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Abstract. In this paper, we obtain oscillatory and nonoscillatory conditions for a certain second-order
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1. Introduction. In this paper, we discuss oscillatory and nonoscillatory conditions for the second-
order half-linear differential equation(

ρ(t)
∣∣y′(t)∣∣p−2

y′(t)
)′

+ q(t) |y(t)|p−2 y(t) = 0, t ≥ a, 1 < p < ∞, p �= 2, (1)

in the case where the sign of q(·) alternates in any neighborhood of +∞. We assume that the function
q(·) can be represented in the form q = u−v, where u and v are positive and continuous on Ī = [a,∞)

functions, and the function ρ(t) > 0 is continuous on I and is such that ρ |y′|p−2 is differentiable almost
everywhere in I for all y ∈ C2(I).

Problems on the oscillation of solutions of Eq. (1) in the case where q > 0 are well studied (see [3,
5]). Introduce the following notions.

In the present paper, by a solution of Eq. (1) we mean a twice differentiable in I solution y(t) for

which the function ρ(t) |y′(t)|p−2 y(t) is differentiable in I.
A solution y(t) of Eq. (1) is said to be oscillatory on I if there exists a sequence of points xk −−−→

k→∞
∞

at which y(xk) = 0. Equation (1) is said to be oscillatory if all its solutions are oscillatory.
There exist various methods of study of the oscillatory property of equations of the form (1). The

main methods are the so-called “Riccati techniques” and the variational principle (see [1–3, 5]).

The variational principle is based on the following theorem.

Theorem 1 (see [3]). Equation (1) is nonoscillatory if and only if there exists T ∈ R such that for
all T ≤ c ≤ d < ∞ the condition

F (y, c, d) =

d∫

c

(
ρ(t)|y′(t)|p − q(t)|y(t)|p) dt > 0

holds for any nontrivial function y ∈ Ẇ 1
p (T,∞).

We denote by W 1
p (Ω) the space of all absolutely continuous on the segment Ω = [Ω−,Ω+] functions

for which

‖f ;W 1
p (Ω)‖ =

⎛
⎝
∫

Ω

(|y′|p + |y|p) dt
⎞
⎠

1
p

< ∞,

and set Ẇ 1
p (Ω) = {y ∈ W 1

p (Ω) : y(Ω
−) = y(Ω+) = 0}.
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2. Auxiliary assertions. On the segment [0, 1], the following well-known estimate is valid:

max
t∈[0,1]

|z(t)| ≤ A0

1∫

0

(|z′|+ |z|) dt. (2)

Performing a change of variables, we obtain from (2) that for all y ∈ W 1
p (x, x + h), the following

inequality holds:

max
t∈[x,x+h]

|y(t)| ≤ A0

x+h∫

x

(|y′|+ h−1|y|) dt, (3)

where A0 is the best constant in (2).

Lemma. Assume that the following condition holds:
⎛
⎝

x+h∫

x

ρ−
p′
p dt

⎞
⎠

p
p′ x+h∫

x

vdt ≥ 1.

Then for all y ∈ W 1
p (x, x+ h) the following estimate is valid :

h−1

x+h∫

x

|y(t)|dt ≤ 2p

⎛
⎝

x+h∫

x

(
ρ(t)|y′|p + v(t)|y|p) dt

⎞
⎠

1
p
⎛
⎝

x+h∫

x

ρ
− p′

p dt

⎞
⎠

1
p′

. (4)

Proof. We can assume that

h−1

x+h∫

x

|y|dt = 1,

and then we must prove the inequality

1 ≤ 2p
x+h∫

x

(
ρ(t)|y′|p + v(t)|y|p) dt

⎛
⎝

x+h∫

x

ρ−
p′
p

⎞
⎠

p
p′

. (5)

Estimate (5) is nontrivial if ⎛
⎝

x+h∫

x

ρ
− p′

p

⎞
⎠

p
p′ x+h∫

x

ρ(t)|y′|pdt < 2−p. (6)

Since y is continuous on [x, x+ h], we have

1 = h−1

x+h∫

x

|y(t)|pdt = |y(t0)|p, t0 ∈ [x, x+ h].

From (6) we conclude that

|y(t) − y(t0)| =

∣∣∣∣∣∣

t∫

t0

y′(ξ)dξ

∣∣∣∣∣∣
≤

x+h∫

x

|y′(ξ)|dξ ≤
⎛
⎝

x+h∫

x

ρ|y′(ξ)|pdξ
⎞
⎠

1
p
⎛
⎝

x+h∫

x

ρ−
p′
p dξ

⎞
⎠

1
p′

< 2−1

for any point t ∈ [x, x+ h]. Therefore, for all t ∈ [x, x+ h] we have

∣∣y(t)∣∣ =
∣∣∣y(t0)− (y(t0)− y(t))

∣∣∣ ≥
∣∣∣|y(t0)| − |y(t0)− y(t)|

∣∣∣ ≥ 1
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which implies
⎛
⎝

x+h∫

x

ρ−
p′
p dξ

⎞
⎠

p
p′ x+h∫

x

v(t)|y(t)|pdt ≥ 1

2p

⎛
⎝

x+h∫

x

ρ−
p′
p dξ

⎞
⎠

p
p′ x+h∫

x

v(t)dt ≥ 1

2p
.

The proof is complete. �
A weight pair (ρ, v) on Ī is said to be admissible if

h∗(x) = h∗(x|ρ, v) = sup

⎧
⎪⎨
⎪⎩
h > 0 :

⎛
⎝

x+h∫

x

ρ1−p′dt

⎞
⎠

p
p′ x+h∫

x

vdt ≤ 1

⎫
⎪⎬
⎪⎭

< ∞

for all x ≥ a.
Let Δ∗(x) = [x, x+ h∗(x)] (Δ∗(x) < ∞). Then the following equality holds:

⎛
⎜⎝

∫

Δ∗(x)

ρ1−p′

⎞
⎟⎠

p′
p ∫

Δ∗(x)

v = 1; (7)

this follows from the absolute continuity of the Lebesgue integral.

3. Main results.

Theorem 2. Let (ρ, v) be an admissible pair on Ī. If there exists T > a such that∫

Δ∗(x)

u(t)dt <
1

2p(1 + 2p)Ap
0

∫

Δ∗(x)

v(t)dt, (8)

for all x ≥ T , then Eq. (1) is nonoscillatory.

Proof. By Theorem 1, Eq. (1) is nonoscillatory if there exists T > a such that for all c < d (c ≥ T )

and any function y ∈ Ẇ 1
p (c, d) we have

d∫

c

(
ρ(t)|y′(t)p + v(t)|y|p) dt >

d∫

c

u(t)|y|pdt.

Since y(d) = 0, we can assume that y(t) = 0 for t ≥ d.
Consider a system of segments {Δk}Nk=1, N ≤ ∞, that cover the segment [c, d], where Δk =

[xk, xk + hk], xk+1 = xk + hk, x1 = c, hk = h∗(xk). From (3)–(5), (7), and (8) we conclude that

d∫

c

u(t)|y|pdt ≤ Ap
0

N∑
k=1

∫

Δk

u(t)dt

⎛
⎜⎝
∫

Δk

(|y′|+ h−1|y|) dt

⎞
⎟⎠

p

≤ Ap
0

N∑
k=1

∫

Δk

u(t)dt

⎡
⎢⎢⎣

⎛
⎜⎝
∫

Δk

ρ−
p′
p

⎞
⎟⎠

1
p′
⎛
⎜⎝
∫

Δk

ρ(t)|y|pdt

⎞
⎟⎠

1
p

+ 2

⎛
⎜⎝
∫

Δk

ρ−
p′
p

⎞
⎟⎠

1
p′
⎛
⎜⎝
∫

Δk

(
ρ(t)|y′|p + v(t)|y|p) dt

⎞
⎟⎠

1
p

⎤
⎥⎥⎦

p
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≤ (1 + 2p)(2A0)
p sup
x≥T

∫

Δ∗(x)

u(t)dt

⎛
⎜⎝
∫

Δ∗
k

v(t)dt

⎞
⎟⎠

−1
d∫

c

(
ρ(t)|y′|p + v(t)|y|p) dt

<

d∫

c

(
ρ(t)|y′|p + v(t)|y|p) dt.

The proof is complete. �
We set

Ω∗(x) =
[
x+ τh∗(x), x+ (1− τ)h∗(x)

]
, τ =

1

4
.

Theorem 3. Let (ρ, v) be an admissible pair on Ī. Equation (1) is oscillatory if there exists a sequence
of points xk −−−→

k→∞
∞ satisfying the following conditions:

(1)

⎛
⎜⎝
∫

Δk

ρ−
p′
p dt

⎞
⎟⎠

1
p′
⎛
⎜⎝
∫

Δk

ρ(t)dt

⎞
⎟⎠

1
p

≤ Cρh
∗(xk),

(2)

∫

Ω∗(xk)

u(t)dt ≥ (1 + (2πCρ)
p)

∫

Δ∗(xk)

v(t)dt.

(9)

Proof. By Theorem 1, Eq. (1) is oscillatory if for any T > 0 there exists a function y ∈ Ẇ 1
p (c, d),

T < c < d < ∞, such that

d∫

c

|y|pu(t)dt ≥
d∫

c

(
ρ(t)|y′|p + v(t)|y|p) dt.

We take

θ(t) =
π

2

t∫

0

sin(πξ)dξ.

Let Δk = [xk, xk + hk], hk = h∗(xk), and

yk(t) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

θ

(
t−Δ−

k

τhk

)
, Δ−

k ≤ t ≤ Ω−
k ,

1, t ∈ Ωk,

θ

(
Δ+

k − t

τhk

)
, Ω+

k ≤ t ≤ Δ+
k .

Then

y′k(t) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

π

2τhk
sin

t−Δ−
k

τhk
, Δ−

k ≤ t ≤ Ω−
k ,

0, t ∈ Ωk,

− π

2τhk
sin

Δ+
k − t

τhk
, Ω+

k ≤ t ≤ Δ+
k .
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Therefore, |y′(t)| ≤ 2π/hk. We see that yk ∈ Ẇ 1
p (Δk), and by the condition (2) of the theorem we

have ∫

Δk

u(t)|yk|pdt
∫

Δk

(
ρ(t)|y′k(t)|p + v(t)|yk(t)|p

)
dt

≥

⎛
⎜⎝
∫

Δk

(ρ(t))−
p′
p dt

⎞
⎟⎠

p
p′ ∫

Ωk

u(t)dt · 1
π
2τCρ + 1

= 1.

Since xk → ∞, for any T > 0 we take c = xk and d = xk + h∗(xk), where xk > T . �

Remark 1. The condition of Theorem 2 is equivalent to the following:

lim
x→∞ sup

∫

Δ∗(x)

u(t)dt

∫

Δ∗(x)

v(t)dt
<

1

2p(1 + 2p)Ap
0

.

Remark 2. Let ρ be a positive and continuous on the whole real axis function. If ρ satisfies the

condition (Ap), then in the condition (9) of Theorem 3 we can take Cρ = ‖ρ‖Ap (see [4]). For example,

ρ(x) = xα, −1 < α < p− 1, satisfies the condition (9) on Ī = [a,∞), a > 0.
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