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VIBRATIONS OF A STRING IN THE CONTEXT OF
FINITE FIELDS

N. V. Proskurin∗ UDC 511, 512.624

The string wave equation (i.e., the one-dimentional wave equation) is considered in the context of
complex functions over finite fields. Analogs of the classical d’Alembert formulas over finite fields
are obtained. Bibliography: 9 titles.

To the memory of Oleg Mstislavovich Fomenko

1. Introduction. One can observe that some classical equations and boundary-value prob-
lems of mathematical physics can be interpreted in terms of the theory of complex functions
over finite fields. In this context, we consider the equation of vibrations of a string (the
one-dimensional wave equation) and derive analogs of the d’Alembert formulas. For complex
functions over finite fields, see [1–3].

2. Notation and basic functions. Given a prime p, consider the field Fq with q = pl

elements and the prime subfield Fp = Z/pZ. Let ̂F�
q be the group of its multiplicative characters,

i. e., the group of all homomorphisms χ : F�
q → C

� of the multiplicative group F
�
q of the field Fq

to the multiplicative group C
� of the complex field C. Let ε be the trivial character, ε(x) = 1

for all x ∈ F
�
q . We extend every multiplicative character χ to the entire field Fq by setting

χ(0) = 0. In particular, we set ε(0) = 0. We set δ(0) = δ(ε) = 1 and δ(x) = δ(χ) = 0 for other

x ∈ Fq and χ ∈ ̂F
�
q . Note that δ(x) + ε(x) = 1 for all x ∈ Fq.

Let eq : Fq → C
� be an additive character of the field Fq. With a certain h ∈ F

�
q , one

has eq(x) = exp
(

2πi tr(hx)/p
)

for all x ∈ Fq. Here, tr : Fq → Fp denotes the trace, tr(z) =

z+ zp + · · ·+ zp
l−1

. This character is fixed throughout the paper. Every additive character of
the field Fq is the function z �→ eq(kz) with a certain k ∈ Fq. Then to eq we can attach the
real functions cosq and sinq defined by

cosq(x) =
eq(x) + eq(−x)

2
, sinq(x) =

eq(x)− eq(−x)

2i
, (1)

for which

eq(x) = cosq(x) + i sinq(x) for all x ∈ Fq.

Consider the complex vector space Ωq of functions Fq → C with the inner product

〈f, g〉 =
∑

x∈Fq
f(x)g(x) for all f, g ∈ Ωq.

The dimension of Ωq equals q. The multiplicative characters and the above-defined function
δ : Fq → C form an orthogonal basis of the space Ωq. The additive characters also form an

orthogonal basis of Ωq. In more detail, for all a, b, c ∈ Fq and α, β ∈ ̂F
�
q , one has

1

q

∑

z∈Fq
eq(az)eq(bz) = δ(a − b),

1

q − 1

∑

x∈F�
q

α(x)β(x) = δ(αβ) (2)
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and
1

q − 1

∑

χ∈̂F�
q

χ(c) = δ(1 − c). (3)

For finite fields, see [4–6].

3. Gauss sums. To a character χ ∈ ̂F
�
q and an element c ∈ Fq we attach the Gauss sums

G(χ) =
∑

x∈F�
q

eq(x)χ(x), G(c, χ) =
∑

x∈F�
q

eq(cx)χ(x).

As is well known, for χ �= ε,

G(ε) = −1, G(χ)G(χ) = χ(−1) q, |G(χ)|2 = q. (4)

Also one has G(0, ε) = q− 1 and G(c, χ) = χ(c)G(χ) for all c ∈ F
�
q and χ ∈ ̂F

�
q . For the Gauss

sums, see [5] and [6].

4. Fourier transforms. The additive Fourier transform F̂ : Fq → C of a function F : Fq → C

is defined by

F̂ (x) =
∑

y∈Fq
F (y)eq(yx) for all x ∈ Fq. (5)

The inversion formula is as follows:

F (z) =
1

q

∑

x∈Fq
F̂ (x)eq(−xz) for all z ∈ Fq. (6)

One can treat (6) as the expansion of the function F in the basis consisting of the additive
characters.

The multiplicative Fourier transform ̂F : ̂F�
q → C of a function F : F�

q → C is defined by

̂F (χ) =
∑

x∈F�
q

F (x)χ(x) for all χ ∈ ̂F
�
q . (7)

The Fourier inversion formula,

F (z) =
1

q − 1

∑

χ∈̂F�
q

̂F (χ)χ(z) for all z ∈ Fq, (8)

allows one to recover F from ̂F . Formulas (6) and (8) follow from the orthogonality relations
(2) and (3). These facts are well known. For every function F : Fq → C, there is an expansion

F (z) = F (0) δ(z) +
∑

χ∈̂F�
q

Cχ χ(z), with Cχ =
1

q − 1
̂F (χ) and z ∈ Fq,

which is similar to (8) but involves an additional term. For instance, for all z ∈ Fq one has

eq(−z) = 1 +
q

q − 1

∑

χ∈̂F�
q

χ(z)

G(χ)
.

This is an analog of the Taylor expansion for the exponent.
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5. Differentiation. Given a multiplicative character χ of the field Fq, consider the linear
operator Dχ defined by the formula

DχF (x) =
1

G(χ)

∑

t∈Fq
χ(t)F (x − t) for all x ∈ Fq, (9)

which takes a function F ∈ Ωq to the function DχF ∈ Ωq. According to Evans [1], DχF is the
derivative of order χ for F . If χ �= ε, then one can apply (4) and write (9) as

1

G(χ)
DχF (x) =

1

q

∑

t∈Fq
χ(t)F (x+ t) for all x ∈ Fq.

This relation is similar to the Cauchy integral formula for the derivatives of analytic functions.
The operator Dχ with χ �= ε takes constant functions to the zero function. The formulas

DεF (x) = F (x)−
∑

t∈Fq
F (t),

DχDχF (x) = F (x)− 1

q

∑

t∈Fq
F (t), (10)

DαDβ = Dαβ

hold for all F ∈ Ωq, x ∈ Fq, and characters α, β, χ ∈ ̂F
�
q under the assumptions that χ �= ε and

αβ �= ε. For arbitrary E,F ∈ Ωq, x ∈ Fq, and any character ν ∈ ̂F
�
q , one has the formula for

integration by parts,
∑

z∈Fq
E(z)DνF (z) = ν(−1)

∑

z∈Fq
F (z)DνE(z),

and also the formula

DνEF (x) =
1

q − 1

∑

μ∈̂F�
q

G(μ)G(μν)

G(ν)
DμE(x)DνμF (x)

for the νth derivative of the product EF of E and F , which is similar to the classical Leibniz
formula. All these properties of the operators Dχ can be found in [1].

Let c ∈ F
�
q , d ∈ Fq. Consider the composition E of a function F : Fq → C and the function

x �→ cx + d. In other words, let E(x) = F (cx + d) for all x ∈ Fq. Then, for any character

χ ∈ ̂F
�
q and any x ∈ Fq,

DχE(x) = χ(c)DχF (cx+ d). (11)

Formula (11) is the simplest analog of the classical formula for the derivative of a composition
and immediately follows from the definition (9). Indeed,

DχE(x) =
1

G(χ)

∑

t∈Fq
χ(t)F

(

c(x− t) + d
)

=
1

G(χ)
χ(c)

∑

t∈Fq
χ(ct)F

(

(cx+ d)− ct
)

=
1

G(χ)
χ(c)

∑

z∈Fq
χ(z)F

(

(cx+ d)− z
)

= χ(c)DχF (cx+ d).

For an odd character χ, the operator Dχ takes even functions to odd ones, and it takes odd
functions to even ones. For an even character χ, the operator Dχ takes even functions to even
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ones and odd functions to odd ones. This can be proved by a simple computation. Indeed, let
F : Fq → C be, say, an even function and let x ∈ Fq. Then from (9) it follows that

DχF (−x) =
1

G(χ)

∑

t∈Fq
χ(t)F (−x− t) =

1

G(χ)

∑

t∈Fq
χ(t)F (x+ t)

=
1

G(χ)
χ(−1)

∑

z∈Fq
χ(z)F (x− z) = χ(−1)DχF (x),

as claimed.
Given a character χ ∈ ̂F

�
q , let D

χ
n be the operator that takes a function of several variables

Fq × . . . × Fq → C to its partial derivative of order χ with respect to the nth variable. In this
notation, one has

Dβ
2D

α
1 = Dα

1D
β
2

for all characters α, β ∈ ̂F
�
q . This means that one can evaluate partial derivatives in any order.

In more detail, for all E : Fq × Fq → C and x, y ∈ Fq,

Dβ
2D

α
1E(x, y) = Dα

1D
β
2E(x, y) =

1

G(α)G(β)

∑

s,t∈Fq
α(s)β(t)E(x− s, y − t).

This immediately follows from (9).
Consider some examples. Let c ∈ F

�
q and let E(x) = eq(−cx) for all x ∈ Fq. By (11), for all

characters χ ∈ ̂F
�
q and all x ∈ Fq,

DχE(x) = χ(c) eq(−cx). (12)

The definition (1) and formula (12) with c = 1 imply that

Dχ cosq = −i sinq and Dχ sinq = i cosq (13)

for all odd characters χ, i.e., for all χ with χ(−1) = −1.

6. The equation of vibrations of a string. Given two functions u, v : R → R and a
constant c ∈ R, consider the function w : R× R → R,

w(x, t) = u(x− ct) + v(x+ ct) for all x, t ∈ R. (14)

The function w defined in this way satisfies the differential equation

∂2w

∂t2
= c2

∂2w

∂2x
, (15)

where u and v are assumed to be twice continuously differentiable. This equation is known
in mathematical physics as the equation of vibrations of a string. To be more precise, the
equation of free vibrations of an infinite string. A solution of the form (14) is known as its
d’Alembert solution. It is the general solution of Eq. (15) in the class of twice continuously
differentiable functions and can be used in solving particular problems.

Given functions a, b : R → R, consider the Cauchy problem of finding solutions of Eq. (15)
that satisfy the conditions

w
∣

∣

t=0
= a,

∂w

∂t

∣

∣

∣

t=0
= b. (16)

If a is a twice continuously differentiable function and b is a continuously differentiable func-
tion, then the problem has a unique solution in the class of twice continuously differentiable
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functions. The solution is given by d’Alembert’s formula

w(x, t) =
1

2

{

a(x− ct) + a(x+ ct)
}

+
1

2c

x+ct
∫

x−ct

b(y) dy for all x, t ∈ R,

see, for example, Sobolev [7].

7. Changing the context. Choose a nontrivial multiplicative character ρ of the field Fq. We
will write D for the operator Dχ with χ = ρ and treat D as the differentiation operator of order
1. Also, for a positive integer n, define the operators Dn and D−n as the compositions of n
operators D and D−1, respectively. By D−1 we mean Dχ with χ = ρ−1. In particular, we treat
Df as the first order derivative and D−1f as the primitive function for the function f : Fq → C;
D2f = DDf . In the sequel, given a function of several variables F : Fq × . . . × Fq → C, we
write Dn

1F , Dn
2F , . . . for the order n derivatives of F with respect to the first, second, etc.

variables. The symbols Dn
t F , Dn

xF, etc. have the same meaning, where the variables are
denoted by t, x, . . . rather than numbered.

We consider the equation of vibrations of a string (15) in the context of functions over finite
fields.

Theorem 1. For arbitrary functions u, v : Fq → C and an arbitrary constant c ∈ F
�
q , the

function w : Fq × Fq → C defined by

w(x, t) = u(x− ct) + v(x+ ct) for all x, t ∈ Fq (17)

satisfies the equation of vibrations of a string

D2
tw = CD2

xw with the constant C = ρ(c)2. (18)

Conversely, if a function w : Fq × Fq → C is not a constant and satisfies the equation

D2
tw = CD2

xw with a certain C ∈ C, C �= 0, (19)

then C = ρ(c)2 for a constant c ∈ F
�
q , and in the Fourier expansion

w(x, t) =
∑

m,n∈Fq
r(m,n)eq(−mx− nt), x, t ∈ Fq, (20)

the coefficients r(m,n) are nonzero only if either m = n = 0 or ρ(cm/n) = ±1, mn �= 0. In
particular, for a primitive character ρ, these conditions are equivalent to cm = ±n, and the
function w can be represented in the form (17), with appropriate u and v.

Proof. Expand the function u : Fq → C into the Fourier series,

u(x) =
∑

m∈Fq
r(m)eq(−mx) with x ∈ Fq, (21)

and consider the function

(x, t) �→ u(x− ct) =
∑

m∈Fq
r(m)eq(−mx+mct), x, t ∈ Fq. (22)

Using formula (12), we find that the operator D2
t takes the function (22) to the function

(x, t) �→
∑

m∈Fq
r(m)ρ(−mc)2eq(−mx+mct), x, t ∈ Fq. (23)

Similarly, the operator D2
x takes (22) to the function

(x, t) �→
∑

m∈Fq
r(m)ρ(m)2eq(−mx+mct) x, t ∈ Fq. (24)
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Notice that ρ(−mc)2 = ρ(c)2ρ(m)2 for all m ∈ Fq. Comparing (24) with (23), we find that the
function (22) is a solution of Eq. (18). Applying similar arguments to v and −c rather than
to u and c, we conclude that the function

(x, t) �→ v(x+ ct), x, t ∈ Fq, (25)

is a solution of Eq. (18). By the linearity of the differential operators and Eq. (18), the sum
of the functions (22) and (25) is a solution of Eq. (18), as claimed. The same result can
be obtained in a different way by applying formula (11) with χ = ρ2 instead of the Fourier
expansions.

Now consider the Fourier expansion (20) for a function w satisfying Eq. (19) and apply
formula (12) in order to obtain (using term-by-term differentiation) the Fourier expansions
of the functions D2

tw and D2
xw. Comparing the Fourier coefficients, we find that (18) is

equivalent to

Cρ(m)2 r(m,n) = ρ(n)2 r(m,n) for all m,n ∈ Fq. (26)

If m = 0 and n �= 0, then ρ(m) = 0 and ρ(n) �= 0. Thus, from (26) it follows that r(0, n) = 0
for all n �= 0. Similarly, we find that r(m, 0) = 0 for all m �= 0. Further, since the function
w is not a constant, there exists a pair (m′, n′) with r(m′, n′) �= 0 and m′n′ �= 0. For such a
pair (m′, n′), from (26) it follows that C = ρ(c)2 with c = n′/m′. Finally, if r(m,n) �= 0 and
mn �= 0, then condition (26) for the pair (m,n) can be written as ρ(cm)2 = ρ(n)2, which is
equivalent to ρ(cm/n) = ±1.

Assume that ρ is a primitive character. For a field Fq of odd characteristic and mn �= 0, the
condition ρ(cm/n) = ±1 is equivalent to n = ±cm. Also, in this case, we have cm �= −cm for
all m �= 0. The only terms in the Fourier expansion (20) that can be nonzero are the constant
term r(0, 0) and the terms attached to the pairs (m,−cm) and (m, cm) with m ∈ F

�
q . Thus,

(20) implies (17) with

u(z) = r(0, 0) +
∑

m∈F�
q

r(m,−cm)eq(−mz), v(z) =
∑

m∈F�
q

r(m, cm)eq(−mz). (27)

For a field Fq of characteristic 2, the character ρ does not take the value −1. In addition, if
mn �= 0, then cm = −cm, and the condition ρ(cm/n) = ±1 is equivalent to n = cm and also
to n = −cm. In this case, for w we have representation (17) with u from (27) and without the
function v at all. �

Theorem 2. Given a field Fq of odd characteristic, its primitive character ρ, a pair of functions
a, b : Fq → C, and a constant C = ρ(c)2 with c ∈ F

�
q , consider the problem of finding a solution

w : Fq × Fq → C of the differential equation

D2
tw = CD2

xw (28)

satisfying the Cauchy initial conditions

w
∣

∣

t=0
= a, Dtw

∣

∣

t=0
= b. (29)

This problem has a unique solution. It can be represented as

w(x, t) =
a(x+ ct) + a(x− ct)

2
+ ρ(c)

D−1b (x+ ct)−D−1b (x− ct)

2
(30)

for all x, t ∈ Fq.

Proof. Let w be the function (17) specified by arbitrary functions u, v : Fq → C. In accordance
with Theorem 1, w is a solution of Eq. (28) and, moreover, every solution can be written in
such a form.
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Show that w, with appropriately chosen u and v, satisfies the Cauchy conditions (29).
Clearly, the first condition in (29) is equivalent to

u+ v = a. (31)

The second condition in (29) is equivalent to

ρ(−c)Du+ ρ(c)Dv = b. (32)

This is explained as follows. Apply the operator Dt to the function (x, t) �→ u(x−ct) and then
take t = 0. In this way, we obtain the function ρ(−c)Du. Indeed, consider the function

(x, t) �→ u(x− ct) =
∑

m∈Fq
r(m)eq(−mx+mct), x, t ∈ Fq, (33)

where r(m) are the Fourier coefficients of the function u (as in (21)). By (12), we find that
the operator Dt takes (33) to the function

(x, t) �→
∑

m∈Fq
r(m)ρ(−mc)eq(−mx+mct), x, t ∈ Fq.

With t = 0, this is exactly the function ρ(−c)Du. Similarly, by applying the operator Dt to
the function (x, t) �→ v(x+ ct) and taking t = 0, we obtain the function ρ(c)Dv. Considering
the sum of these functions, we find that condition (32) is equivalent to the second condition
in (29). Note that this equivalence can also be established by applying formula (11) instead
of the Fourier expansions.

Our assumptions on Fq and ρ imply that ρ(−1) = −1. It follows that (32) is equivalent to

−Du+Dv = ρ(c) b. (34)

Thus, in order to determine the functions u and v, we have Eqs. (31) and (34). Apply the
operator D−1 to the functions in (34). By (10), D−1Du = u + Q and D−1Dv = v + R with
some constants Q,R ∈ C. We see that (34) is equivalent to

−u+ v = ρ(c)D−1b+ P (35)

with a constant P ∈ C. Upon solving Eqs. (31) and (35) for u and v and substituting the
result into (17), we obtain a solution of our problem and its representation (30).

Now we will prove uniqueness. By the linearity of (28) and (29), it is sufficient to prove
uniqueness for the problem with the zero functions a and b only. Let w be a solution of the
problem with zero a and b. Express w as in formula (17) in Theorem 1. The functions u and
v must satisfy Eqs. (31), (35) with zero functions a and b. Thus, the relations u+ v = 0 and
−u+ v = P must hold with a certain constant P ∈ C. It follows that u and v are constants,
and w = u+ v = 0, as claimed. �
8. Boundary-value problems. In connection with the equation of vibrations of a string,
a number of different boundary-value problems are considered. Equation (15) and the initial
conditions (16) may be supplemented with some boundary conditions.

A typical example is the problem of free vibrations of a string with one end fixed. It consists
in finding a function w : [0,∞]× [0,∞) → R that satisfies Eq. (15), the boundary condition

w
∣

∣

x=0
= g,

and the Cauchy conditions (16) with given functions a, b, g : [0,∞] → R.
Yet another typical example is the problem of free vibrations of a string with fixed ends.

Let R denote the distance between the ends of the string. The problem is to find a function
w : [0, R]× [0,∞) → R satisfying Eq. (15), the boundary conditions

w
∣

∣

x=0
= 0, w

∣

∣

x=R
= 0,
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and the Cauchy conditions (16) with some given functions a, b : [0, R] → R.
In order to change the context and to state similar problems concerning functions over finite

fields, it is necessary to give a finite interpretation to intervals. The following two variants
look rather natural.

(I) Let the characteristic of Fq be odd. The squares in the group F
�
q form its subgroup F

�2
q

of index 2. Consider the sets F�2
q and F

�
q \ F�2

q as analogs of the sets of positive and negative

real numbers. Given an m ∈ Fq, set (m,∞) = m+ F
�2
q and (−∞,m) = m+ F

�
q \ F�2

q . We can
regard these sets as half-lines in Fq and as analogs of open half-lines in R. Obviously,

Fq = (−∞,m) ∪ {m} ∪ (m,∞).

Also, we set [m,∞) = {m} ∪ (m,∞) and (−∞,m] = (−∞,m) ∪ {m}. These are half-lines
in Fq and analogs of closed half-lines in R. It is convenient to introduce into consideration a
quadratic character κ of the group F

�
q extended to a function on Fq by setting κ(0) = 0. Given

m,n ∈ Fq, set

(m,n) = (−∞, n) ∩ (m,∞) =
{

z ∈ Fq

∣

∣ κ(z −m) = κ(n − z) = 1
}

.

This is an analog of an open bounded interval in R.
(II) Consider Fq as a vector space over Fp. We have the linear mapping tr : Fq → Fp with

the kernel S = {zq − z | z ∈ Fq}. Given an m ∈ F
�
q , consider the space Sm = {mx |x ∈ S},

which is the kernel of the additive character z �→ exp(2πi tr(m−1z)/p) of Fq. One can lift
functions Fq/Sm → C to functions Fq → C invariant under translations by vectors in Sm.
(This corresponds to periodic complex functions on R in the classical setting.) Then one can
follow the Fourier method of separation of variables and obtain solutions of boundary-value
problems represented as linear combinations of the trigonometric functions (1), which are
periodic and possess all the necessary properties, see (13) and (12).

Translated by N. V. Proskurin.

REFERENCES

1. R. J. Evans, “Hermite character sums,” Pacific J. Math., 122, No. 2, 357–390 (1986).
2. J. R. Greene, “Hypergeometric functions over finite fields,” Trans. Amer. Math. Soc., 301,

No. 1, 77–101 (1987).
3. J. R. Greene, “Lagrange inversion over finite fields,” Pacific J. Math., 130, No. 2, 313–325

(1987).
4. J.-P. Serre, A Course d’Arithmétique, Presses Universitaires de France, Paris (1970).
5. K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory (Grad. Texts

Math., 84), Springer-Verlag (1990).
6. R. Lidl and H. Niederreiter, Finite Fields, Second Ed., Cambridge University Press (1997).
7. S. L. Sobolev, Partial Differential Equations of Mathematical Physics [in Russian], Fourth

Ed., Nauka, Moscow (1966).
8. N. V. Proskurin, “Notes on character sums and complex functions over finite fields,” in:

International Conference “Polynomial Computer Algebra 2018,” St. Petersburg, Russia,
VVM Publishing (2018), pp. 97–103.

9. N. V. Proskurin, “On some special functions over finite fields,” Zap. Nauchn. Semin. POMI,
468, 281–286 (2018).

567


	Abstract
	1. Introduction
	2. Notation and basic functions
	3. Gauss sums
	4. Fourier transforms
	5. Differentiation
	6. The equation of vibrations of a string
	7. Changing the context
	8. Boundary-value problems
	REFERENCES

