Z. That

is, if

Kf = g,

then

f(t, h) =
∑

(t′,h′)∈D
R(t, h|t′, h′)g(t′, h′).

We have

R(t, h|t′, h′)−R
(
t−1, h+

1

2
|t′, h′

)
+x

(
t− 1

2
, h

)
R
(
t−1, h− 1

2
|t′, h′

)
= δ(t, t′)δ(h, h′), (2)

with the boundary conditions R(t, h|t′, h′) = 0 when (h, t) corresponds to a 1-valent vertex. If
the domain D is noncompact, one should impose boundary conditions when (t, h) → ∞, but
we will not go into details of this here.

Consider horizontal edges with coordinates xk = (tk, hk). Then we have the following
formula for the local correlation function:

E(x1, . . . , xn) = det(R(tk, hk|tl, hl))nk,l=1. (3)

Note that Kasteleyn operators can be defined for noncompact domains as well, but this
should be supplemented by appropriate boundary conditions.
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2.3. Kasteleyn fermions. The Kasteleyn solution of dimer models (the determinant formu-
las above) can be written in terms of the Grassmann integral. Let VD be the real vector space
whose basis is enumerated by the vertices in the region D. Choose an element I ∈ ∧NVD. It
defines the Grassmann integral over ∧•VD as

∫
f = fI

where f ∈ ∧•VD and fI is its component in the basis I ∈ ∧NVD. Let ψ(t, h) be the elements
of ∧•VD corresponding to the basis vectors in VD. Typically, I is chosen as a monomial in ψ
(a longest ordered product with no repetitions). There are two choices of such an integral, I
and −I.

Elements ψ are generators of the Grassmann algebra ∧•VD. In physics, they are called
fermions, since

ψ(t′, h′)ψ(t, h) = −ψ(t, h)ψ(t′, h′).

In terms of generators, we will write
∫

f =

∫
fdψ.

Similarly, the Grassmann integral can be defined for the dual vector space V ∗
D. We will

denote the corresponding fermions by ψ∗(t, h).
The Grassmann algebra ∧•(VD ⊕V ∗

D) is naturally isomorphic to ∧•VD⊗∧•V ∗
D. The integral

on this algebra can be identified with the tensor product of integrals. We will write
∫

F =

∫
Fdψ∗dψ

for such an integral where F is a polynomial in the anticommuting variables ψ,ψ∗, the gener-
ators of ∧•(VD ⊕ V ∗

D).
Define

A =
∑

(t,h)∈D
ψ∗(t, h)(Kψ)(t, h),

where Kψ is defined as in (1).
The determinant formulas for the partition function and correlation functions can be written

in terms of fermions as

Z =
∣∣∣
∫

eAdψ∗dψ
∣∣∣

and

E(x1, . . . , xn) =

∫
eAψ(t1, h1)ψ

∗(t1, h1) . . . ψ(tn, hn)ψ∗(tn, hn)dψ∗dψ∫
eAdψ∗dψ

.

Note that neither the formula for the partition function, nor the formula for local correlation
functions depends on the choice of monomials defining the integrals.

Also, note that the inverse to the Kasteleyn matrix can be written as

R(t, h|t′, h′) =
∫
eAψ(t, h)ψ∗(t′, h′)dψ∗dψ∫

eAdψ∗dψ
.

We will call ψ,ψ∗ Kasteleyn fermions.
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3. Continuum limit from the integral representation

3.1. The continuum limit. Denote by ϕε : Z× 1
2Z → R

2 the embedding of the square grid

into R
2 such that (t, h) �→ (εt, εh). We are interested in the asymptotic of local correlation

functions in the limit ε → 0 when the lattice domain D expands so that the image ϕε(D) fills
an R

2-domain D. Because of the determinantal formulas (3), it suffices to find the asymptotic
of the kernel R((t1, h1), (t2, h2)) of the inverse Kasteleyn matrix.

We assume that as ε → 0 and the lattice region expands accordingly to fill the Euclidean
domain D, the coordinates ti and hi behave as ti = τi/ε, hi = χi/ε where (τi, χi) ∈ D.

3.2. The integral formula for the inverse to the Kasteleyn operator. For special
lattice domains D ∈ Z× 1

2Z, the kernel of R = K−1 has a convenient integral representation.
For the semiinfinite domain shown in Fig. 3, such a representation was found in [7]. The
boundary conditions at infinity are determined by the asymptotical configuration of dimers as
shown in Fig. 3.

Fig. 3. The lattice domain D with asymptotical boundary configuration of
dimers. The function B(t) is defined in (5). For details, see [7].

Assume that the edge weights x(t − 1
2 , h) in (1) are x(m,h) = qm when Vi < m < Ui and

x(m,h) = q−m when Ui < m < Vi+1. Define D+ to be the set of m such that Vi < m < Ui

for some i, and D− to be the set of m such that Ui < m < Vi+1 for some i. Then formulas
from [7] give the following integral representation of the inverse Kasteleyn operator:

R((t1, h1), (t2, h2)) =

(
1

2πi

)2 ∫

Cz

∫

Cw

Φ−(z, t1)Φ+(w, t2)

Φ+(z, t1)Φ−(w, t2)
z−h1−B(t1)wh2+B(t2)

√
zw

z − w

dz

z

dw

w
(4)

where

Φ+(z, t) =
∏

m>t,
m∈D+

(1− zqm), Φ−(z, t) =
∏

m<t,
m∈D−

(1− z−1q−m)

and

B(t) =
1

2

N∑

i=1

|t− Vi| − 1

2

N−1∑

i=1

|t− Ui| (5)

for m ∈ Z+ 1
2 and t ∈ Z. We assume that

N∑
i=1

Vi =
N−1∑
i=1

Ui and U0 + UN = 0.
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From our setup we see that for the case when t ∈ D+, Vi < t < Ui, we have

Φ+(z, t) =

Ui− 1
2∏

m=t+ 1
2

(1− zqm)

Ui+1− 1
2∏

m=Vi+1+
1
2

(1− zqm)

Ui+2− 1
2∏

m=Vi+2+
1
2

· · · ,

Φ−(z, t) =
Vi− 1

2∏

m=Ui−1+
1
2

(1− z−1q−m)

Vi−1− 1
2∏

m=Ui−2+
1
2

· · · ,

and for the case when t ∈ D−, Ui < t < Vi+1,

Φ+(z, t) =

Ui+1− 1
2∏

m=Vi+1+
1
2

(1− zqm)

Ui+2− 1
2∏

m=Vi+2+
1
2

· · · ,

Φ−(z, t) =
t− 1

2∏

m=Ui+
1
2

(1− z−1q−m)

Vi− 1
2∏

m=Ui−1+
1
2

(1− z−1q−m)

Vi−1− 1
2∏

m=Ui−2+
1
2

· · · .

3.3. The continuum limit. Now assume that q = exp(−ε), ε → 0, and that ui = Uiε,
vi = Viε, τa = taε, χa = haε are kept finite in this limit.

3.3.1. The lemma on q-dilogarithms. The following lemma is known. We present it anyway
for completeness.

Lemma 1.

t2− 1
2∏

m=t1+
1
2

(1− zqm) = e

1
ε

ze−τ1∫

ze−τ2

ln(1−t)
t

dt

(1 +O(ε)).

Proof. Recall the q-Pochhammer symbol (q-dilogarithm) defined by (z; q)∞ =
∞∏
k=0

(1 − zqk).

Assume that (z; q)∞ can be expanded as

(z; q)∞ = e
S(z)
ε f(z)(1 +O(ε))

as ε → 0. Then we have

(zq; q)∞ =
1

1− z
(z; q)∞ = e

S(z)
ε

f(z)

1− z
(1 +O(ε)),

as well as

(zq; q)∞ = e
S(zq)

ε f(zq)(1 +O(ε)).

We now write q = e−ε and expand the above in orders of ε:

S
(
z − zε+ z

ε2

2

)
= S(z) + z

(
− ε+

ε2

2

)
S′(z) + z2

ε2

2
S′′(z) + . . .

= S(z)− εzS′(z) +
ε2

2
(zS′(z) + z2S′′(z)) +O(ε3).

Equating the two expressions for (zq; q)∞, we have

e−zS′(z)
(
1 +

ε

2

(
zS′(z) + z2S′′(z)

)
+ . . .

)
(f(z)− εzf ′(z) + . . . ) =

1

1− z
f(z).
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Now let us look at the terms order-by-order. For the 0-order terms, we have

S′(z) =
ln(1− z)

z
.

If S is chosen so that S(0) = 0, then

S(z) =

z∫

0

ln(1− t)

t
dt.

For the ε-order terms, we have

1

2
(zS′(z) + z2S′′(z))f(z) − zf ′(z) =

1

2
z(zS′(z))′f(z)− zf ′(z) = 0.

Using what we know about S(z), this becomes

f ′(z) = −1

2

f(z)

1− z
,

giving

f(z) =
√
z − 1.

Putting this all together, we have

(z, q)∞ = exp

⎛

⎝1

ε

z∫

0

ln(1− t)

t
dt

⎞

⎠√
z − 1(1 +O(ε)).

Now, we write our finite product as a ratio of infinite products and use the above result:

t2− 1
2∏

m=t1+
1
2

(1− zqm) =
(zqt1+

1
2 ; q)∞

(zqt2+
1
2 ; q)∞

= exp

⎛

⎜⎜⎝
1

ε

zqt1+
1
2∫

zqt2+
1
2

ln(1− t)

t
dt

⎞

⎟⎟⎠

√
zq−τ1 − 1

zq−τ2 − 1
(1 +O(ε))

= exp

⎛

⎜⎝
1

ε

z1(1− ε
2
)∫

z2(1− ε
2
)

ln(1− t)

t
dt

⎞

⎟⎠

√
zq−τ1 − 1

zq−τ2 − 1
(1 +O(ε))

= exp

⎛

⎝1

ε

z1∫

z2

ln(1− t)

t
dt− 1

2
(ln(1− ze−τ1) + ln(1− ze−τ2))

⎞

⎠

×
√

zq−τ1 − 1

zq−τ2 − 1
(1 +O(ε)) = exp

⎛

⎜⎝
1

ε

ze−τ1∫

ze−τ2

ln(1− t)

t
dt

⎞

⎟⎠ (1 +O(ε)).

�

Similarly, we have

t2− 1
2∏

t1+
1
2

(1− z−1q−m) = (−z)−(t2−t1)

t2− 1
2∏

m=t1+
1
2

q−m

t2− 1
2∏

t1+
1
2

(1− zqm).
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So, as ε → 0 we have

t2− 1
2∏

t1+
1
2

(1− z−1q−m) = (−1)t2−t1z−
τ2−τ1

ε e
τ22−τ21

2ε exp

⎛

⎜⎝
1

ε

ze−τ1∫

ze−τ2

ln(1− t)

t
dt

⎞

⎟⎠ (1 +O(ε)).

Note that this asymptotic expansion is a meromorphic function of z on the complex plane
with branch cuts along [eτ1 , eτ2 ].

3.3.2. The functions Φ± in the continuum limit. Now we can use the computations from the
previous section to find the asymptotic of Φ±(z, t).

Indeed, for t ∈ D+, i.e, Vi < t < Ui, we have1

Φ+(z, t) =

Ui− 1
2∏

m=t+ 1
2

(1− zqm)

Ui+1− 1
2∏

m=Vi+1+
1
2

(1− zqm)

Ui+2− 1
2∏

m=Vi+2+
1
2

· · · = exp

⎛

⎜⎝
1

ε

ze−τ∫

ze−ui

ln(1− t)

t
dt

⎞

⎟⎠

× exp

⎛

⎜⎝
1

ε

ze−vi+1∫

ze−ui+1

ln(1− t)

t
dt

⎞

⎟⎠ exp

⎛

⎜⎝
1

ε

ze−vi+2∫

ze−ui+2

ln(1− t)

t
dt

⎞

⎟⎠ . . .

= exp

⎛

⎜⎝
1

ε

ze−τ∫

ze−ui

+
1

ε

ze−vi+1∫

ze−ui+1

+
1

ε

ze−vi+2∫

ze−ui+2

ln(1− t)

t
dt+ . . .

⎞

⎟⎠ ,

Φ−(z, t) =
Vi− 1

2∏

m=Ui−1+
1
2

(1− z−1q−m)

Vi−1− 1
2∏

m=Ui−2+
1
2

· · · = (−z)−
vi−ui−1

ε e
v2i −u2

i−1
2ε exp

⎛

⎜⎝
1

ε

ze−ui−1∫

ze−vi

ln(1− t)

t
dt

⎞

⎟⎠

× (−z)
vi−1−ui−2

ε e
v2i−1−u2

i−2
2ε exp

⎛

⎜⎝
1

ε

ze−ui−2∫

ze−vi−1

ln(1− t)

t
dt

⎞

⎟⎠ · · · = (−z)
− 1

ε

∑

j≤i

(vj−uj−1)

e
1
2ε

∑

j≤i

v2
j−u2

j−1

× exp

⎛

⎜⎝
1

ε

ze−ui−1∫

ze−vi

+
1

ε

ze−ui−2∫

ze−vi−1

ln(1− t)

t
dt+ . . .

⎞

⎟⎠ .

Similarly, for t ∈ D−, i.e., Ui < t < Vi+1, we obtain

Φ+(z, t) = exp

⎛

⎜⎝
1

ε

ze−vi+1∫

ze−ui+1

+
1

ε

ze−vi+2∫

ze−ui+2

ln(1− t)

t
dt+ . . .

⎞

⎟⎠ ,

Φ−(z, t) = (−z)
− τ−ui

ε
− 1

ε

∑

j<i
(vj−uj−1)

e

1
2ε

(τ2−u2
i+

∑

j<i
v2j−u2

j−1)

× exp

⎛

⎜⎝
1

ε

ze−ui∫

ze−τ

+
1

ε

ze−ui−1∫

ze−vi

ln(1− t)

t
dt+ . . .

⎞

⎟⎠ .

1In the expressions below, we will omit the integrand if it is clear which function is integrated.
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Recall that

B(t) =
1

2

N∑

i=1

|t− Vi| − 1

2

N−1∑

i=1

|t− Ui|.

Now define

L(t) =

⎧
⎪⎨

⎪⎩

∑
j≤i

Vj − Uj−1 for t ∈ D+, Vi < t < Ui,

t− Ui +
∑
j<i

Vj − Uj−1 for t ∈ D−, Ui < t < Vi+1.

For t ∈ D+, Vi < t < Ui, we have

B(t) + L(t) =
1

2

N∑

j=1

|t− Vj | − 1

2

N−1∑

j=1

|t− Uj |+
∑

j≤i

(Vj − Uj−1)

=
1

2

⎛

⎝
i∑

j=1

t−
N∑

j=i+1

t+

N−1∑

j=i

t−
i−1∑

j=1

t−
i∑

j=1

Vj +

N∑

j=i+1

Vj −
N−1∑

j=i

Uj +

i−1∑

j=1

Uj

⎞

⎠

+

i∑

j=1

Vj −
i−1∑

j=1

Uj + U0 =
t

2
+

1

2

⎛

⎝
N∑

j=1

Vj −
N−1∑

j=1

Uj

⎞

⎠− U0 =
t

2
− U0,

where we use the equality
N∑
j=1

Vj =
N−1∑
j=1

Uj . A similar calculation can be done for t ∈ D−,

Ui < t < Vi+1.
Now, for the ratio of the functions Φ we have

Φ−(z, t)
Φ+(z, t)

z−h−B(t) = Cτ exp

(
S(z)

ε

)
(1 +O(ε))

where Cτ is a constant in z. The function S(z) is

S(z) =

N∑

i=0

Li2(ze
−ui)−

N∑

i=1

Li2(ze
−vi)− Li2(ze

−τ )−
(τ
2
− u0 + χ

)
ln z,

and Li2(z) =
z∫
0

ln(1−x)
x dx is the dilogarithm.

Combining the results from above, we have the following asymptotical integral representa-
tion for R:

R((t1, h1), (t2, h2)) =
Cτ1

Cτ2

(
1

2πi

)2 ∫

Cz

∫

Cw

e
S(z,τ1,χ1)−S(w,τ2,χ2)

ε

√
zw

z − w

dz

z

dw

w
(1 +O(ε)) (6)

where the function S(z) is as above. The integration contours are shown in Fig. 4.

3.3.3. The asymptotic of the integral (6). We will compute the asymptotic using the method
of steepest descent, so first we should study the critical points of the function S(z).

Lemma 2. The following identity holds:

z20S
′′(z0) =

(
∂z0
∂χ

)−1

where z0 is a critical point of S(z).

709



Fig. 4. The integration contours in (6) are circles with |z| < |w| when τ1 < τ2
and |w| > |z| when τ1 > τ2 centered at the origin. The contour Cz intersects
the positive part of the real line as shown above with τ = τ1. The contour Cw

intersects the positive part of the real line similarly with τ = τ2.

Proof. For the first derivative of S in z, we have

z
∂S(z)

∂z
=

N∑

i=0

ln(1− ze−ui)−
N∑

i=1

ln(1− ze−vi)− ln(1− ze−τ )−
(τ
2
− u0 + χ

)

= ln

⎛

⎜⎜⎜⎝

N∏
i=0

(1− ze−ui)

N∏
i=1

(1 − ze−vi)

1

(1− ze−τ )

⎞

⎟⎟⎟⎠−
(τ
2
− u0 + χ

)
= ln

(
f(z)

(1− ze−τ )

)
−

(τ
2
+ χ

)

where f(z) =

N∏

i=0
(1−ze−ui )

N∏

i=1
(1−ze−vi )

eu0 .

From this we see that if z0 is a critical point of S, i.e., S′(z0) = 0, then we have

eχ+
τ
2 =

f(z0)

1− z0e−τ
.

This defines z0 as an implicit function of χ and τ . Taking the derivative, we have

1 =
∂z0
∂χ

(
ln

(
f(z0)

1− z0e−τ

))′
.

For the second derivative of S(z), we have
(
z
∂

∂z

)2

S(z) = z

(
ln

(
f(z0)

1− z0e−τ

))′
.

Taking into account the equation for the derivative at the critical point in χ and the fact that
(
z
∂

∂z

)2

S(z) = zS′(z) + z2S′′(z),

we obtain the value of the second derivative of S(z) at the critical point z0 and the desired
identity. �

Before we compute the asymptotic of (6), we need one more lemma.
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Lemma 3. The following identities hold:

e−Sτ =

√
z0

1− z0e−τ
e−

1
2
Sχ =

√
z0.

Indeed, we have the following identities, which imply the lemma:

d

dτ
S(z0) =

∂z0
∂τ

S′(z0) +
∂S

∂τ
|z0 = −1

2
ln(z0) + ln(1− z0e

−τ ),

d

dχ
S(z0) =

∂z0
∂χ

S′(z0) +
∂S

∂χ
|z0 = − ln(z0).

Theorem 1. The integral (6) has the following asymptotic as ε → 0 and all parameters scale
as before:

R(t, h|t′, h′) = ε
Cτ1

Cτ2

(
e

S(z0)−S(w0)
ε

√
∂z0
∂χ1

∂w0
∂χ2

z0 − w0
+ e

S(z̄0)−S(w0)
ε

√
∂z̄0
∂χ1

∂w0
∂χ2

z̄0 − w0

+e
S(z0)−S(w̄0)

ε

√
∂z0
∂χ1

∂w̄0
∂χ2

z0 − w̄0
+ e

S(z̄0)−S(w̄0)
ε

√
∂z̄0
∂χ1

∂w̄0
∂χ2

z̄0 − w̄0

)
(1 +O(ε)).

(7)

Proof. As shown in [7] for (τ, χ), inside the discriminant curve there are two complex conjugate
critical points of S(z). The discriminant curve, also known as the arctic circle, is

S′(z) = S′′(z) = 0.

Deforming the integration contours into contours that pass the critical points in the steepest
descent direction and computing the corresponding Gaussian integrals, we arrive at (7). �

4. Asymptotical solutions to the Kasteleyn difference equation

4.1. Formal asymptotical solutions to the Kasteleyn equations. Here we will study
the difference equation

f(t, h)− f
(
t− 1, h+

1

2

)
+ x

(
t− 1

2
, h

)
f
(
t− 1, h − 1

2

)
= 0 (8)

in the continuum limit when ε → 0 and τ = εt, χ = εh are fixed. It is convenient to change
the coordinates:

ξ+ = χ+
τ

2
, ξ− = χ− τ

2
,

∂+ = ∂τ +
1

2
∂χ, ∂− = −∂τ +

1

2
∂χ.

Let us look for asymptotical solutions to the difference equation (8) of the form f(t, h) =

e
1
ε
S(ξ+,ξ−)φ(ξ+, ξ−). Equation (8) gives

e
1
ε
S(ξ+,ξ−)φ(ξ+, ξ−)− e

1
ε
S(ξ+,ξ−+ε)φ(ξ+, ξ− + ε)

+ v
(
ξ+ − ξ− − ε

2

)
e

1
ε
S(ξ+−ε,ξ−)φ(ξ+ − ε, ξ−) = 0.

Taking the limit ε → 0, we get the following nonlinear differential equation for S at the 0th
order in ε:

1− e∂−S + ve−∂+S = 0. (9)

The first-order terms give a linear differential equation for φ:

−1

2
∂2
−Se

∂−S− ∂−φ
φ

e∂−S+
1

2
v∂2

+Se
−∂+S−v

∂+φ

φ
e−∂+S− 1

2
v′e−∂+S=0. (10)
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4.1.1. The function S. Taking into account Eq. (9), we can write

e∂−S =
1

1− z0v
, e−∂+S =

z0
1− z0v

for some function z0(ξ+, ξ−).

Lemma 4. The function z0(ξ+, ξ−) satisfies the differential equation

∂−z0(ξ+, ξ−) + z0(ξ+, ξ−)v(ξ+ − ξ−)∂+z0(ξ+, ξ−) = 0. (11)

Proof. Indeed, differentiating (9), we obtain

∂+(∂−S) = −∂+ ln(1 − z0v) =
∂+(z0v)

1− z0v
,

∂−(∂+S) = ∂−(ln(1− z0v)− ln(z0)) = − ∂−(z0v)
(1− z0v)z0v

+
∂−v
v

.

These two identities imply

∂−(z0v) + (z0v)∂+(z0v) = (1− z0v)z0∂−v.

Sinse v = v(ξ+ − ξ−), we can rewrite this as

(∂−z0)v − z0v
′ + z0v(∂+z0)v + z20vv

′ = −z0v
′ + z20vv

′,

which gives the desired identity. �

Note that when v is constant, the equation for z0 is exactly the complex Burgers equation
from [8].

4.1.2. The function φ. Here we will describe the general solution to the differential equation
for φ.

Theorem 2. Let z0(ξ+, ξ−) be as above. Then the function

φ = ψ

√
(∂+ + ∂−)z0
z0 − w0

, (12)

where w0 does not depend on ξ±, is a solution to (10) if and only if ψ satisfies the equation

(∂− + z0v∂+)ψ = 0.

Proof. First, let us now look at the terms in Eq. (10) not containing φ. We have

1

2

∂− ln(1− z0v)

1− z0v
+

1

2
v∂+(ln(z0)− ln(1− z0v))

z0
1− z0v

− 1

2
v′

z0
1− z0v

= −1

2

∂−(z0v)
(1− z0v)2

− 1

2
v

(
∂+z0
z0

+
∂+(z0v)

1− z0v

)
z0

1− z0v
− 1

2
v′

z0
1− z0v

= −1

2

∂−(z0v) + vz0∂+(z0v)

(1− z0v)2
− 1

2
v

∂+z0
1− z0v

− 1

2
v′

z0
1− z0v

=−1

2

v(∂−(z0) + vz0∂+(z0)) + z0(∂−v + vz0∂+v)

(1−z0v)2
− 1

2
v

∂+z0
1−z0v

− 1

2

v′z0
1− z0v

=
1

2

z0v
′

1− z0v
− 1

2

v∂+z0
1− z0v

− 1

2

v′z0
1− z0v

= −1

2

v∂+z0
1− z0v

,

where in the fourth line we use the lemma from above.
Now, the terms containing φ after the substitution (12) can be transformed as
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1

1− z0v

∂−φ
φ

+
vz0

1− z0v

∂+φ

φ

=
∂−ψ + z0v∂+ψ

ψ(1− z0v)
+

1

2

(∂− + vz0∂+)(∂+z0 + ∂−z0)
(∂+z0 + ∂−z0)(1 − z0v)

− (∂− + z0v∂+)z0
(1− z0v)(z0 − z̃0)

=
∂−ψ + z0v∂+ψ

ψ(1− z0v)
+

1

2

(∂− + vz0∂+)(∂+z0 + ∂−z0)
(∂+z0 + ∂−z0)(1 − z0v)

,

where we again use the lemma from above. The denominator of the second term can be written
as

(∂− + z0v∂+)(∂+z0 + ∂−z0) = (∂+ + ∂−)(∂− + z0v∂+)z0 + (∂+ + ∂−)(z0v)∂+z0
= (∂+ + ∂−)(z0v)∂+z0 = v(∂+ + ∂−)(z0)∂+z0.

Here we use the lemma and the fact that (∂+ + ∂−)v = 0. Combining the expressions from
above, we have the following expression for terms in (10):

1

1− z0v

∂−φ
φ

+
vz0

1− z0v

∂+φ

φ
=

∂−ψ + z0v∂+ψ

ψ(1 − z0v)
+

1

2

v∂+z0
1− z0v

.

Putting everything together, the equation for φ becomes

−1

2

v∂+z0
1− z0v

+
∂−ψ + z0v∂+ψ

ψ(1 − z0v)
+

1

2

v∂+z0
1− z0v

=
∂−ψ + z0v∂+ψ

ψ(1− z0v)
.

The theorem follows. �

4.2. The asymptotical behavior of the inverse to the Kasteleyn operator in the
continuum limit. Now, let us find the asymptotic of the inverse to the Kasteleyn operator
from the difference equation. Note that the critical points of the function S from the asymptotic
of the integral representation satisfy Eq. (11).

Let z0(τ, χ) be the relevant solution to (11), denote z0 = z0(τ, χ) and w0 = z0(τ
′, χ′). Com-

bining the previous results of this section, we arrive at the following asymptotic of R(t, h|t′h′):

R(t, h|t′, h′) = ε
Cτ1

Cτ2

(
e

S(z0)−S(w0)
ε

√
∂z0
∂χ1

∂w0
∂χ2

z0 − w0
+ e

S(z̄0)−S(w0)
ε

√
∂z̄0
∂χ1

∂w0
∂χ2

z̄0 − w0

+ e
S(z0)−S(w̄0)

ε

√
∂z0
∂χ1

∂w̄0
∂χ2

z0 − w̄0
+ e

S(z̄0)−S(w̄0)
ε

√
∂z̄0
∂χ1

∂w̄0
∂χ2

z̄0 − w̄0

)
(1 +O(ε)).

(13)

This agrees with (7) when v(x) = e−x. We will give a detailed proof in an extended version of
this paper.

5. Conformal correlation functions

Note that the asymptotical formula for the inverse to the Kasteleyn operator can be inter-
preted in terms of Kasteleyn fermions in the following way. In an appropriate sense, one can
say that as ε → 0

ψ(t, h) =
√
εCτ

(
a(z0(τ, χ))e

S(z0(τ,χ))
ε + a(z0(τ, χ))e

S(z0(τ,χ))
ε

)
(1 +O(ε)),

ψ∗(t, h)=
√
εC−1

τ

(
b(z0(τ, χ))e

−S(z0(τ,χ))
ε + b(z0(τ, χ))e

−S(z0(τ,χ))
ε

)
(1+O(ε))
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where a(z) and b(z) are components of the Dirac fermionic field with correlation functions

〈a(z)b(w)〉 = 1

z − w
.

We will explain the exact meaning of the convergence and the definition of the Dirac fermionic
field in an extended version of this paper. The square roots in (13) appear from the spinor
nature of the conformal fields a and b.

The height function of the dimer model is a quadratic combination in a and b, see the
extended version of the paper.
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