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For the space of (not necessarily polynomial) Hermite type splines we develop algorithms

for constructing the spline-wavelet decomposition provided that an arbitrary coarsening

of a nonuniform spline-grid is a priori given. The construction is based on approxi-

mate relations guaranteeing the asymptotically optimal (with respect to the N -diameter

of standard compact sets) approximate properties of this decomposition. We study the

structure of restriction and extension matrices and prove that each of these matrices is

the one-sided inverse of the transposed other. We propose the decomposition and recon-

struction algorithms consisting of a small number of arithmetical actions. Bibliography:

5 titles.

Dedicated to Nina Nikolaevna Uraltseva

1 Introduction

As is known, wavelet decompositions are widely used since the end of the last century. The

theory of classical wavelets is described in many monographs (cf., for example, [1, 2]). However,

multiflow wavelet decompositions are considered relatively recently (cf. [3]–[5]). This paper

is devoted to the wavelet decomposition of the space of (not necessarily polynomial) Hermite

type splines of the first height. These splines can be used for solving the Hermite interpolation

problem (with first order derivatives). In this case, the original flow is combined from the flows

of the values of functions and their derivatives.

For a spline-wavelet decomposition one need a pair of spline spaces embedded in each other.

The situation becomes much more simpler if we can establish that the embedded spline spaces are

obtained on embedded grids. As is known, the use of approximate relations does not guarantee

this property (there are simple examples of embedded grids without the expected embedding of

spaces). In the case under consideration, such embeddings take place.

Regarding wavelet decompositions of Hermite type splines, the first work in this direction
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was the paper [3], where the elementary case of embedded grids obtaining by eliminating one

node was considered. It became clear that, successively removing nodes, one can obtain an

embedded Hermite type spline space constructed on an arbitrarily thinned grid. However, the

computer implementation of the process of successive removal of nodes is not very effective since

it takes a lot of time, leads to significant rounding errors and, eventually, loss of stability of the

process.

The goal of this paper is to develop spline-wavelet algorithms for constructing decomposition

and reconstruction formulas under the condition that a spline grid coarsening is a priori given (for

more details about adapting grid coarsenings we refer, for example, to [5]). Moreover, iteration

processes are not used. The proposed algorithms are of explicit character: decomposition and

reconstruction consist in computing sums of at most four terms. In the case under consideration,

all features of spline-wavelet decompositions (in particular, the asymptotically limit quality of

approximations with respect to N -diameter, simplicity of algorithms, the locality property; cf.

[4]) are preserved. We consider an open interval (α, β) and an infinite grid on this interval. To

pass to a finite grid, it suffices to take restrictions of all functions under consideration on the

segment [a, b] contained in the interval (α, β). Moreover, the obtained formulas can be used, as

in the previous cases by extending the grid to the exterior of the segment [a, b] with four nodes

and assuming that the input flow takes arbitrary values at these nodes.

2 Hermite Type Splines

We consider a four-component vector-valued function ϕ(t) = ([ϕ]0(t), [ϕ]1(t), [ϕ]2(t), [ϕ]3(t))
T

with components [ϕ]i(t) in the space C1(α, β), i = 0, 1, 2, 3. We assume that the following

condition holds.

(A) W (x, y;ϕ)
def
= det(ϕ(x), ϕ ′(x), ϕ(y), ϕ ′(y)) �= 0 for all x, y ∈ (α, β), x �= y.

Denote by X a grid of the form

X : . . . < x−1 < x0 < x1 < . . . . (2.1)

Assume that α
def
= lim

j→−∞
xj and β

def
= lim

j→∞
xj . We introduce the notation

G
def
=

⋃

j∈Z
(xj , xj+1), ϕj

def
= ϕ(xj), ϕ ′

j
def
= ϕ ′(xj).

We consider functions ωj(t), t ∈ G, j ∈ Z, satisfying the approximation relations

∑

j

(ϕ ′
j+1ω2j−1(t) + ϕj+1ω2j(t)) = ϕ(t), (2.2)

under the assumption that

suppω2j−1 ⊂ [xj , xj+2], suppω2j ⊂ [xj , xj+2] ∀j ∈ Z. (2.3)

For fixed k ∈ Z from (2.2)–(2.3) with t ∈ (xk, xk+1) we find

ϕ ′
kω2k−3(t) + ϕkω2k−2(t)ϕ

′
k+1ω2k−1(t) + ϕk+1ω2k(t) = ϕ(t). (2.4)
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By Assumption (A), the system (2.4) is uniquely solvable. For t ∈ (xk, xk+1) from (2.4) we find

ω2k−3(t) =
det (ϕ(t), ϕk, ϕ

′
k+1, ϕk+1)

det (ϕ ′
k, ϕk, ϕ

′
k+1, ϕk+1)

,

ω2k−2(t) =
det (ϕ ′

k, ϕ(t), ϕ
′
k+1, ϕk+1)

det (ϕ ′
k, ϕk, ϕ

′
k+1, ϕk+1)

,

ω2k−1(t) =
det (ϕ ′

k, ϕk, ϕ(t), ϕk+1)

det (ϕ ′
k, ϕk, ϕ

′
k+1, ϕk+1)

,

ω2k(t) =
det (ϕ ′

k, ϕk, ϕ
′
k+1, ϕ(t))

det (ϕ ′
k, ϕk, ϕ

′
k+1.ϕk+1)

.

From these formulas we easily derive (subsequently setting k = q, k = q + 1) the equaltieis

ω2q−1(t) =
det (ϕ ′

q, ϕq, ϕ(t), ϕq+1)

det (ϕ ′
q, ϕq, ϕ ′

q+1, ϕq+1)
, t ∈ (xq, xq+1), (2.5)

ω2q−1(t) =
det (ϕ(t), ϕq+1, ϕ

′
q+2, ϕq+2)

det (ϕ ′
q+1, ϕq+1, ϕ ′

q+2, ϕq+2)
, t ∈ (xq+1, xq+2), (2.6)

ω2q(t) =
det (ϕ ′

q, ϕq, ϕ
′
q+1, ϕ(t))

det (ϕ ′
q, ϕq, ϕ ′

q+1, ϕq+1)
, t ∈ (xq, xq+1), (2.7)

ω2q(t) =
det (ϕ ′

q+1, ϕ(t), ϕ
′
q+2, ϕq+2)

det (ϕ ′
q+1, ϕq+1, ϕ ′

q+2, ϕq+2)
, t ∈ (xq+1, xq+2), (2.8)

for any q ∈ Z.

Theorem 2.1. Let ϕ ∈ C1(α, β), and let Assumption (A) hold. Then for any q ∈ Z the

functions ω2q−1(t) and ω2q(t) defined by formulas (2.3) and (2.5)–(2.8) can be continuously

extended to the whole interval (α, β) as functions of class C1(α, β). Furthermore,

ω2q−1(xq) = 0, ω2q−1(xq+1) = 0, ω2q−1(xq+2) = 0, (2.9)

ω ′
2q−1(xq) = 0, ω ′

2q−1(xq+1) = 1, ω ′
2q−1(xq+2) = 0, (2.10)

ω2q(xq) = 0, ω2q(xq+1) = 1, ω2q(xq+2) = 0, (2.11)

ω ′
2q(xq) = 0, ω ′

2q(xq+1) = 0, ω ′
2q(xq+2) = 0, (2.12)

where the same notation is used for the extended functions.

Proof. Computing the corresponding one-sided limits of the functions ω2q−1(t) and ω2q(t)

and their derivatives at the nodes xq, xq+1, and xq+2 by using the representations (2.3) and

(2.5)–(2.8), we conclude that all the assertions of the theorem are valid (cf. also [3]).

Remark 2.1. If the components [ϕ(t)]i of the vector ϕ(t) are given by the identities [ϕ(t)]i =

ti, then the functions ω2q−1(t) and ω2q(t) form the known interpolation basis for the space of

cubic Hermite splines.
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The space S
1
ϕ(X)

def
= {u | u =

∑
j
cjωj ∀cj ∈ R

1, j ∈ Z} is called the space of Hermite type

splines (of the first height). By Assumption (A), the functions ωj , j ∈ Z, are linearly indepen-

dent. The set {ωj}j∈Z is called the principal basis for the space S
1
ϕ(X).

Remark 2.2. The relations (2.9)–(2.12) can be written as

ω2s−1(xj) = 0, ω ′
2s−1(xj) = δs+1,j , (2.13)

ω2s(xj) = δs+1,j , ω ′
2s(xj) = 0 ∀s, j ∈ Z. (2.14)

3 Calibration Relations for Hermite Type Splines

In the set (2.1), we consider the subset X̂ : . . . < x̂−2 < x̂−1 < x̂0 < x̂1 < x̂2 < . . ., where

lim
j→−∞

x̂j = α and lim
j→∞

x̂j = β. We denote by χ(s) the monotonically increasing integer-valued

function such that

x̂j = xχ(j). (3.1)

This function is invertible on Z
∗ = χ(Z) and generates tje mapping X̂ �→ X sending a given

node x̂j (in fact, its number in X̂) to the node xχ(j) (in fact, its number in X) by formula (3.1).

Thus, this mapping determines the embedding of X̂ into X. We note that the inverse mapping

χ−1 is defined on Z
∗.

Repeating the constructions (2.2)–(2.8) with the new grid X̂, we find functions ω̂j such that

supp ω̂2j−1 ⊂ [x̂j , x̂j+2], supp ω̂2j ⊂ [x̂j , x̂j+2] ∀j ∈ Z, (3.2)

ϕ̂ ′
iω̂2i−3(t) + ϕ̂iω̂2i−2(t)ϕ̂

′
i+1ω̂2i−1(t) + ϕ̂i+1ω̂2i(t) = ϕ(t) ∀t ∈ (x̂i, x̂i+1), ∀i ∈ Z, (3.3)

where ϕ̂j = ϕx̂j
and ϕ̂ ′

j = ϕ ′
x̂j

for all j ∈ Z.

From formulas (3.2) and (3.3) we find (with p ∈ Z)

ω̂2p−1(t) =
det (ϕ̂ ′

p, ϕ̂p, ϕ(t), ϕ̂p+1)

det (ϕ̂ ′
p, ϕ̂p, ϕ̂ ′

p+1, ϕ̂p+1)
, t ∈ (x̂p, x̂p+1), (3.4)

ω̂2p−1(t) =
det (ϕ(t), ϕ̂p+1, ϕ̂

′
p+2, ϕ̂p+2)

det (ϕ̂ ′
p+1, ϕ̂p+1, ϕ̂ ′

p+2, ϕ̂p+2)
, t ∈ (x̂p+1, x̂p+2), (3.5)

ω̂2p(t) =
det (ϕ̂ ′

p, ϕ̂p, ϕ̂
′
p+1, ϕ(t))

det (ϕ̂ ′
p, ϕ̂p, ϕ̂ ′

p+1, ϕ̂p+1)
, t ∈ (x̂p, x̂p+1), (3.6)

ω̂2p(t) =
det (ϕ̂ ′

p+1, ϕ(t), ϕ̂
′
p+2, ϕ̂p+2)

det (ϕ̂ ′
p+1, ϕ̂p+1, ϕ̂ ′

p+2, ϕ̂p+2)
, t ∈ (x̂p+1, x̂p+2). (3.7)

We can write analogs of formulas (2.13) and (2.14) for the functions (3.4)–(3.7):

ω̂2s−1(x̂j) = 0, ω̂ ′
2s−1(x̂j) = δs+1,j , (3.8)

ω̂2s(x̂j) = δs+1,j , ω̂ ′
2s(x̂j) = 0 ∀s, j ∈ Z. (3.9)
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Assume that q = χ(i) and q+ k = χ(i+1), so that between the nodes x̂i and x̂i+1 there are the

nodes xj , j = q + 1, q + 2, . . . , q + k − 1:

x̂i = xq < xq+1 < xq+2 < . . . < xq+k−1 < xq+k = x̂i+1. (3.10)

As is shown in [3], if one node is removed from the original grid, then the coordinate functions

ω̂j related to the new grid are linear combinations of the coordinates funcitons connected with

the original grid (these linear combinations are called the calibration relations). Therefore, while

removing a group of nodes, the corresponding coordinate functions also have this property. To

find the coefficients of the calibration relations, we use the biorthogonal system of functionals

presented by formulas (3.8) and (3.9).

Thus, taking into account the location of supports of the funcitons ω̂j(t), j ∈ {2i − 3, 2i −
2, 2i− 1, 2i} and ω2s−3, ω2s−, ω2s−1, ω2s (cf. formula (2.3)), we have the representations

ω̂j(t) =
∑

(x̂i,x̂i+1)∩(xs,xs+2)�=∅

(c
(j)
2s−1ω2s−1(t) + c

(j)
2s ω2s(t)), (3.11)

where t ∈ (x̂i, x̂i+1) and j ∈ {2i− 3, 2i− 2, 2i− 1, 2i}.
Theorem 3.1. Let i be a fixed integer, and let k = χ(i + 1) − χ(i) + 1. Under the above

assumptions,

ω̂j(t) =

q+k−1∑

s=q−1

(
ω̂ ′

j(xs+1)ω2s−1(t) + ω̂j(xs+1)ω2s(t)
)
, (3.12)

where t ∈ (x̂i, x̂i+1), j ∈ {2i− 3, 2i− 2, 2i− 1, 2i}, and q = χ(i).

Proof. The relation (3.11) can be written as

ω̂j(t) =

q+k−1∑

s=q−1

(c
(j)
2s−1ω2s−1(t) + c

(j)
2s ω2s(t)), j ∈ {2i− 3, 2i− 2, 2i− 1, 2i}. (3.13)

Substituting t = xr, r ∈ {q, q + 1, . . . , q + k} into (3.13), we find

ω̂j(xr) =

q+k−1∑

s=q−1

(c
(j)
2s−1ω2s−1(xr) + c

(j)
2s ω2s(xr)). (3.14)

Using the equalities ω2s−1(xr) = 0 and ω2s(xr) = δs+1,r on the right-hand side of (3.14), we can

find at most one nonzero term; namely, the term indexed by s = r − 1:

ω̂j(xr) = c
(j)
2r−2ω2r−2(xr) = c

(j)
2r−2.

Thus,

c
(j)
2s = ω̂j(xs+1) ∀s ∈ {q − 1, q, . . . , q + k − 1}. (3.15)

Differentiating (3.15) and substituting t = xr into the obtained identity, we find

ω̂ ′
j(xr) =

q+k−1∑

s=q−1

(c
(j)
2s−1ω

′
2s−1(xr) + c

(j)
2s ω

′
2s(xr)). (3.16)
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Taking into account the equalities ω ′
2s−1(xr) = δs+1,r and ω2s(xr) = 0, we see that the right-

hand side of (3.16) contains at most one nonzero term (in this case, the “first” term); namely,

the term indexed by s = r − 1. Thus, ω̂ ′
j(xr) = c

(j)
2r−3. Hence

c
(j)
2s−1 = ω̂ ′

j(xs+1) ∀s ∈ {q − 1, q, . . . , q + k − 1}. (3.17)

Substituting (3.15) and (3.17) into (3.13), we obtain (3.12).

Theorem 3.2. Under the assumptions of Theorem 2.1 the relations (3.12) can be represented

in the form

ω̂2i−3(t) = ω2q−3(t) +

q+k−1∑

s ′=q+1

(
ω̂ ′

2i−3(xs ′)ω2s ′−3(t)ω̂2i−3(xs ′)ω2s ′−2(t)
)
, (3.18)

ω̂2i−2(t) = ω2q−2(t) +

q+k−1∑

s ′=q+1

(
ω̂ ′

2i−2(xs ′)ω2s ′−3(t) + ω̂2i−2(xs ′)ω2s ′−2(t)
)
, (3.19)

ω̂2i−1(t) =

q+k−1∑

s ′=q+1

(
ω̂ ′

2i−1(xs ′)ω2s ′−3(t) + ω̂2i−1(xs ′)ω2s ′−1(t)
)
+ω2q+2k−3(t), (3.20)

ω̂2i(t) =

q+k−1∑

s ′=q+1

(
ω̂ ′

2i(xs ′)ω2s ′−3(t) + ω̂2i(xs ′)ω2s ′−2(t)
)
ω2q+2k−2(t). (3.21)

Proof. The relation (3.12) can be written as

ω̂j(t) = ω̂ ′
j(xq)ω2q−3(t) + ω̂j(xq)ω2q−2(t) +

q+k−2∑

s=q

(
ω̂ ′

j(xs+1)ω2s−1(t) + ω̂j(xs+1)ω2s(t)
)

+ ω̂ ′
j(xq+k)ω2q+2k−3(t) + ω̂j(xq+k)ω2q+2k−2(t).

Taking into account that xq = x̂i and xq+k = x̂i+1, we find

ω̂j(t) = ω̂ ′
j(x̂i)ω2q−3(t) + ω̂j(x̂i)ω2q−2(t) +

q+k−2∑

s=q

(
ω̂ ′

j(xs+1)ω2s−1(t) + ω̂j(xs+1)ω2s(t)
)

+ ω̂ ′
j(x̂i+1)ω2q+2k−3(t) + ω̂j(x̂i+1)ω2q+2k−2(t). (3.22)

From formula (3.22) with j = 2i− 3 we have

ω̂2i−3(t) = ω̂ ′
2i−3(x̂i)ω2q−3(t) + ω̂2i−3(x̂i)ω2q−2(t)

+

q+k−2∑

s=q

(
ω̂ ′

2i−3(xs+1)ω2s−1(t) + ω̂2i−3(xs+1)ω2s(t)
)

+ ω̂ ′
2i−3(x̂i+1)ω2q+2k−3(t) + ω̂2i−3(x̂i+1)ω2q+2k−2(t). (3.23)

From (3.8) and (3.9) it follows that

ω̂ ′
2i−3(x̂i) = 1, ω̂2i−3(x̂i) = ω̂ ′

2i−3(x̂i+1) = ω̂2i−3(x̂i+1) = 0
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and, consequently, (3.23) can be written in the form (3.18).

For j = 2i− 2 formula (3.22) takes the form

ω̂2i−2(t) = ω̂ ′
2i−2(x̂i)ω2q−3(t) + ω̂2i−2(x̂i)ω2q−2(t)

+

q+k−2∑

s=q

(
ω̂ ′

2i−2(xs+1)ω2s−1(t) + ω̂2i−2(xs+1)ω2s(t)
)

+ ω̂ ′
2i−2(x̂i+1)ω2q+2k−3(t) + ω̂2i−2(x̂i+1)ω2q+2k−2(t). (3.24)

Taking into account (3.8) and (3.9), we find

ω̂ ′
2i−2(x̂i) = 0, ω̂2i−2(x̂i) = 1, ω̂ ′

2i−2(x̂i+1) = ω̂2i−2(x̂i+1) = 0,

so that (3.24) implies (3.19).

We consider (3.2) with j = 2i− 1:

ω̂2i−1(t) = ω̂ ′
2i−1(x̂i)ω2q−3(t) + ω̂2i−1(x̂i)ω2q−2(t)

+

q+k−2∑

s=q

(
ω̂ ′

2i−1(xs+1)ω2s−1(t) + ω̂2i−1(xs+1)ω2s(t)
)

+ ω̂ ′
2i−1(x̂i+1)ω2q+2k−3(t) + ω̂2i−1(x̂i+1)ω2q+2k−2(t). (3.25)

Since

ω̂ ′
2i−1(x̂i) = ω̂2i−1(x̂i) = 0 ω̂ ′

2i−1(x̂i+1) = 1, ω̂2i−1(x̂i+1) = 0

in view of (3.8) and (3.9), from (3.25) we obtain (3.20).

Finally, let us consider the case j = 2i. In this case, (3.22) takes the form

ω̂2i(t) = ω̂ ′
2i(x̂i)ω2q−3(t) + ω̂2i(x̂i)ω2q−2(t)

+

q+k−2∑

s=q

(
ω̂ ′

2i(xs+1)ω2s−1(t) + ω̂2i(xs+1)ω2s(t)
)

+ ω̂ ′
2i(x̂i+1)ω2q+2k−3(t) + ω̂2i(x̂i+1)ω2q+2k−2(t). (3.26)

From (3.8) and (3.9) we find

ω̂ ′
2i(x̂i) = ω̂2i(x̂i) = ω̂ ′

2i(x̂i+1) = 0, ω̂2i(x̂i+1) = 1,

and, consequently, (3.25) can be written in the form (3.21).

Corollary 3.1. If the assumptions of Theorem 2.1 hold and k = 2, then the relations (3.12)

can be written as

ω̂2i−3(t) = ω2q−2(t) + ω̂ ′
2i−3(xq+1)ω2q−1(t) + ω̂2i−3(xq+1)ω2q(t), (3.27)

ω̂2i−2(t) = ω2q−2(t) + ω̂ ′
2i−2(xq+1)ω2q−1(t) + ω̂2i−2(xq+1)ω2q(t), (3.28)

ω̂2i−1(t) = ω̂ ′
2i−1(xq+1)ω2q−1(t) + ω̂2i−1(xq+1)ω2q(t) + ω2q+1(t), (3.29)

ω̂2i(t) = ω̂ ′
2i(xq+1)ω2q−1(t) + ω̂2i(xq+1)ω2q(t) + ω2q+2(t). (3.30)
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Proof. Setting k = 2 in the relations (3.18), (3.19), (3.20), and (3.21), we obtain the

identities (3.27), (3.28), (3.29), and (3.30) respectively.

Remark 3.1. When implementing the algorithm, it is useful to take into account that the

case k = 1 corresponds to the mapping χ under which, between the nodes x̂i and x̂i+1 there

are no nodes of the grid X, i.e., χ(i) = q, χ(i + 1) = q + 1, so that x̂i = xq, x̂i+1 = xq+1 (cf.

(3.1) and (3.10)); moreover, the formulas in Theorems 2.1 and 3.1 are also preserved in the case

k = 1 if we agree that for m > n sums of the form
n∑

i=m
ai are zero.

Now, we assume that q = χ(i), q+k = χ(i+1), q−k ′ = χ(i−1), so that between the nodes

x̂i−1 and x̂i there are the nodes xj , j = q − 1, q − 2, . . . , q − k ′ + 1, whereas between the nodes

x̂i and x̂i+1 there are the nodes xj , j = q + 1, q + 2, . . . , q + k − 1:

x̂i−1 = xq−k ′ < xq−k ′+1 < . . . < xq−2 < xq−1 < x̂i

= xq < xq+1 << xq+2 < . . . < xq+k−1 < xq+k = x̂i+1. (3.31)

Theorem 3.3. If Assumption (A) holds, then for t ∈ (α, β) and any i ∈ Z

ω̂j(t) =

q+k−2∑

s=q ′

(
ω̂ ′

j(xs+1)ω2s−1(t) + ω̂j(xs+1)ω2s(t)
)
, (3.32)

where j ∈ {2i− 3, 2i− 2}, q = χ(i), q ′ = χ(i− 1), k = χ(i+ 1)− q.

Proof. The supports of the functions ω̂j , j = 2i−3, 2i−2, belong to the segment [x̂i−1, x̂i+1].

For t ∈ (x̂i, x̂i+1) formula (3.32) is valid by Theorem 2.1. We consider the interval t ∈ (x̂i−1, x̂i).

Replacing i with i− 1, q with q ′, and k with k ′ def
= χ(i)− χ(i− 1) in Theorem 2.1, we get

ω̂j(t) =

q ′+k ′−1∑

s ′=q ′−1

(
ω̂ ′

j(xs ′+1)ω2s ′−1(t) + ω̂j(xs ′+1)ω2s ′(t)
)
. (3.33)

According to the notation (3.31), the nodes xq ′+k ′ and xk coincide with the node x̂i and q ′+k ′ =
k. Therefore, the term in (3.33) with index s ′ = q ′ + k ′ − 1 coincides with the term in

(3.12) computed for the index s = q − 1. There are no other common terms in these sums.

Therefore, taking into account that the corresponding terms vanish at the endpoints of [x̂i, x̂i+1],

we conclude that formula (3.32) can be obtained by combining the sums (3.12) and (3.33).

Remark 3.2. Replacing i ′ = i − 1, we get q = χ(i ′ + 1), q ′ = χ(i ′), k = χ(i ′ + 2) − q.

Setting s ′ = s+ 1, we can write formula (3.32) in the following equivalent form:

ω̂j(t) =

q+k−1∑

s ′=q ′+1

(
ω̂ ′

j(xs ′)ω2s ′−3(t) + ω̂j(xs ′)ω2s ′−2(t)
)
, (3.34)

where j ∈ {2i ′ − 1, 2i ′} for all i ′ ∈ Z.

For each i ∈ Z we consider j ∈ {2i− 1, 2i} and set q = χ(i+ 1), q ′ = χ(i), k = χ(i+ 2)− q.

By (3.34), we have

ω̂j(t) =

χ(i+2)∑

s=χ(i)

(
ω̂ ′

j(xs)ω2s−3(t) + ω̂j(xs)ω2s−2(t)
)
.
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Since it is obvious that ω̂ ′
j(xχ(i)) = ω̂ ′

j(xχ(i+2)) = 0 and ω̂j(xχ(i)) = ω̂j(xχ(i+2)) = 0, the above

relation can be written as

ω̂j(t) =

χ(i+2)−1∑

s=χ(i)+1

(
ω̂ ′

j(xs)ω2s−3(t) + ω̂j(xs)ω2s−2(t)
)
. (3.35)

We consider pj,l, j, l ∈ Z, defined by

p2i−1,2s−1 = ω̂ ′
2i−1(xs+1), p2i−1,2s = ω̂2i−1(xs+1), (3.36)

p2i,2s−1 = ω̂ ′
2i(xs+1), p2i,2s = ω̂2i(xs+1) (3.37)

for all s ∈ {χ(i), . . . , χ(i+ 2)− 2} and i ∈ Z, and assume that all the numbers pj,l that are not

mentioned in this list are equal to zero:

p2i−1,k = p2i,k = 0 ∀i ∈ Z, ∀k /∈ {2χ(i)− 1, 2χ(i), . . . , 2χ(i+ 2)− 4}. (3.38)

We introduce the infinite matrix, P
def
= (pj,l)j,l∈Z whose entries are defined by (3.36)–(3.38).

Thus, the (2i− 1)th row of the matrix P has the form

. . . , 0, 0, ω̂ ′
2i−1(xχ(i)+1), ω̂2i−1(xχ(i)+1), . . . , ω̂

′
2i−1(xχ(i+2)−1), ω̂2i−1(xχ(i+2)−1), 0, 0, . . . ,

and the following row (numbered by 2i) differs from the above one by only the fact that instead

of ω̂2i−1 we should write ω̂2i. We write the numbers of columns where these nonzero entries are

located:

2χ(i)− 1, 2χ(i), 2χ(i) + 1, 2χ(i) + 2, . . . , 2χ(i+ 2)− 5, 2χ(i+ 2)− 4, (3.39)

and the total number of such columns is equal to 2(χ(i+ 2)− χ(i))− 2.

If i is replaced with i+1, then we have to consider the rows with numbers j ∈ {2i+1, 2i+2}.
The set of their nonzero entries is translated in such a way that the start point turns out to be

in the column numbered by 2χ(i+ 1)− 1:

2χ(i+ 1)− 1, 2χ(i+ 1), 2χ(i+ 1) + 1, . . . , 2χ(i+ 3)− 5, 2χ(i+ 3)− 4. (3.40)

The number of the common columns in (3.39) and (3.40) is equal to the quantity

2χ(i+ 1)− 1, 2χ(i+ 1), 2χ(i+ 1) + 1, . . . , 2χ(i+ 2)− 5, 2χ(i+ 2)− 4. (3.41)

Table 1

2χ(i+ 1) + 1 2χ(i+ 1) + 2 . . . 2χ(i+ 2)− 3 2χ(i+ 2)− 2

rows

2 i− 1 ω̂ ′
2i−1(xχ(i+1)+1) ω̂2i−1(xχ(i+1)+1) . . . ω̂ ′

2i−1(xχ(i+2)−1) ω̂2i−1(xχ(i+2)−1)

2 i ω̂ ′
2i(xχ(i+1)+1) ω̂2i(xχ(i+1)+1) . . . ω̂ ′

2i(xχ(i+2)−1) ω̂2i(xχ(i+2)−1)

2 i+ 1 ω̂ ′
2i+1(xχ(i+1)+1) ω̂2i+1(xχ(i+1)+1) . . . ω̂ ′

2i+1(xχ(i+2)−1) ω̂2i+1(xχ(i+2)−1)

2 i+ 2 ω̂ ′
2i+2(xχ(i+1)+1) ω̂2i+2(xχ(i+1)+1) . . . ω̂ ′

2i+2(xχ(i+2)−1) ω̂2i+2(xχ(i+2)−1)
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Remark 3.3. Since the multiplicity of covering by supports of coordinate functions ω̂j is

equal to 4, the columns of the matrix P contain at most four nonzero entries (in successive four

rows), whereas the matrix itself has the step-like structure.

Thus, nonzero entries of the matrix P can be found only on the intersection of the columns

with the above-mentioned numbers and the row with the numbers i − 1, 2i, 2i + 1, 2i + 2 for

all i ∈ Z. They are the values of the functions ω̂j and ω̂ ′
j at nodes of the grid X. For given

i ∈ Z Table 1 presents nonzero blocks of the matrix P. The upper row of the table indicates the

column numbers, whereas the left column indicates the row numbers. Entries of the matrix P

are the values of the functions ω̂j and ω̂ ′
j at the nodes of the grid X. Such nonzero blocks are

separated by the columns of the matrix P where only one entry is different from zero; moreover,

this entry is equal to 1 (cf. Table 2).

Table 2

2χ(i+ 1)− 1 2χ(i+ 1) 2χ(i+ 2)− 1 2χ(i+ 2)

rows

2 i− 1 1 0 0 0

2 i 0 1 0 0

2 i+ 1 0 0 1 0

2 i+ 2 0 0 0 1

For the infinite-dimensional column vectors ω(t) and ω̂(t) whose components are the functions

ωj(t) and ω̂j(t) respectively we have

ω(t)
def
= (. . . , ω−2(t), ω−1(t), ω0(t), ω1(t), ω2(t), . . .)

T ,

ω̂(t)
def
= (. . . , ω̂−2(t), ω̂−1(t), ω̂0(t), ω̂1(t), ω̂2(t), . . .)

T ,

which implies that (3.35)–(3.38) can be written in the form1)

ω(t) = Pω̂(t). (3.42)

4 Biorthogonal System of Functionals and Their Values on ωj

On the space C1(α, β), we consider two systems of linear functionals {gi}i∈Z and {ĝi}i∈Z
defined by

〈g2p−1, u〉def
= u ′(xp+1), 〈g2p, u〉def

= u(xp+1) ∀p ∈ Z, (4.1)

〈ĝ2r−1, u〉def
= u ′(x̂r+1), 〈ĝ2r, u〉def

= u(x̂r+1) ∀r ∈ Z. (4.2)

1) Multiplication of infinite matrices is performed by the standard formulas (the indices of their entries are

taken into account here). In the cases under consideration, the sums have finitely many terms and, consequently,

there are no problems with convergence of series.
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By (2.9)–(2.12),

〈gs, ωj〉 = δs,j , 〈ĝs, ω̂j〉 = δs,j , s, j ∈ Z. (4.3)

We find the values of the functionals ĝs on the coordinate splines ωj . For this purpose we

express the functionals ĝs in terms of the functionals gi. Such a representation exists in view of

the structure of the functionals and the fact that the grid X̂ is embedded into the grid X.

Lemma 4.1. For u ∈ C1(α, β), r ∈ Z,

〈ĝ2r−1, u〉 = 〈g2χ(r+1)−3, u〉, (4.4)

〈ĝ2r, u〉 = 〈g2χ(r+1)−2, u〉. (4.5)

Proof. We denote by 〈a/b〉 the remainder after division of an integer a by b, and let 
ρ�
denote the integer part of a real number ρ, i.e.,


ρ�def
= min{k | k ∈ Z, k � ρ}.

Formula (4.1) can be written as

〈gs, u〉 = u(〈s/2〉)(x�s/2�) ∀s ∈ Z. (4.6)

Similarly, formula (4.2) can be written as

〈ĝσ, u〉 = u(〈σ/2〉)(x̂�σ/2�) ∀σ ∈ Z. (4.7)

By the mapping (3.1), from (4.7) we have

〈ĝi, u〉 = u(〈i/2〉)(xχ(�i/2�+1)) ∀i ∈ Z. (4.8)

Let r ∈ Z. If we set i = 2r − 1 in (4.8), then from the first relation in (4.1) we find

〈ĝ2r−1, u〉 = u ′(xχ(r+1)) = 〈g2(χ(r+1)−1)−1, u〉. (4.9)

Now, setting i = 2q − 1 in (4.8) and using the second relation in (4.1), we have

〈ĝ2r, u〉 = u(xχ(r+1)) = 〈g2(χ(r+1)−1), u〉. (4.10)

Formulas (4.9) and (4.10) imply (4.4) and (4.5) respectively.

Theorem 4.1. The values of the functional ĝ2r−1 and ĝ2r on the coordinate splines ωj with

j, r ∈ Z are given by

〈ĝ2r−1, ωj〉 = δ2χ(r+1),j+3, (4.11)

〈ĝ2r, ωj〉 = δ2χ(r+1),j+2. (4.12)

Proof. By (4.4) and (4.3), we have 〈ĝ2r−1, ωj〉 = 〈g2χ(r+1)−3, ωj〉 = δ2χ(r+1),j+3. Similarly,

by (4.5) and (4.3), we have 〈ĝ2r, ωj〉 = 〈g2χ(r+1)−2, ωj〉 = δ2χ(r+1),j+2. Thus, we obtain formulas

(4.11) and (4.12).

From (4.11) and (4.12) the following assertion holds.
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Corollary 4.1. If i+ j is odd, then the right-hand sides of (4.11) and (4.12) vanish:

〈ĝi, ωj〉 = 0, 〈(i+ j)/2〉 = 1. (4.13)

We introduce the matrix Q
def
= (qij) with entries

qij = 〈ĝi, ωj〉 (4.14)

defined by formulas (4.11)–(4.13).

Corollary 4.2. The matrix Q is the left inverse of the matrix PT .

Proof. Passing to the transposed relations (3.42), we obtain the following equality for the

row vectors

(ω)T (t) = (ω̂)T (t)PT . (4.15)

Multiplying the equality (4.15) by the column vector g
def
= (gi)i∈Z and taking into account the

biorthogonality property (4.1), we obtain the identity matrix I on the left-hand side and (by

formula (4.14)) the matrix Q on the right-hand side. Thus, from (4.15) it follows that

I = QPT , (4.16)

which is required to prove.

5 Wavelet Decomposition

According to Corollary 3.1, the space S1ϕ(X̂) is contained in the space S1ϕ(X) which, in turn,

is contained in the space C1(α, β).

We consider the projection operator P from the space C1(α, β) onto the subspace S
1
ϕ(X̂)

given by the formula

Pu
def
=

∑

j

aj ω̂j ∀u ∈ C1(α, β), aj = 〈ĝj , u〉. (5.1)

Hence for the space S
1
ϕ(X̂) we have the wavelet decomposition

S
1
ϕ(X) = S

1
ϕ(X̂)

.
+W, (5.2)

where W
def
= (I − P )S1ϕ(X) is the wavelet space.

Let ũ ∈ S
1
ϕ(X). By formula (5.2), we have2) two representations of ũ:

ũ =
∑

j∈Z
cjωj , (5.3)

ũ =
∑

i∈Z
aiω̂i

∑

j∈Z
bjωj =

∑

j

(∑

i∈Z
aipi,j + bj

)
ωj . (5.4)

2) In the case under consideration, all the sums have finitely many terms and, as was already mentioned, no

problems with convergence arise.
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From (5.3)–(5.4) and the linear independence of {ωj}j∈Z we obtain the reconstruction formula

cj =
∑

i∈Z
aipi,j + bj , j ∈ Z. (5.5)

Using (5.1) and (5.3), we find

ai = 〈ĝi, ũ〉 =
∑

j∈Z
cj〈ĝi, ωj〉 =

∑

j∈Z
qijcj . (5.6)

Now, from (5.5) and (5.6) we have

bj = cj −
∑

i∈Z
aipi,j = cj −

∑

i∈Z

∑

s∈Z
cs〈ĝi, ωs〉pi,j = cj −

∑

s∈Z
cs

∑

i∈Z
qi,spi,j , j ∈ Z. (5.7)

Introducing the vectors a = (. . . , a−2, a−1, a0, a1, a2, . . .)
T , b = (. . . , b−2, b−1, b0, b1, b2, . . .)

T , and

c = (. . . , c−2, c−1, c0, c1, c2, . . .)
T , we write the reconstruction formula (5.5) in the form

c = PTa+ b. (5.8)

Using the relations (5.6) and (5.7), we obtain the decomposition formula

a = Qc,

b = c−PTQc.
(5.9)

The vectors c, a, b are called the original, basic, wavelet flows respectively.

Theorem 5.1. For the basic flow the following relation holds:

a2r−1 = c2χ(r+1)−3, a2r = c2χ(r+1)−2 ∀r ∈ Z. (5.10)

Proof. From (4.14) and (5.6) we have

ai = 〈ĝi, ũ〉 =
∑

j∈Z
cj〈ĝi, ωj〉. (5.11)

For i = 2r − 1, using formula (4.11), we get

a2r−1 =
∑

j∈Z
cj〈ĝ2r−1, ω̃j〉 =

∑

j∈Z
cjδ2χ(r+1),j+3 = c2χ(r+1)−3.

Setting i = 2r in (5.11) and using (4.12), we find

a2r =
∑

j∈Z
cjδ2χ(r+1),j+2 = c2χ(r+1)−2.

Thus, formula (5.10) is proved.

Thus, we have obtained the first formula for computing the decomposition. To obtain the

second formula, we need to compute entries of the product matrix PTQ. The entries will be

denoted by [PTQ]j,s, where j is the row number and s is the column number.
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Theorem 5.2. For j, p ∈ Z the following relations hold:
⎧
⎨

⎩
[PTQ]j,2p−1 = p2χ−1(p+1)−3,j ∀p+ 1 ∈ Z

∗,

[PTQ]j,2p−1 = 0 ∀p+ 1 ∈ Z\Z∗,
(5.12)

⎧
⎨

⎩
[PTQ]j,2p = p2χ−1(p+1)−2,j ∀p+ 1 ∈ Z

∗,

[PTQ]j,2p−1 = 0 ∀p+ 1 ∈ Z\Z∗.
(5.13)

Proof. Using formula (4.14), we have

[PTQ]js =
∑

i∈Z
pi,jqi,s =

∑

r∈Z
p2r−1,j〈ĝ2r−1, ωs〉+

∑

r∈Z
p2r,j〈ĝ2r, ωs〉

=
∑

r∈Z
p2r−1,jδ2χ(r+1),s+3 +

∑

r∈Z
p2r,jδ2χ(r+1),s+2. (5.14)

We consider the cases of odd and even s. If s = 2p − 1, then from (5.14) and (4.11)–(4.12) it

follows that

[PTQ]j,2p−1 =
∑

r∈Z
p2r−1,jδ2χ(r+1),2p+2 +

∑

r∈Z
p2r,jδ2χ(r+1),2p+1. (5.15)

The second sum in (5.15) is equal to zero since the indices of the Kronecker symbol cannot

coincide there (cf. also formula (4.13)). Therefore, looking for r = χ−1(p+1)−1 from χ(r+1) =

p+ 1 with p+ 1 ∈ Z
∗ and using (5.15), we find

[PTQ]j,2p−1 =
∑

r∈Z
p2r−1,jδ2χ(r+1),2p+2 = p2(χ−1(p+1)−1)−1,j (5.16)

for p + 1 ∈ Z
∗ and [PTQ]j,2p−1 = 0 for p + 1 ∈ Z\Z∗. Considering the case s = 2p and using

(4.11)–(4.12) in the relation (5.14), we have

[PTQ]j,2p =
∑

r∈Z
p2r−1,jδ2χ(r+1),2p+3 +

∑

r∈Z
p2r,jδ2χ(r+1),2p+2. (5.17)

It is easy to see that the first sum in (5.17) vanishes. Thus, for p+ 1 ∈ Z
∗

[PTQ]j,2p =
∑

r∈Z
p2r,jδ2χ(r+1),2p+2 = p2(χ−1(p+1)−1),j , (5.18)

and [PTQ]j,2p = 0 if p+1 ∈ Z\Z∗. Formulas (5.16) and (5.18) are equivalent to formulas (5.12)

and (5.13).

Theorem 5.3. For the wavelet flow

bj = cj −
∑

p+1∈Z∗

(
p2χ−1(p+1)−3,jc2p−1 + p2χ−1(p+1)−2,jc2p

) ∀j ∈ Z. (5.19)

Proof. In the representation [PTQc]j , we extract summation with respect to even and odd

indices

[PTQc]j =
∑

s∈Z
[PTQ]j,scs =

∑

p∈Z
[PTQ]j,2p−1c2p−1 +

∑

p∈Z
[PTQ]j,2pc2p.
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Using formulas (5.12)–(5.13), we find

[PTQc]j =
∑

p+1∈Z∗

(
p2χ−1(p+1)−3,jc2p−1 + p2χ−1(p+1)−2,jc2p

) ∀j ∈ Z. (5.20)

Using the second equality in (5.9) and applying (5.20), we obtain (5.19).

Corollary 5.1. The following relations hold:

b2s−1 = c2s−1 −
∑

p+1∈Z∗

(
ω̂ ′

2χ−1(p+1)−3(xs+1)c2p−1 + ω̂ ′
2χ−1(p+1)−2(xs+1)c2p

)
, (5.21)

b2s = c2s −
∑

p+1∈Z∗

(
ω̂2χ−1(p+1)−3(xs+1)c2p−1 + ω̂2χ−1(p+1)−2(xs+1)c2p

)
. (5.22)

Proof. For p + 1 ∈ Z
∗, substituting i = χ−1(p + 1) − 1 into (3.36)–(3.37), we find the

numbers pp,q for p ∈ {2i− 1, 2i}, q ∈ {2s− 1, 2s} and substitute them into formula (5.19) with

j ∈ {2s− 1, 2s}. Then we obtain the relations (5.21)–(5.22).

Theorem 5.4. The reconstruction formulas have the form

c2s−1 =
∑

i∈Z
a2i−1ω

′
2i−1(xs+1) +

∑

i∈Z
a2iω

′
2i(xs+1) + b2s−1, (5.23)

c2s =
∑

i∈Z
a2i−1ω2i−1(xs+1) +

∑

i∈Z
a2iω2i(xs+1) + b2s. (5.24)

Proof. Using the relation (5.5), we find

c2s−1 =
∑

l∈Z
alpl,2s−1 + b2s−1 =

∑

i∈Z
a2i−1p2i−1,2s−1 +

∑

i∈Z
a2ip2i,2s−1 + b2s−1,

c2s =
∑

l∈Z
alpl,2s + b2s =

∑

i∈Z
a2i−1p2i−1,2s +

∑

i∈Z
a2ip2i,2s + b2s.

Applying formulas (3.36) and (3.37), we obtain the representations (5.23)–(5.24).

The case where the grid X̂ is obtained from the gird X by removing one node was considered

in [3]. The results obtained in this paper, generalize the corresponding assertions in [3] (cf., for

example, Corollary 3.1). Let us illustrate this generalization by discussing formula (5.10) for

determining the basic flow {ai}i∈Z from the initial flow {cj}j∈Z. Without loss of generality we

can assume that the grid X̂ is obtained from the grid X by removing the node ξ
def
= x

̂k+1
, where

k̂ is an integer. In the notation (3.1), we can write

χ(j) =

⎧
⎨

⎩
j, j � k̂,

j + 1, j � k̂ + 1.

The following relations were proved in [3]:

ai =

⎧
⎨

⎩
ci, i � 2k̂ − 2,

ai = ci+2, i � 2k̂ − 1.
(5.25)
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We show that (5.25) follows from the relations (5.10) in Theorem 5.1. Indeed, if r+1 � k̂, then

χ(r + 1) = r + 1. Hence from (5.10) it follows that a2r−1 = c2(r+1)−3 = c2r−1 and a2r = c2r,

which implies

aj = cj , j � 2k̂ − 2. (5.26)

If r+1 � k̂+1, then χ(r+1) = r+2. Consequently, a2r−1 = c2(r+2)−3 = c2r+1 and a2r = c2r+2,

which implies

aj = cj , j � 2k̂ − 1. (5.27)

Thus, formulas (5.26) and (5.26) coincide with (5.25).

Similarly, in the case k = 2, from the results of this paper we obtain the decomposition and

reconstruction formulas established earlier in [3].
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