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1. Introduction

Let Ω be an arbitrary domain in R
n = {x = (x1, x2, . . . , xn)}, Ω � R

n, n ≥ 2. Consider the
Dirichlet problem for the equation

n∑

i=1

(ai(x, u,∇u))xi = a0(x, u), x ∈ Ω, (1.1)

with the following inhomogeneous boundary condition:

u(x)
∣∣∣
∂Ω

= ψ(x)
∣∣∣
∂Ω

. (1.2)

Since the 1980s, second-order nonlinear elliptic equations of the form
n∑

i=1

(ai(x, u,∇u))xi − a0(x, u,∇u) = f(x), f ∈ L1, (1.3)

with measures in the right-hand side have been intensively examined. Weak solutions of Eqs. (1.3)

with power nonlinearities in the space Rn with f ∈ L1,loc(Rn), were studied by H. Brezis (see [10]),
L. Bokkardo, T. Galuet, and J. Vazquez (see [8]), M. Bendahmane and K. Karlsen (see [3]), et al.
The existence of weak solutions of the Dirichlet problem in a bounded domain Ω with a function

f ∈ L1(Ω) was found by L. Bokkardo and T. Galuet (see [7]) and L. Bokkardo, T. Galuet, and
P. Marcellini (see [9]).
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F. Benilan, L. Bokkardo, T. Galluet, R. Garieri, M. Pierre, and J. Vazquez (see [4]) and L. Bokkardo

(see [6]) in their works proposed the concept of an entropic solution of the Dirichlet problem and proved
its existence and uniqueness for elliptic equations with power nonlinearities and an L1-right-hand
side. These authors pointed out that instead of entropic solutions first proposed by S. N. Kruzhkov
(see [18]), renormalized solutions can be considered for first-order equations. Such solutions belong

to the functional class containing entropic solutions, but, in contrast to them, renormalized solutions
satisfy another family of integral relations. In some cases, the concepts of entropic and renormalized
solutions are equivalent. The problems on the existence and uniqueness of renormalized solutions of

elliptic problems in Orlicz spaces were studied in [2, 13].
Summability properties and estimates of entropic solutions for the Dirichlet problem in bounded

regions for the nonlinear elliptic equation (1.3) satisfying the condition of degenerating coercivity were

found by A. A. Kovalevsky (see [15]).
In [5], A. Benkirane and J. Bennouna studied the existence of entropic solutions for the Dirichlet

problem in Orlicz spaces for elliptic equations with second-order nonpolynomial nonlinearities and

f ∈ L1(Ω) (Ω is a bounded domain).
Note that in the works familiar to the author, the results are obtained for entropic and renormalized

solutions of elliptic problems in bounded domains (except for [4]) with homogeneous boundary condi-

tions. In [4], the authors proved the existence of entropic solutions of the Dirichlet problem (1.1), (1.2)
in anisotropic Sobolev–Orlicz spaces without the assumption of the boundedness of the domain Ω.

2. N-Functions and Orlicz Spaces

In this section, we present necessary information from the theory of N -functions and Orlicz spaces

(see [20]). A nonnegative, continuous, downward-convex function B(z), z ∈ R, is called an N -function
if it is even and satisfies the relations

lim
z→0

B(z)

z
= 0, lim

z→∞
B(z)

z
= ∞.

Note that B(εz) ≤ εB(z), z ∈ R, for 0 < ε ≤ 1.
An N -function

B(z) = sup
y≥0

(y|z| −B(y)), z ∈ R,

it called complementary to N -function B(z). The following Young inequality holds:

|zy| ≤ B(y) +B(z), z, y ∈ R. (2.1)

In addition, we have the equality

zB′(z) = B(B′(z)) +B(z), z ∈ R, (2.2)

where B′(z) is the right-hand side derivative of the N -function B(z).
For N -functions B(z) and M(z) we write B(z) ≺ M(z) if there exist numbers l > 0 and z0 > 0

such that

B(z) ≤ M(lz), |z| ≥ z0.

We say that an N -function B(z) grows considerably faster than an N -function M(z) and write
M(z) ≺≺ B(z) if

lim
z→∞

M(z)

B(lz)
= 0

for any number l > 0.
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We say that an N -function B(z) satisfies the Δ2-condition for large values of z if there exist numbers

c > 0 and z0 ≥ 0 such that B(2z) ≤ cB(z) for any |z| ≥ z0. The Δ2-condition is equivalent to the
inequality

B(lz) ≤ c(l)B(z) (2.3)

for |z| ≥ z0, where l is any number greater than one and c(l) > 0.
An N -function B(z) satisfies the Δ2-condition if and only if there exist numbers c > 1 and z0 ≥ 0

such that for |z| ≥ z0 the following inequality holds:

zB′(z) ≤ cB(z) (2.4)

(see [20, Chap. I, Sec. 4, Theorem 4.1]). In the sequel we assume that all N -functions considered

satisfy the Δ2-condition for all values of z ∈ R (i.e., z0 = 0).
For an N -function B(z), due to the convexity and the inequality (2.3), there exists c > 0 such that

the following inequality holds:

B(y + z) ≤ cB(z) + cB(y), z, y ∈ R. (2.5)

Assume that Q is an arbitrary domain of R
n. We consider the Orlicz space LB(Q) with the

Luxembourg norm

‖v‖B,Q = inf

⎧
⎪⎨

⎪⎩
k > 0

∣∣∣∣∣

∫

Q

B

(
v(x)

k

)
dx ≤ 1

⎫
⎪⎬

⎪⎭
.

The following inequalities hold (see [20, Chap. II, Sec. 9, inequalities (9.21) and (9.12)]):
∫

Q

B

(
v(x)

‖v‖B,Q

)
dx ≤ 1, (2.6)

‖v‖B,Q ≤
∫

Q

B(v)dx+ 1. (2.7)

Moreover, if an N -function B(z) satisfies the Δ2-condition, then the inequality
∫

Q

B(v)dx ≤ c(‖v‖B,Q) (2.8)

is fulfilled for v ∈ LB(Q). For functions u ∈ LB(Q) and v ∈ LB(Q), the Hölder inequality holds

(see [20, Chap. II, Sec. 9, inequalities (9.24) and (9.27)]:
∣∣∣∣∣∣∣

∫

Q

u(x)v(x)dx

∣∣∣∣∣∣∣
≤ 2‖u‖B,Q‖v‖B,Q. (2.9)

We denote the norm in the spaces Lp(Q), p ∈ [1,∞], by ‖ · ‖p,Q. For brevity, we will omit the
subscript Q = Ω in the notation ‖ · ‖p,Q and ‖ · ‖B,Q. For any N -function B(z), if mesQ < ∞, then

LB(Q) ⊂ L1(Q) and the following inequality holds:

‖v‖1,Q ≤ A0(mesQ)‖v‖B,Q, v ∈ LB(Q). (2.10)

For N -functions B1(z), . . . , Bn(z), let us define the anisotropic Sobolev–Orlicz space H̊1
B(Q) as the

completion of C∞
0 (Q) with respect to the norm

‖v‖H̊1
B(Q) =

n∑

i=1

‖vxi‖Bi,Q.
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We recall the following embedding theorem for the anisotropic space H̊1
B(Q). Let

h(θ) =

(
n∏

i=1

B−1
i (θ)

θ

)1/n

.

Assume that the integral
1∫

0

h(θ)

θ
dθ

converges. Then we can define the N -function B−1∗ (z) by the formula

B−1
∗ (z) =

|z|∫

0

h(θ)

θ
dθ.

Lemma 2.1 ((see [14])). Let v ∈ H̊1
B(Q).

(1) If
∞∫

1

h(θ)

θ
dθ = ∞, (2.11)

then H̊1
B(Q) ⊂ LB∗(Q) and

‖v‖B∗,Q ≤ A1‖v‖H̊1
B(Q); (2.12)

(2) if
∞∫

1

h(θ)

θ
dθ < ∞, (2.13)

then H̊1
B(Q) ⊂ L∞(Q) and

‖v‖∞,Q ≤ A2‖v‖H̊1
B(Q). (2.14)

Here

A1 =
n− 1

n
, A2 =

∞∫

0

h(θ)

θ
dθ.

3. Assumptions and Statement of Results

Let N -functions B1(z), . . . , Bn(z) and their complementary functions B1(z), . . . , Bn(z) fulfil the
Δ2-condition. We denote by LB(Ω) the space LB1(Ω)× . . .× LBn(Ω) with the norm

‖v‖B = ‖v1‖B1 + . . .+ ‖vn‖Bn , v = (v1, . . . , vn) ∈ LB(Ω). (3.1)

Similarly we define the space LB(Ω). We assume that ψ(x) ∈ L∞(Ω), ∇ψ ∈ LB(Ω).

Let s · t be the scalar product of the vectors s = (s1, . . . , sn) and t = (t1, . . . , tn) ∈ R
n and

a(x, s0, s) =
(
a1(x, s0, s), . . . , an(x, s0, s)

)
. (3.2)

Introduce some conditions on the functions that are involved in Eq. (1.1). Assume that the functions
a0(x, s0) and ai(x, s0, s), α = 1, . . . , n, are measurable with respect to x ∈ Ω for s0 ∈ R and s ∈ R

n

and continuous with respect to s0 ∈ R and s ∈ R
n for almost all x ∈ Ω. We also assume that the

function a0(x, s0) is nondecreasing with respect to s0 ∈ R.
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Assume that there exist nonnegative measurable functions φ(x),Φ(x) ∈ L1(Ω), a continuous posi-

tive function â(k), and a positive constant a such that the following inequalities hold:

B(a(x, s0, s)) ≤ â(k){Φ(x) + B(s)}, B(a) =

n∑

i=1

Bi(ai), B(s) =

n∑

i=1

Bi(si); (3.3)

(
a(x, s0, s)− a(x, s0, t)

)
· (s− t) > 0 (3.4)

for almost all x ∈ Ω and any s0 ∈ [−k, k], s, t ∈ R
n, s �= t. Assume that the following inequality holds

for almost all x ∈ Ω and all s0 ∈ R, s ∈ R
n:

a(x, s0, s) · (s−∇ψ) ≥ aB(s)− φ(x). (3.5)

The functions ai(x, s0, s), i = 1, . . . , n, satisfy the Hölder condition with respect to the variable s0:

there exist a continuous function Â(R, ρ), R, ρ > 0, which increases with respect to each of its argu-
ments, and a number α ∈ (0, 1) such that for any x ∈ Ω(R) = {x ∈ Ω : |x| < R}, s0, t0 ∈ R, |s0| < ρ,

|t0| < ρ, s ∈ R
n, the following inequalities hold:

Bi

(
|ai(x, s0, s)− ai(x, t0, s)|

|s0 − t0|α

)
≤ Â(R, ρ)B(s), i = 1, . . . , n. (3.6)

Here N -functions B1(z), . . . , Bn(z) and their complementary N -functions B1(z), . . . , Bn(z) satisfy the
Δ2-condition. The nonclassical condition was used in [1] for nonlinear elliptic variational one-sided

problems in Orlicz spaces.
We set a0(x, s0) = a0(x, ψ) + b(x, s0). Assume there exists δ0 > 0 such that

a0(x, ψ), a0(x, ψ ± δ0) ∈ L1(Ω). (3.7)

The function b(x, s0) is a Carathéordory function, which is nondecreasing with respect to s0 ∈ R,
b(x, ψ) = 0 for almost all x ∈ Ω, and hence for almost all x ∈ Ω and s0 ∈ R the following inequality

holds:

b(x, s0)(s0 − ψ) ≥ 0. (3.8)

Assume that

sup
|s0|≤k

|b(x, s0)| = Gk(x) ∈ L1,loc(Ω). (3.9)

The condition (3.7) implies

b(x, ψ ± δ0) ∈ L1(Ω). (3.10)

We introduce the function

Tk(r) =

⎧
⎪⎨

⎪⎩

k for r > k,

r for |r| ≤ k,

−k for r < −k

and the notation

[v] =

∫

Ω

v dx.

Definition 3.1. A measurable function u : Ω → R is called an entropic solution of the problem (1.1),
(1.2) if it satisfies the following conditions:

1) A0(x) = a0(x, u) ∈ L1(Ω),

2) Tk(u− ψ) ∈ H̊1
B(Ω) for all k > 0,
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and for all k > 0 and ξ(x) ∈ C1
0 (Ω), the following inequality holds:

[
a0(x, u)Tk(u− ψ − ξ) + a(x, u,∇u) · ∇Tk(u− ψ − ξ)

]
≤ 0. (3.11)

Theorem 3.1. Assume that the conditions (2.11), (3.3)–(3.7), (3.9) are fulfilled. Then there exists

an entropic solution of the problem (1.1), (1.2).

4. Preliminary Information

In the sequel, all constants are assumed to be positive.

Consider Carathéordory functions

aiψ(x, s0, s) = ai

(
x, s0 + ψ(x), s+∇ψ(x)

)
, i = 1, . . . , n,

a0ψ(x, s0) = a0
(
x, s0 + ψ(x)

)
, x ∈ Ω, s0 ∈ R, s ∈ R

n.

The function a0ψ(x, s0) is nondecreasing with respect to s0. Applying (3.3), (2.5), and (3.4) for the

vector-valued function

aψ(x, s0, s) =
(
a1ψ(x, s0, s), . . . , anψ(x, s0, s)

)

for almost all x ∈ Ω and any s0 ∈ [−k, k], s, t ∈ R
n, s �= t, we obtain the inequalities

B
(
aψ(x, s0, s)

)
= B

(
a(x, s0 + ψ(x), s+∇ψ(x))

)

≤ â
(
k + ‖ψ‖∞

){
Φ(x) + B

(
s+∇ψ(x)

)}
≤ â

(
k + ‖ψ‖∞

){
Φ(x) + cB

(
∇ψ(x)

)
+ cB(s)

}

≤ âψ(k)
{
Φψ(x) + B(s)

}
(3.3ψ)

and (
aψ(x, s0, s)− aψ(x, s0, t)

)
· (s− t) > 0. (3.4ψ)

Using (3.5) and (2.5), for almost all x ∈ Ω and all s0 ∈ R, s ∈ R
n, we obtain the inequalities

aψ(x, s0, s) · s = a
(
x, s0 + ψ(x), s+∇ψ(x)

)
· s

≥ aB(s+∇ψ)− φ(x) ≥ a

cB(s)
− aB

(
∇ψ(x)

)
− φ(x) = aψB(s)− φψ(x). (3.5ψ)

Obviously, the functions φψ(x), Φψ(x) ∈ L1(Ω) are nonnegative, the function âψ(k) is positive and
continuous, and aψ is a positive number.

It follows from (3.6) that there exist a continuous function Âψ(R, ρ) and a number α ∈ (0, 1) such
that for any x ∈ Ω(R), s0, t0 ∈ R, |s0| < ρ, |t0| < ρ, and s ∈ R

n, the following inequalities hold:

Bi

( |aiψ(x, s0, s)− aiψ(x, t0, s)|
|s0 − t0|α

)
≤ Â

(
R, ρ+ ‖ψ‖∞

)
B
(
s+∇ψ

)

≤ Âψ(R, ρ)
(
B(s) + B(∇ψ)

)
, i = 1, . . . , n. (3.6ψ)

Assume that a0ψ(x, s0) = a0ψ(x, 0) + bψ(x, s0), a0ψ(x, 0) = a0(x, ψ), bψ(x, s0) = b(x, s0 + ψ).
According to (3.7), we obtain

A0
0ψ(x) = a0ψ(x, 0) ∈ L1(Ω). (3.7ψ)

The function bψ(x, s0) is a Carathéordory function, which is nondecreasing with respect to s0 ∈ R and
bψ(x, 0) = 0 for almost all x ∈ Ω; therefore, for almost all x ∈ Ω and s0 ∈ R we have

bψ(x, s0)s0 ≥ 0. (3.8ψ)
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From (3.9) we obtain

sup
|s0|≤k

∣∣bψ(x, s0)
∣∣ ≤ sup

|s0+ψ|≤k+‖ψ‖∞

∣∣b(x, s0 + ψ)
∣∣ = Gk+‖ψ‖∞(x) ∈ L1,loc(Ω). (3.9ψ)

Finally, it follows from (3.10) that there exists δ0 > 0 such that

bψ(x,±δ0) ∈ L1(Ω). (3.10ψ)

Let u be an entropic solution of the problem (1.1), (1.2). Assuming w = u−ψ, we can reformulate

Definition 3.1 as follows.

Definition 3.1ψ. An entropic solution of the problem (1.1), (1.2) is a measurable function u :
Ω → R satisfying the condition u(x) = w(x) + ψ(x) and the following conditions:

(1ψ) A0ψ(x) = a0ψ(x, w) ∈ L1(Ω),

(2ψ) Tk(w) ∈ H̊1
B(Ω) for all k > 0

and for all k > 0 and ξ(x) ∈ C1
0 (Ω), the following inequality holds:

[
a0ψ(x, w)Tk(w − ξ) + aψ(x, w,∇w) · ∇Tk(w − ξ)

]
≤ 0. (3.11ψ)

Let χ(P ) be the propositional function which is equal to 1 if P is a true proposition and to 0 if P
is false.

It follows from the item (2ψ) of the definition of an entropic solution that

χ(|w| < k)∇w ∈ LB(Ω) (4.1)

for any k > 0. Hence, applying (3.3ψ), we find that

χ(|w| < k)aψ(x, w,∇w) ∈ LB(Ω) (4.2)

for any k > 0.

Lemma 4.1. If u = w + ψ is an entropic solution of the problem (1.1), (1.2), then for all k ≥ 1, the
following inequality holds:

∥∥B(∇Tkw)
∥∥
1
=

∫

{Ω:|w|<k}
B(∇w)dx ≤ C1k. (4.3)

Proof. According to the inequality (3.11ψ) for ξ = 0 and the condition (1ψ), we obtain
∫

{Ω:|w|<k}
aψ(x, w,∇w) · ∇wdx =

∫

Ω

aψ(x, w,∇w) · ∇Tk(w)dx ≤ −
∫

Ω

a0ψ(x, w)Tk(w)dx ≤ k‖A0ψ‖1.

Applying the inequality (3.5ψ), we obtain the inequality

aψ

∫

{Ω:|w|<k}
B(∇w)dx ≤ k‖A0ψ‖1 + ‖φψ‖1,

which implies (4.3). �
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Lemma 4.2. Let the condition (2.11) hold. Assume that for a measurable function v : Ω → R

satisfying the condition Tkv ∈ H̊1
B(Ω) for all k ≥ 1, the following inequality holds:

∥∥B(∇Tkv)
∥∥
1
=

∫

{Ω:|v|<k}
B(∇v)dx ≤ C2k. (4.4)

Then

mes
({

Ω : |v| ≥ k
})

→ 0, k → ∞. (4.5)

Proof. For an N -function B satisfying the Δ2-condition, the following relation holds:

lim
‖ω‖B→∞

‖B(ω)‖1
‖ω‖B

= ∞ (4.6)

(see [12, Lemma 3.14]). According to the inequalities (2.12) and (4.4), taking into account (4.6) we
obtain

‖Tkv‖B∗ ≤ A1‖∇Tkv‖B ≤ A1ε(k)‖B(∇Tkv)‖1 ≤ C3kε(k), k ≥ 1, (4.7)

ε(k) → 0 as k → ∞.

The inequality (4.7) is obtained under the condition

‖∇Tkv‖B → ∞, k → ∞;

otherwise,

‖∇Tkv‖B ≤ C4 = C4kε(k), k > 0,

so that the inequality (4.7) is also valid.
From (4.7) we obtain

B∗
(

k

‖Tkv‖B∗

)
≥ B∗

(
1

C3ε(k)

)
→ ∞, k → ∞. (4.8)

Further, applying (2.6), we have

1 ≥
∫

Ω

B∗
(

Tkv

‖Tkv‖B∗

)
dx ≥ B∗

(
k

‖Tkv‖B∗

)
mes

({
Ω : |v| ≥ k

})
.

Using (4.8), from the last inequality we conclude (4.5). �

Remark 4.1. If u = w+ψ is an entropic solution of the problem (1.1), (1.2) and the condition (2.11)
is fulfilled, then Lemmas 4.1 and 4.2 imply

mes
({

Ω : |w| ≥ k
})

→ 0, k → ∞. (4.9)

Lemma 4.3. Let the condition (2.11) be fulfilled. Assume that for a measurable function v : Ω → R

satisfying the condition Tkv ∈ H̊1
B(Ω) for all k ≥ 1, the inequality (4.4) holds. Then

mes
({

Ω : B(∇v) ≥ ρ
})

→ 0, ρ → ∞. (4.10)

Proof. We set

Φ(k, ρ) = mes
{
Ω : |v| ≥ k, B(∇v) ≥ ρ

}
, k, ρ ≥ 0.

We have proved above (see (4.5)) that

Φ(k, 0) → 0, k → ∞.
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Since the function ρ → Φ(k, ρ) is nonincreasing, we have the following inequalities for k, ρ > 0:

Φ(0, ρ) ≤ 1

ρ

ρ∫

0

Φ(0, �)d� ≤ Φ(k, 0) +
1

ρ

ρ∫

0

(
Φ(0, �)− Φ(k, �)

)
d�. (4.11)

Note that

Φ(0, �) − Φ(k, �) = mes
{
Ω : |v| < k, B(∇v) ≥ �

}
.

Therefore, from (4.4) we obtain
∞∫

0

(
Φ(0, �)− Φ(k, �)

)
d� =

∫

{Ω:|v|<k}
B(∇v)dx ≤ C2k.

Now (4.11) implies

Φ(0, ρ) ≤ Φ(k, 0) +
C2k

ρ
.

Choosing k such that Φ(k, 0) < ε, we can achieve the fulfillment of the inequality Φ(0, ρ) < 2ε by
selecting ρ. Therefore Lemma (4.10) is proved. �

Lemma 4.4. Let an N -function B(z) satisfy the Δ2-condition and vm(x), m = 1, . . . ,∞, and v(x)
be functions of LB(Ω) such that

‖vm‖B ≤ C, m = 1, 2, . . . ,

vm → v almost everywhere in Ω, m → ∞.

Then vm ⇀ v weakly in LB(Ω) as m → ∞.

The proof of Lemma 4.4 for B(z) = |z|a, a > 1, an be found in [19, Chap. I, Sec. 1.4, Lemma 1.3];
for the N -function B(z) the lemma can be proved similarly.

Lemma 4.5. If u = w + ψ is an entropic solution of the problem (1.1), (1.2), then the inequal-

ity (3.11ψ) is valid for any function ξ ∈ H̊1
B(Ω) ∩ L∞(Ω).

Proof. According to the definition of the space H̊1
B(Ω), there exists a sequence ξm ∈ C∞

0 (Ω) such that

∇ξm → ∇ξ in LB(Ω) for m → ∞.

Hence, according to (2.12) and (2.10), we conclude the convergence ξm → ξ and∇ξm → ∇ξ in L1,loc(Ω)
asm → ∞, which means that one can select a subsequence (denote it by the same symbol) that ξm → ξ

and ∇ξm → ∇ξ almost everywhere in Ω. Then for any k > 0 we have the convergences

Tk(w−ξm) → Tk(w−ξ), ∇Tk(w−ξm) → ∇Tk(w−ξ) almost everywhere in Ω as m → ∞. (4.12)

Let

k̂ = k + sup
m=1,2,...

(
‖ξm‖∞, ‖ξ‖∞

)
;

then ∣∣∇Tk(w − ξm)
∣∣ ≤

∣∣∇T
̂k
(w)

∣∣ +
∣∣∇ξm

∣∣, x ∈ Ω, m = 1, 2, . . . .

Since the converging sequence ∇ξm is bounded in LB(Ω), we conclude that, according to (4.1), the
norms ‖∇Tk(w − ξm)‖B are bounded. Using (4.12) and Lemma 4.4, for any k > 0 we obtain

∇Tk(w − ξm) ⇀ ∇Tk(w − ξ) in LB(Ω) as m → ∞. (4.13)

Now we pass to the limit as m → ∞ in the inequality
[
a0ψ(x, w)Tk(w − ξm) + aψ(x, w,∇w) · ∇Tk(w − ξm)

]
≤ 0.
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Since a0ψ(x, w) ∈ L1(Ω), using (4.12), according to the Lebesgue theorem, we can pass to the limit as

m → ∞ in the first term. Due to the inclusion

aψ(x, w,∇w)χ(|w| < k̂) ∈ LB(Ω)

(see (4.2)), using (4.13), we conclude that the second term of the last inequality also has a limit as
m → ∞. �

Remark 4.2. In the sequel, in order to avoid awkwardness in arguments, instead of statement like

“we can extract a subsequence from the sequence um (denote it by the same symbol), which converges
almost everywhere in Ω as m → ∞” we simply write “sequence um selectively converges almost
everywhere in Ω as m → ∞.” Moreover, we will use the term “selective weak convergence.”

Let us denote by F the following class of functions T ∈: C2(R) ∩ L∞(R):

T (0) = 0; T ′(r) ≥ 0, r ∈ R; T ′(r) = 0, |r| ≥ k;

T (−r) = −T (r), r ∈ R; T ′′(r) ≤ 0, r ≥ 0.

Lemma 4.6. An entropic solution u = w + ψ of the problem (1.1), (1.2) satisfies the inequality
[
a0ψT (w − ξ) + aψ · ∇T (w − ξ)

]
≤ 0 (3.11ψT )

for any ξ ∈ C1
0 (Ω) and all T ∈ F .

Proof. Obviously, (3.11ψT ) is valid for T (r) =
∑

ajTkj(r), aj ≥ 0. In the general case, we can

approximate functions T ∈ F in the norm of C1(R) by linear combinations (see [4, Lemma 3.2]). �

Lemma 4.7 (see [17, Lemma 4]). Let Q be a bounded domain and, in addition, if the condition (2.13)
is fulfilled, then let M(z) be an arbitrary N -function, whereas if the condition (2.11) is fulfilled, then

let M(z) ≺≺ B∗(z). Then the embedding operator H̊1
B(Q) ⊂ LM (Q) is completely continuous.

Lemma 4.8 (see [7, lemma 2]). Let (X,T ,mes) be a measurable space such thatmes(X) < ∞. As-
sume that γ : X → [0,+∞] is a measurable function such that mes

(
{x ∈ X : γ(x) = 0}

)
= 0. Then

for any ε > 0, there exists δ > 0 such that the inequality
∫

Q

γ(x)dx ≤ δ

implies mes(Q) ≤ ε.

5. Existence of Generalized Solutions

Consider the Dirichlet problem for the following second-order anisotropic quasilinear elliptic equa-

tion:
n∑

i=1

(
ai(x, u,∇u)

)
xi
− a0(x, u,∇u) = 0, x ∈ Ω; (5.1)

u
∣∣∣
∂Ω

= 0. (5.2)

Assume that the functions ai(x, s0, s), i = 0, . . . , n, are measurable with respect to x ∈ Ω for s =
(s0, s) = (s0, s1, . . . , sn) ∈ R

n+1 and continuous with respect to s ∈ R
n+1 for almost all x ∈ Ω. Let

s · t be the scalar product of the vectors s = (s0, s) and t = (t0, t) ∈ R
n+1 and

a(x, s) =
(
a0(x, s), a1(x, s), . . . , an(x, s)

)
.
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Assume that there exist nonnegative measurable functions φ(x), Φ(x) ∈ L1(Ω) such that for almost

all x ∈ Ω and any s = (s0, s) ∈ R
n+1, the inequalitiy (3.4) holds, and

B(a(x, s)) ≤ âB(s) + Φ(x), B(a) =

n∑

i=0

Bi(ai), B(s) =

n∑

i=0

Bi(si) = B0(s0) + B(s); (5.3)

a(x, s) · s ≥ aB(s)− φ(x), (5.4)

where theN -functionsB0(z), B1(z), . . . , Bn(z) and their complementaryN -functionsB0(z), B1(z), . . . ,
Bn(z) satisfy the Δ2-condition.

We denote by LB(Ω) the space LB0
(Ω)× LB1

(Ω) with the norm

‖v‖B = ‖v0‖B0
+ ‖v1‖B1

+ . . .+ ‖vn‖Bn
, v = (v0, v1, . . . , vn) ∈ LB(Ω).

We define the Sobolev–Orlicz space W̊ 1
B(Ω) as the completion of the space C∞

0 (Ω) with respect to the
norm

‖v‖W̊ 1
B(Ω) = ‖v‖B0 + ‖v‖H̊1

B(Ω).

If the condition (2.11) holds, we assume that

B0(z) ≺≺ B∗(z), (5.5)

whereas (2.13) holds, let B0(z) be an arbitrary N -function.
We assume that

Bi(z) ≺ B0(z), i = 1, 2, . . . , n. (5.6)

From the condition (5.3), using (2.7), for u ∈ W̊ 1
B(Ω) we obtain the estimate

∥∥a(x, u,∇u)
∥∥
B
=

n∑

i=0

∥∥ai(x, u,∇u)
∥∥
Bi

≤
n∑

i=0

∫

Ω

Bi

(
ai(x, u,∇u)

)
dx+ n+ 1 ≤ â

∥∥B(∇u)
∥∥
1
+ â

∥∥B0(u)
∥∥
1
+ ‖Φ‖1 + n+ 1. (5.7)

Introduce the notation vx0 = v. Further, by an element a(x, u,∇u) ∈ LB(Ω), for v(x) ∈ W̊ 1
B(Ω) we

define the functional A(u) by the formula

〈A(u), v〉 =
[
a(x, u,∇u) · (v,∇v)

]
=

n∑

i=0

[
aivxi

]
. (5.8)

Using the Hölder inequality (2.9), for functions u(x), v(x) ∈ W̊ 1
B(Ω) we obtain the inequality

∣∣∣〈A(u), v〉
∣∣∣ ≤ 2

n∑

i=0

‖ai‖Bi
‖vxi‖Bi ≤ 2

∥∥a(x, u,∇u)
∥∥
B
‖v‖W̊ 1

B(Ω). (5.9)

It follows from (5.9) and (5.7) that the functional of A(u) defined by (5.8) in the space W̊ 1
B(Ω) is

bounded.

Definition 5.1. A generalized solution of the problem (5.1), (5.2) is a function u(x) ∈ W̊ 1
B(Ω) satis-

fying the integral identity

〈A(u), v〉 = 0 (5.10)

for any function v(x) ∈ W̊ 1
B(Ω).

Theorem 5.1. If the conditions (3.4), (5.3)–(5.6) are fulfilled, then there exists a generalized solution

of the problem (5.1), (5.2).
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The existence of a solution of the problem (5.1), (5.2) with a monotonic operator A is proved in [16].

For anisotropic equation with power nonlinearities, the existence of a solution of the Dirichlet problem
was proved by F. Browder (see [11]); it was based on an abstract theorem for pseudo-monotonic
operators.

Definition 5.2. An operator A : V → V ′ is called pseudo-monotonic if

(i) A is a bounded operator;
(ii) the conditions “uj ⇀ u weakly in V ” and

lim
j→∞

sup〈A(uj), uj − u〉 ≤ 0

imply that for any v ∈ V , the following inequality holds:

lim
j→∞

inf〈A(uj), uj − v〉 ≥ 〈A(u), u − v〉. (5.11)

Lemma 5.1 (see [19, Chap. II, Sec. 2, Theorem 2.7]). Let V be a reflexive, separable Banach space.
Assume that an operator A : V → V ′ is pseudo-monotonic and coercive, i.e.,

〈A(u), u〉
‖u‖ → ∞, ‖u‖ → ∞. (5.12)

Then the mapping A : V → V ′ is surjective, i.e., for any F ∈ V ′ there exists u ∈ V such that
A(u) = F .

Before checking the conditions of Lemma 5.1, we present some additional estimates and remarks.

Remark 5.1. It follows from (2.7) and (2.8) that, if a N -function B(z) satisfies the Δ2-condition,

then the boundedness of the set of functions in the space LB(Ω) is equivalent to the boundedness on

the average. Therefore, the boundedness of the set Θ ⊂ W̊ 1
B(Ω) with respect to the norm is equivalent

to the boundedness of the set {‖B(u)‖1, u ∈ Θ}.

Remark 5.2. The space W̊ 1
B(Ω) is a reflexive, separable Banach space.

Proposition 5.1. Assume that the conditions (3.4), (5.3)–(5.6) are fulfilled. Then the operator

A : W̊ 1
B(Ω) →

(
W̊ 1

B(Ω)
)′

,

defined by (5.8), is pseudo-monotonic.

Proof. The boundedness of the operator A follows from the estimates (5.9) and (5.7). Consider a

sequence {uj}∞j=1 in the space W̊ 1
B(Ω) such that

uj ⇀ u weakly in W̊ 1
B(Ω), j → ∞; (5.13)

lim
j→∞

sup〈A(uj), uj − u〉 ≤ 0. (5.14)

We show that

A(uj) ⇀ A(u) weakly in
(
W̊ 1

B(Ω)
)′
, j → ∞; (5.15)

〈A(uj), uj − u〉 → 0, j → ∞. (5.16)

Obviously, (5.15) and (5.16) imply (5.11).

First, the convergence (5.13) and the inequality (2.8) imply the estimtes

‖uj‖W̊ 1
B(Ω) ≤ C1, j = 1, 2, . . . ; (5.17)

‖B0(u
j)‖1 + ‖B(∇uj)‖1 ≤ C2, j = 1, 2, . . . . (5.18)
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In addition, combining (5.7) and (5.18), we obtain the estimate

∥∥a(x, u,∇u)
∥∥
B
=

n∑

i=0

∥∥ai(x, uj ,∇uj)
∥∥
Bi

≤ C3, j = 1, 2, . . . . (5.19)

Fix arbitrary R > 0. In the case of (2.11), by Lemma 4.7, the space W̊ 1
B(Ω(R + 1)) is compactly

embedded in LP (Ω(R + 1)) for any N -function M(z) satisfying the condition M(z) ≺≺ B∗(z). In

the case of (2.13), for any N -function M(z), by Lemma 4.7, the space W̊ 1
B(Ω(R + 1)) is compactly

embedded in LM (Ω(R + 1)). Under the conditions (5.5) and (5.6), in both cases (2.11) and (2.13),

the space W̊ 1
B(Ω(R + 1)) is compactly embedded in the space LBi(Ω(R+ 1)), i = 0, . . . , n.

From the condition (5.6), using (2.3), we establish the existence of z0 > 0 such that

Bi(z) ≤ C4B0(z), |z| ≥ z0, i = 1, 2, . . . , n. (5.20)

Let ηR(r) = min(1,max(0, R + 1− r)). Using (2.5), (5.20), and (5.18), we deduce the inequalities
∫

Ω(R+1)

(
B
(
∇
(
ujηR(|x|)

))
+B0

(
ujηR

(
|x|

)))
dx =

∫

Ω(R+1)

(
B
(
∇ujηR + uj∇ηR

)
+B0

(
ujηR

))
dx

≤
∫

Ω(R+1)

(
C5

{
B(∇uj) + B(uj)

}
+B0(u

j)
)
dx ≤ C6

∫

Ω(R+1)

(
B(∇uj) + B(z0) +B0(u

j)
)
dx

≤ C6

(∥∥B0(u
j)
∥∥
1,Ω(R+1)

+
∥∥B(∇uj)

∥∥
1,Ω(R+1)

)
+ C7 mesΩ(R+ 1) ≤ C8(R), j = 1, 2, . . . .

Therefore (see Remark 5.1), the sequence {ujηR}∞j=1 is bounded in the space W̊ 1
B(Ω(R+ 1)). Due to

the compactness of the embeddings

W̊ 1
B(Ω(R+ 1)) ⊂ LBi(Ω(R+ 1)), i = 0, . . . , n,

the following strict convergences hold:

ujηR → uηR in LBi(Ω(R + 1)), i = 0, 1, . . . , n, j → ∞.

Therefore, we conclude the strict convergences

uj → u in LBi(Ω(R)), i = 0, 1, . . . , n, j → ∞, (5.21)

and the selective convergence uj → u almost everywhere in Ω(R). The convergence

uj → u almost everywhere in Ω, j → ∞, (5.22)

can be proved by the diagonal process.
We set

Aj(x) =
n∑

i=0

(
ai
(
x, uj ,∇uj

)
− ai

(
x, u,∇u

))
(uj − u)xi , j = 1, . . . ;

then

〈A(uj)−A(u), uj − u〉 =
∫

Ω

Aj(x)dx, j = 1, . . . .

According to (5.13), (5.14), we have

lim
j→∞

sup

∫

Ω

Aj(x)dx ≤ 0. (5.23)

We write Aj(x) as follows:
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Aj(x) =
n∑

i=1

(
ai
(
x, uj ,∇uj

)
− ai

(
x, uj,∇u

))
(uj − u)xi

+

n∑

i=1

(
ai
(
x, uj ,∇u

)
− ai

(
x, u,∇u

))
(uj − u)xi

+
(
a0
(
x, uj ,∇uj

)
− a0

(
x, u,∇u

))
(uj − u)

= qj(x) + rj(x) + sj(x), j = 1, . . . . (5.24)

We show that

rj(x) → 0 almost everywhere in Ω, j → ∞, (5.25)

sj(x) → 0 almost everywhere in Ω, j → ∞. (5.26)

Consider the Nemytsky operators Ai(u) = ai(x, u,∇v), i = 1, 2, . . . , n, for fixed v ∈ H̊1
B(Ω) for

x ∈ Ω(R), R > 0. Applying the estimate (5.3), we deduce the inequality

Bi(ai(x, u,∇v)) ≤ âB(∇v) +B0(u) + Φ(x),

with the function âB(∇v)+Φ(x) ∈ L1(Ω). According to [20, Chap. III, Sec. 17, Theorem 17.5], the op-
erators Ai act from LB0(Ω(R)) into LBi

(Ω(R)). Moreover, from [20, Chap. III, Sec. 17, Theorem 17.3]

we conclude the continuity of the operators Ai, i = 1, 2, . . . , n, in LB0(Ω(R)) for any R > 0.
Applying the inequality (2.9), we obtain

∫

Ω(R)

∣∣rj(x)
∣∣dx ≤ 2

n∑

i=1

∥∥∥ai
(
x, uj ,∇u

)
− ai

(
x, u,∇u

)∥∥∥
Bi,Ω(R)

∥∥(uj − u)xi

∥∥
Bi,Ω(R)

.

Due to the convergence of uj → u in LB0(Ω(R)) as j → ∞ (see (5.21)) and the continuity of the

operators Ai : LB0(Ω(R)) → LBi
(Ω(R)), i = 1, 2, . . . , n, the first factor tends to zero and the second

factor is uniformly bounded (see (5.17)). Thus, we see that for any R > 0

rj(x) → 0, j → ∞,

in L1(Ω(R)). Hence, using the diagonal process, we conclude the convergence (5.25).
Using the inequality (2.9), we deduce

∫

Ω(R)

∣∣sj(x)
∣∣dx ≤ 2

∥∥∥a0
(
x, uj ,∇uj

)
− a0

(
x, u,∇u

)∥∥∥
B0,Ω(R)

‖uj − u‖B0,Ω(R).

The first factor is uniformly bounded (see (5.19))), while the second factor tends to zero (see (5.21));
therefore, for any R > 0

sj(x) → 0, j → ∞,

in L1(Ω(R)). Hence, using the diagonal process, we conclude the convergence (5.26).
Next, we write Aj(x) in the form

Aj(x) =
n∑

i=1

ai
(
x, uj ,∇uj

)
ujxi

+ a0
(
x, uj ,∇uj

)
uj − gj(x), j = 1, . . . , (5.27)
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where

gj(x) =

n∑

i=1

ai
(
x, u,∇u

)
(uj − u)xi + a0

(
x, u,∇u

)
(uj − u)

+

n∑

i=1

ai
(
x, uj ,∇uj

)
uxi + a0

(
x, uj ,∇uj

)
u ∈ L1(Ω), j = 1, . . . .

Using the inequality (2.1) for ε ∈ (0, 1), we obtain
∣∣gj(x)

∣∣ ≤ ε
(
B0(u

j) + B(∇uj) +B(a(x, uj ,∇uj))
)
+ C9(ε)

(
B0(u) + B(∇u) +B(a(x, u,∇u))

)
.

Applying (5.3), we deduce the inequality
∣∣gj(x)

∣∣ ≤ εC10

(
B(∇uj) +B0(u

j)
)
+ C11(ε)

(
B(∇u) +B0(u) + Φ(x)

)
. (5.28)

Using (5.4), from (5.27) we deduce the inequality

Aj(x) ≥ a
(
B(∇uj) +B0(u

j)
)
− φ(x)−

∣∣gj(x)
∣∣. (5.29)

Combining (5.28), (5.29) and choosing ε < a/C10, we obtain the estimates

Aj(x) ≥ C12

(
B(∇uj) +B0(u

j)
)
− Φu(x), j = 1, . . . , (5.30)

with the nonnegative function

Φu(x) = φ(x) + C11

(
B(∇u) +B0(u) + Φ(x)

)
∈ L1(Ω),

which is finite almost everywhere in Ω.

Let Aj(x) = Aj+(x) − Aj−(x), where Aj+(x) and Aj−(x) are the positive and negative parts of
Aj(x), respectively. From (5.30) we have the estimates

Aj+(x) ≥ C12

(
B(∇uj) +B0(u

j)
)
− Φu(x), j = 1, . . . . (5.31)

If χj(x) is the characteristic function of the set {x : Aj−(x) > 0}, then
−Aj− = χjqj + χjrj + χjsj,

and, according to (5.25) and (5.26),

χjrj(x) → 0, χjsj(x) → 0

almost everywhere in Ω as j → ∞. Due to (5.4), χjqj(x) ≥ 0 almost everywhere in Ω; then Aj−(x) → 0
almost everywhere in Ω as j → ∞.

Therefore, from (5.30) we obtain the estimate

Aj(x) ≥ −Φu(x), j = 0, 1, . . . .

Hence we have Aj−(x) ≤ Φu(x), j = 1, . . .. Then according to the Lebesgue theorem,

Aj−(x) → 0 in L1(Ω), j → ∞. (5.32)

Therefore, according to (5.23),

0 ≤ lim
j→∞

sup

∫

Ω

Aj+(x)dx = lim
j→∞

sup

∫

Ω

Aj(x)dx+ lim
j→∞

sup

∫

Ω

Aj−(x)dx ≤ 0.

Consequently,

Aj+(x) → 0 in L1(Ω), j → ∞. (5.33)
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Thus, from (5.32) and (5.33) we conclude the convergence

Aj(x) → 0 in L1(Ω), j → ∞, (5.34)

and also the selective convergences

Aj+(x) → 0, Aj(x) → 0 almost everywhere in Ω, j → ∞. (5.35)

Now we prove the convergence

ujxi
(x) → uxi(x) almost everywhere in Ω, α = 1, 2, . . . , n, j → ∞. (5.36)

We denote by Ω′ ⊂ Ω the subset of points of full measure for which the convergences (5.22) and (5.35)

hold and the inequalities (3.4) (5.3), and (5.4) are valid.
On the contrary, assume that at some point x∗ ∈ Ω′ the convergence is violated. We introduce the

notation

sj0 = uj(x∗), s0 = u(x∗),

sj =
(
sj1, sj2, . . . , sjn

)
=

(
ujx1

(x∗), ujx2
(x∗), . . . , ujxn

(x∗)
)
,

s =
(
s1, s2, . . . , sn

)
=

(
ux1(x

∗), ux2(x
∗), . . . , uxn(x

∗)
)
.

Assume that the sequence {B(sj)}∞j=1 is unbounded. Then the estimate (5.31) implies the un-

boundedness of the sequence Aj+(x∗), j = 1, 2, . . ., which contradicts (5.35). Therefore, the sequence
{sj}∞j=1 is bounded.

Let s∗ =
(
s∗1, s∗2, . . . , s∗n

)
be one of the partial limits of sj =

(
sj1, sj2, . . . , sjn

)
as j → ∞. Then,

taking into account (5.22), we obtain

sj0 → s0, sji → s∗i , i = 1, 2, . . . , n, j → ∞.

Therefore, using (5.25), (5.26), and (5.35) from (5.24) and the continuity of ai(x
∗, s0, s) with respect

to s = (s0, s) we obtain

Aj(x∗) →
n∑

i=1

(
ai(x

∗, s0, s∗)− ai(x
∗, s0, s)

)
(s∗i − si) = 0;

therefore, according to (3.4), we have s = s∗. This contradicts the fact that there is no convergence
at the point x∗.

Thus, from (5.22) and (5.36) and the continuity of ai(x, s0, s) with respect to s = (s0, s) we conclude

that as j → ∞
ai
(
x, uj ,∇uj

)
→ ai

(
x, u,∇u

)
almost everywhere in Ω, i = 0, 1, . . . , n.

In addition, the boundedness of ai
(
x, ui,∇ui

)
in LBi

(Ω), i = 0, 1, . . . , n, follows from (5.19). Using
Lemma 4.4, we find the weak convergences

ai
(
x, uj,∇uj

)
⇀ ai

(
x, u,∇u

)
in LBi

(Ω), i = 0, 1, 2, . . . , n. (5.37)

The weak convergence (5.15) follows from (5.37).
To complete the proof, we note that (5.16) is implied from (5.13) and (5.34):

〈A(uj), uj − u〉 = 〈A(uj)−A(u), uj − u〉+ 〈A(u), uj − u〉 → 0, j → ∞.

Proposition 5.1 is proved. �
Proof of Theorem 5.1. The coercirity of the operator A is proved in [17]. From Proposition 5.1,

according to Lemma 5.1, it follows that there exists a function u ∈ W̊ 1
B(Ω) such that A(u) = 0. Thus,

for any v ∈ W̊ 1
B(Ω) the identity (5.10) is valid. �
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6. Existence of Entropic Solutions

Proof of Theorem 3.1.

Step 1. Choose a sequence of functions Am
0ψ(x) ∈ C∞

0 (Ω) such that

Am
0ψ → A0

0ψ in L1(Ω), m → ∞, (6.1)

and

‖Am
0ψ‖1 ≤ ‖A0

0ψ‖1, m = 1, 2, . . . . (6.2)

Consider the equation
n∑

i=1

(
ami (x, w,∇w)

)
xi

= am0 (x, w), x ∈ Ω, (6.3)

with the functions ami (x, s0, s) = aiψ(x, Tms0, s) and am0 (x, s0) = Am
0ψ(x)+bm(x, s0)+B′

0(s0)/m. Here

bm(x, s0) = Tmbψ(x, s0)κm(x) and κm(x) is the characteristic function of the set Ω(m) = {x ∈ Ω :

|x| < m}. We assume that continuously differentiable N -functions B0 and B0 satisfy the Δ2-condition
and the requirements (5.5), (5.6) are fulfilled.

Obviously, ∣∣bm(x, s0)
∣∣ ≤

∣∣bψ(x, s0)
∣∣, s0 ∈ R, x ∈ Ω. (6.4)

In addition, applying (3.8ψ), we obtain the inequalities

bm(x, s0)s0 ≥ 0, s0B
′
0(s0) ≥ B0(s0) ≥ 0, s0 ∈ R, x ∈ Ω. (6.5)

A generalized solution of the problem (6.3), (5.2) is a function wm ∈ W̊ 1
B(Ω) satisfying the integral

identity
[
Am

0ψ(x) + Tmbψ(x, w
m)κm(x) +

B′
0(w

m)

m
+ aψ

(
x, Tmwm,∇wm

)
· ∇v

]
= 0 (6.6)

for any function v ∈ W̊ 1
B(Ω).

For the functions am(x, s0, s) =
(
am1 (x, s0, s), . . . , amn (x, s0, s)

)
and am0 (x, s0), we verify the con-

ditions (3.4) (5.3), and (5.4). Obviously,

B0(b
m(x, s0)) = B0

(
Tmbψ(x, s0)κm(x)

)
≤ B0(m)κm(x) ∈ L1(Ω).

Therefore, using (2.5), (2.2), and (2.4), we obtain

B0(a
m
0 (x, s0)) ≤ cB0(A

m
0ψ(x)) + cB0(b

m(x, s0)) + cB0

(
B′

0(s0)

m

)

≤ âmB0(s0) + Φm(x), Φm(x) ∈ L1(Ω). (6.7)

From (3.3ψ) and (6.7) we obtain the inequality (5.3).

Then, applying (2.1) and (6.5), we obtain

am0 (x, s0)s0 =

(
Am

0ψ(x) + bm(x, s0) +
B′

0(s0)

m

)
s0 ≥

B0(s0)

m
− εB0(s0)− C(ε)B0(A

m
0ψ).

Hence, choosing ε < 1/m, we obtain the inequality

am0 (x, s0)s0 ≥ amB0(s0)− φm(x), φm(x) ∈ L1(Ω). (6.8)

Combining (3.5ψ) and (6.8), we deduce the inequality (5.4).
In addition, taking into account (3.4ψ), we see that (3.4) is valid. According to Theorem 5.1, there

exists a generalized solution wm ∈ W̊ 1
B(Ω) of the problem (6.3), (5.2).
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Step 2. Consider the function Tk,h(r) = Tk(r − Th(r)). Obviously,

Tk,h(r) =

⎧
⎪⎨

⎪⎩

0 for |r| < h,

r − h sign r for h ≤ |r| < k + h,

k sign r for |r| ≥ k + h.

Setting v = Tk,hw
m in (6.6) and taking into account (6.5), we obtain

∫

{Ω:h≤|wm|<k+h}
aψ

(
x, Tmwm,∇wm

)
· ∇wmdx+ k

∫

{Ω:|wm|≥k+h}

(
∣∣bm(x, wm)

∣∣+
∣∣B′

0(w
m)

∣∣
m

)
dx

+

∫

{Ω:h≤|wm|<k+h}

(
bm

(
x, wm

)
+

B′
0(w

m)

m

)(
wm − h signwm

)
dx ≤ k

∫

{Ω:|wm|≥h}

|Am
0ψ|dx. (6.9)

Due to (6.5), the following inequality holds for h ≤ |wm|:
(
bm(x, wm) +

B′
0(w

m)

m

)(
wm − h signwm

)
≥ 0.

Taking this into account, from (6.9) we deduce
∫

{Ω:h≤|wm|<k+h}
aψ

(
x, Tmwm,∇wm

)
· ∇wmdx

+ k

∫

{Ω:|wm|≥k+h}

(
∣∣bm(x, wm)

∣∣+
∣∣B′

0(w
m)

∣∣
m

)
dx ≤ k

∫

{Ω:|wm|≥h}

|Am
0ψ |dx. (6.10)

Applying (3.5ψ) and taking into account (6.2), we reduce the inequality (6.10) to the form

aψ

∫

{Ω:h≤|wm|<k+h}
B(∇wm)dx+ k

∫

{Ω:|wm|≥k+h}

(
∣∣bm(x, wm)

∣∣+
∣∣B′

0(w
m)

∣∣
m

)
dx

≤ k

∫

{Ω:|wm|≥h}

|Am
0ψ|dx+

∫

{Ω:h≤|wm|<k+h}

φψdx ≤ k‖A0
0ψ‖1 + ‖φψ‖1. (6.11)

Now, taking Tkw
m as a test function in (6.6), we obtain

∫

Ω

{
aψ

(
x, Tmwm,∇wm

)
· ∇Tkw

m +

(
Am

0ψ(x) + bm(x, wm) +
B′

0(w
m)

m

)
Tkw

m
}
= 0.

Applying (6.2) and (6.5), we deduce

∫

{Ω:|wm|<k}
aψ

(
x, Tmwm,∇wm

)
· ∇wmdx+ k

∫

{Ω:|wm|≥k}

(
∣∣bm(x, wm)

∣∣+
∣∣B′

0(w
m)

∣∣
m

)
dx

≤ k‖Am
0ψ‖1 ≤ k‖A0

0ψ‖1.

Hence, using the inequality (3.5ψ), we obtain

aψ

∫

{Ω:|wm|<k}
B(∇wm)dx+ k

∫

{Ω:|wm|≥k}

(
∣∣bm(x, wm)

∣∣+
∣∣B′

0(w
m)

∣∣
m

)
dx ≤ k‖A0

0ψ‖1 + ‖φψ‖1. (6.12)
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According to (6.4) and (3.9ψ) we obtain

sup
|wm|≤k

(
∣∣bm(x, wm)

∣∣+
∣∣B′

0(w
m)

∣∣
m

)
≤ sup

|wm|≤k

(∣∣bψ(x, wm)
∣∣+

∣∣B′
0(w

m)
∣∣
)

≤ Gk+‖ψ‖∞(x) + |B′
0(k)| ∈ L1,loc(Ω). (6.13)

Combining (6.12) and (6.13), we conclude that for any compact Q ⊂ Ω the following inequalities are
valid:

∥∥bm(x, wm)
∥∥
1,Q

+

∥∥B′
0(w

m)
∥∥
1,Q

m
≤ C1, m = 1, 2, . . . . (6.14)

We prove that ∥∥bm(x, wm)
∥∥
1
≤ C2, m = 1, 2, . . . . (6.15)

Choosing k = δ0 (δ0 from (3.10ψ)) in (6.12), we obtain
∫

{Ω:|wm|≥δ0}

∣∣bm(x, wm)
∣∣dx ≤ C3, m = 1, 2, . . . . (6.16)

From (6.4) and (3.10ψ) we obtain
∫

{Ω:|wm|<δ0}

∣∣bm(x, wm)
∣∣dx ≤

∫

{Ω:|wm|<δ0}

∣∣bψ(x, wm)
∣∣dx

≤
∫

{Ω:0≤wm<δ0}
bψ(x, δ0)dx+

∫

{Ω:−δ0<wm<0}

∣∣bψ(x,−δ0)
∣∣dx ≤ C4. (6.17)

Combining (6.16) and (6.17), we obtain (6.15).
Step 3. From (6.12) for any k > 0 we obtain the estimate

∫

Ω

B(∇Tkw
m)dx =

∫

{Ω:|wm|<k}
B(∇wm)dx ≤ kC5 + C6, m = 1, 2, . . . . (6.18)

Hence, according to Lemma 4.2, we obtain

mes
(
{Ω : |wm| ≥ k}

)
→ 0 is uniformly in m, k → ∞. (6.19)

We prove the following convergence:

wm → w almost everywhere in Ω, m → ∞. (6.20)

From the estimate (2.5), using (6.18), we deduce
∫

Ω

B
(
∇(ηR(|x|)Tkw

m)
)
dx ≤ c

∫

{Ω:|wm|<k}

B(∇wm)dx+ c

∫

Ω

B
(
Tkw

m∇ηR(|x|)
)
dx ≤ C7(k,R).

Hence for any fixed k,R > 0, we obtain the boundedness of the set {ηRTkw
m} in H̊1

B(Ω(R+ 1)). For
an N -function M ≺≺ B∗, according to Lemma 4.7, we obtain the compactness of the embedding

H̊1
B(Ω(R+ 1)) ⊂ LM (Ω(R + 1)).

Thus, for any fixed k,R > 0, the selective convergence ηRTkw
m → v in LM (Ω(R + 1)) as m → ∞

is proved. This implies the convergence Tkw
m → v, as well as the selective convergence LM (Ω(R))

almost everywhere in Ω(R) as m → ∞ for k = 1, 2, . . . . By the diagonal process, we can prove that
there is a measurable function w : Ω → R such that v = Tkw and wm → w almost everywhere in Ω(R)

for all R > 0. This implies the convergence (6.20).
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The convergence wm → w almost everywhere in Ω(R) for all R > 0 implies the local convergence

in measure and, therefore, the local Cauchy property of wm in measure:

mes
{
Ω(R) : |wm − wl| ≥ ν

}
→ 0 for m, l → ∞ for any ν > 0. (6.21)

Step 4. From (6.18) and (3.3ψ), for any k > 0 we have the estimate
∥∥∥B

(
aψ(x, Tmwm,∇wm)

)
χ(|wm| < k)

∥∥∥
1
≤ C8(k), m = 1, 2, . . . . (6.22)

From (6.18) according to Lemma 4.3 we obtain

mes
{
Ω : B(∇wm) ≥ ρ

}
→ 0 uniformly in m, ρ → ∞. (6.23)

First, we prove the convergence

∇wm → ∇w locally in measure, m → ∞. (6.24)

Consider the set

Eν,θ,ρ(R) =
{
Ω(R) : |wl − wm| < ν, B(∇wl) ≤ ρ, B(∇wm) ≤ ρ,

|wl| ≤ ρ, |wm| ≤ ρ, |∇(wl − wm)| ≥ θ
}
.

Due to the embedding
{
Ω(R) : |∇(wl − wm)| ≥ θ

}
⊂

{
Ω : B(∇wl) > ρ

}
∪
{
Ω : B(∇wm) > ρ

}

∪
{
Ω(R) : |wl − wm| ≥ ν

}
∪
{
Ω : |wl| > ρ

}
∪
{
Ω : |wm| > ρ

}
∪ Eν,θ,ρ(R)

and (6.19) and (6.23), by an appropriate choice of ρ we obtain the inequality

mes
{
Ω(R) : |∇(wl − wm)| ≥ θ

}

< 4ε+mesEν,θ,ρ(R) + mes
{
Ω(R) : |wl − wm| ≥ ν

}
, m, l = 1, 2, . . . . (6.25)

According to the condition (3.4ψ) and the well-known fact that a continuous function on a compact
set achieves the lowest value, there exists a function γ(x) > 0 almost everywhere in Ω such that for

B(s) ≤ ρ, B(t) ≤ ρ, |s0| ≤ ρ, and |s− t| ≥ θ, the inequality
(
aψ(x, s0, s)− aψ(x, s0, t)

)
· (s− t) ≥ γ(x) (6.26)

holds. We introduce the notation

Am
0 (x) = Am

0ψ(x) + bm(x, wm) +
B′

0(w
m)

m
.

The uniform boundedness of Am
0 (x) in L1,loc(Ω) with respect to m follows from (6.2) and (6.14).

Writing (6.6) twice for wm and wl and subtracting the second relation from the first, we obtain
[(

aψ(x, Tmwm,∇wm)− aψ(x, Tlw
l,∇wl)

)
· ∇v + (Am

0 −Al
0)v

]
= 0.

Substituting the test function

v = ηR(|x|)ηρ(|wl|)ηρ(|wm|)Tν(w
m − wl),

we obtain
[(

aψ(x, Tmwm,∇wm)− aψ(x, Tlw
l,∇wl)

)
· ∇(ηR(|x|)ηρ(|wl|)ηρ(|wm|)Tν(w

m − wl))
]

= −
[
(Am

0 −Al
0)ηR(|x|)ηρ(|wl|)ηρ(|wm|)Tν(w

m − wl)
]
≤ C9(R)ν. (6.27)
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Next, using (6.26), we deduce
∫

Eν,θ,ρ(R)

γ(x)dx ≤
∫

Eν,θ,ρ(R)

(
aψ(x, Tmwm,∇wm)− aψ(x, Tmwm,∇wl)

)
· ∇

(
wm − wl

)
dx

≤
∫

|wm−wl|<ν

ηR(|x|)ηρ
(
|wl|

)
ηρ
(
|wm|

)(
aψ

(
x, Tmwm,∇wm

)
− aψ

(
x, Tmwm,∇wl

))
· ∇

(
wm −wl

)
dx

=

∫

|wm−wl|<ν

ηR
(
|x|

)
ηρ
(
|wl|

)
ηρ
(
|wm|

)(
aψ

(
x, Tmwm,∇wm

)
− aψ

(
x, Tlw

l,∇wl)
)
· ∇

(
wm − wl

)
dx

+

∫

|wm−wl|<ν

ηR
(
|x|

)
ηρ
(
|wl|

)
ηρ
(
|wm|

)(
aψ

(
x, Tlw

l,∇wl
)
− aψ

(
x, Tmwm,∇wl)

)
· ∇

(
wm −wl

)
dx

= I1 + I2. (6.28)

To estimate I1, we use (6.27) and (2.1):

I1 ≤
n∑

i=1

∫

|wm|<ρ+1,
|wl|<ρ+1,
|x|<R+1

(∣∣∣aiψ
(
x, Tmwm,∇wm

)∣∣∣+
∣∣∣aiψ

(
x, Tlw

l,∇wl
)∣∣∣
)∣∣∣Tν

(
wm − wl

)∣∣∣dx

+
n∑

i=1

∫

ρ<|wl|<ρ+1,
|wm|<ρ+1

(∣∣∣aiψ
(
x, Tmwm,∇wm

)∣∣∣+
∣∣∣aiψ

(
x, Tlw

l,∇wl
)∣∣∣
)∣∣∣wl

xi

∣∣∣ ·
∣∣∣Tν

(
wm − wl

)∣∣∣dx

+

n∑

i=1

∫

ρ<|wm|<ρ+1,

|wl|<ρ+1

(∣∣∣aiψ
(
x, Tmwm,∇wm

)∣∣∣+
∣∣∣aiψ

(
x, Tlw

l,∇wl
)∣∣∣
)∣∣∣wm

xi

∣∣∣ ·
∣∣∣Tν

(
wm − wl

)∣∣∣dx

+ C9(R)ν ≤ ν
(
3
∥∥∥B

(
aψ

(
x, Tmwm,∇wm

))
χ
(
|wm| < ρ+ 1

)∥∥∥
1

+ 3‖B
(
aψ

(
x, Tlw

l,∇wl
))

χ
(
|wl| < ρ+ 1

)∥∥∥
1
+ 2

∥∥∥B(∇wm)χ
(
|wm| < ρ+ 1

)∥∥∥
1

+ 2
∥∥∥B(∇wl)χ

(
|wl| < ρ+ 1

)∥∥∥
1
+ C10(R)).

Using (6.12), (6.22), we deduce

I1 ≤ C11(R, ρ)ν. (6.29)

For m, l ≥ ρ+ 1, from

|wl| < ρ+ 1, |wm| < ρ+ 1, |wm − wl| < ν

we obtain |Tmwm − Tlw
l| < ν. Applying the Hölder condition (3.6ψ) and the inequalities (2.1), (2.5)

for m, l ≥ ρ+ 1, we obtain

|I2| ≤
∫

|wm−wl|<ν,

|wl|<ρ+1,
|wm|<ρ+1

∣∣∣wm − wl
∣∣∣
α

n∑

i=1

B
−1
i

(
C12

(
R, ρ

)
B
(
∇wl +∇ψ

))(∣∣wm
xi

∣∣+
∣∣wl

xi

∣∣
)
dx

≤ ναC13

∫

|wl|<ρ+1,
|wm|<ρ+1

(
B(∇wl) + B(∇wm) + B(∇ψ)

)
dx.
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Taking into account (6.12), we obtain the estimate

|I2| ≤ C14(R, ρ)να, m, l ≥ ρ+ 1. (6.30)

Combining (6.28)–(6.30), we deduce
∫

Eν,θ,ρ(R)

γ(x)dx ≤ C15(R, ρ)να, ν ∈ (0, 1].

For any δ > 0, for fixed R and ρ, by selecting ν we can obtain the estimate

C15(R, ρ)να < δ.

Applying Lemma 4.8, for any ε > 0 we establish the inequality

mesEν,θ,ρ(R) < ε, m, l ≥ m1. (6.31)

In addition, according to (6.21), we can select m2(ν,R) such that

mes
{
Ω(R) :

∣∣wl − wm
∣∣ ≥ ν

}
< ε, m, l ≥ m2. (6.32)

Combining (6.25), (6.31), and (6.32), we deduce the inequality

mes
{
Ω(R) : |∇(wl − wm)| ≥ θ

}
< 6ε, m, l ≥ m0 = max{m1,m2}.

This implies Hence the Cauchy property in measure of the sequence {∇wm} on the set Ω(R) for any

R > 0; hence this implies (6.24) and the selective convergence

∇wm → ∇w almost everywhere in Ω, m → ∞. (6.33)

Step 5. We prove that

bm(x, wm) → bψ(x, w) in L1,loc(Ω), m → ∞, (6.34)

bm(x, wm) → bψ(x, w) almost everywhere in Ω, m → ∞. (6.35)

From (6.11) we obtain for h = k:

∫

{Ω:|wm|≥2k}

(
∣∣bm(x, wm)

∣∣+
∣∣B′

0(w
m)

∣∣
m

)
dx

≤
∫

{Ω:|wm|≥k}

∣∣∣Am
0ψ −A0

0ψ

∣∣∣dx+

∫

{Ω:|wm|≥k}

∣∣A0
0ψ

∣∣dx+
1

k

∫

{Ω:k≤|wm|<2k}

φψdx.

Due to the inclusions A0
0ψ, φψ ∈ L1(Ω), the convergence of (6.1), and the absolute continuity of the

integrals in the right-hand side of this inequality, taking into account (6.19), for any ε > 0 we can
choose a sufficiently large k such that

∫

{Ω:|wm|≥2k}

(
∣∣bm(x, wm)

∣∣+
∣∣B′

0(w
m)

∣∣
m

)
dx < ε, m = 1, 2, . . . . (6.36)

The continuity bψ(x, s0) in s0 and the convergence wm → w almost everywhere in Ω imply the

convergence (6.35).
Now we establish the Cauchy property of the sequence {bm(x, wm)} in the space L1,loc(Ω): for any

compact set Q ⊂ Ω ∫

Q

∣∣∣bm(x, wm)− bl(x, wl)
∣∣∣dx → 0, m, l → ∞. (6.37)
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To do this, we introduce the notation

Δml(x) =
∣∣∣bm(x, wm)− bl(x, wl)

∣∣∣

and write the relation
∫

Q

Δml(x)dx =

∫

{Q:|wm|≥2k,

|wl|≥2k}

Δml(x)dx+

∫

{Q:|wm|<2k,

|wl|<2k}

Δml(x)dx

+

∫

{Q:|wm|<2k,

|wl|≥2k}

Δml(x)dx+

∫

{Q:|wm|≥2k,

|wl|<2k}

Δml(x)dx = I1 + I2 + I3 + I4.

According to (6.36), for any ε > 0, by choosing k the estimate I1 < 2ε is valid and uniform in m and l.
Using (6.35) and (6.13) and the Lebesgue theorem, by choosing m0 one can prove the inequality

I2 ≤
∫

{Q:|wm|<2k,

|wl|<2k}

Δml(x)dx < ε, m, l > m0.

We estimate the integral I3. For the integration domain in I3, the following embedding is valid:
{
Q : |wm| < 2k, |wl| ≥ 2k

}
⊂

{
Q : |wm| ≥ k, |wl| ≥ 2k

}
∪
{
Q : |wm| < k, |wl| ≥ 2k

}
.

According to (6.36), by choosing k one can establish the estimates

I31 =

∫

{Q:|wm|≥k,

|wl|≥2k}

∣∣∣bm(x, wm)− bl(x, wl)
∣∣∣dx < 2ε,

I32 =

∫

{Q:|wm|<k,
|wl|≥2k}

∣∣∣bm(x, wm)− bl(x, wl)
∣∣∣dx ≤

∫

{Q:|wm|<k,
|wl|≥2k}

Gk+‖ψ‖∞(x)dx+ ε,

which are uniform in m and l. Since

mes
{
Q : |wm| < k, |wl| ≥ 2k

}
→ mes

{
Q : |w| ≤ k, |w| ≥ 2k

}
= 0, k, l → ∞,

Gk+‖ψ‖∞(x) ∈ L1(Q), and the integral is absolutely continuous, by selecting m0 we can obtain the
inequality ∫

{Q:|wm|<k,

|wl|≥2k}

Gk+‖ψ‖∞(x)dx < ε, m, l ≥ m0.

Thus, I3 < 4ε for m, l ≥ m0. The integral I4 can be estimated similarly.
Combining the estimates for Ii, i = 1, 2, 3, 4, we establish (6.37). Due to the completeness of the

space L1(Q), there exists a function v ∈ L1(Q) such that

bm(x, wm) → v in L1(Q), m → ∞. (6.38)

In addition, the convergence bm(x, wm) → v, m → ∞, is selective almost everywhere in Ω. Hence,
in view of the convergence (6.35), we see that v(x) = bψ(x, w) almost everywhere in Ω. Thus, the

convergence (6.34) is proved.
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Next, we prove the convergence

B′
0(w

m)

m
→ 0 almost everywhere in Ω, m → ∞, (6.39)

B′
0(w

m)

m
→ 0 in L1,loc(Ω), m → ∞. (6.40)

According to (6.36), for any ε > 0 we can choose k such that
∫

{Ω:|wm|≥2k}

∣∣B′
0(w

m)
∣∣/

m
dx < ε, m = 1, 2, . . . .

In addition, by choosing m0 one can obtain the inequality
∫

{Q:|wm|<2k}

∣∣B′
0(w

m)
∣∣

m
dx ≤

∣∣B′
0(2k)

∣∣
m

mesQ < ε, m ≥ m0.

From these estimates we obtain the convergence (6.40), which implies (6.39).
The estimate (6.15), in view of (6.35), according to the Fatou theorem, implies bψ(x, w) ∈ L1(Ω);

this implies the validity of the condition (1ψ) of Definition 3.1ψ.

Step 6. We show that Tkw ∈ H̊1
B(Ω) for any k > 0. Combining (6.18) and (2.7) for any fixed k > 0,

we deduce the estimate
∥∥Tkw

m
∥∥
H̊1

B(Ω)
=

∥∥∇Tkw
m
∥∥
B
≤ C17(k), m = 1, 2, . . . .

The reflexivity of the space H̊1
B(Ω) allows one to select a subsequence Tkw

m ⇀ v weakly convergent in

H̊1
B(Ω), m → ∞, where v ∈ H̊1

B(Ω). The continuity of the natural mapping H̊1
B(Ω) → LB(Ω) implies

the weak convergence

∇Tkw
m ⇀ ∇v in LB(Ω), m → ∞. (6.41)

Using the convergences (6.20) and (6.33), for any fixed k > 0 we obtain

∇Tkw
m → ∇Tkw almost everywhere in Ω, m → ∞.

Hence, applying Lemma 4.4, we have the weak convergence

∇Tkw
m ⇀ ∇Tkw in LB(Ω), m → ∞. (6.42)

The relations (6.41) and (6.42) imply the equality

v = Tkw ∈ H̊1
B(Ω).

Step 7. To prove the inequality (3.11ψ), we take functions T ∈ F and ξ ∈ C∞
0 (Ω) and apply the

test function v = T (wm − ξ) in the identity (6.6). So we obtain

J =
[
aψ

(
x, Tmwm,∇wm

)
· ∇T (wm − ξ)

]

= −
[(

bm(x, wm) +
B′

0(w
m)

m
+Am

0ψ

)
T (wm − ξ)

]
= −I. (6.43)

The left integral can be written as follows:

J =
[
aψ

(
x, Tmwm,∇wm

)
· ∇wmT ′(wm − ξ)

− aψ

(
x, Tmwm,∇wm

)
· ∇ξT ′(wm − ξ)

]
= J1 − J2. (6.44)
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Due to the convergences wm → w, Tmwm → w, and ∇wm → ∇w almost everywhere in Ω (see (6.20)

and (6.33)), and due to the continuity of the function aψ(x, s0, s) with respect to s0, s, and T ′(r), we
obtain

aψ

(
x, Tmwm,∇wm

)
T ′(wm − ξ) → aψ

(
x, w,∇w

)
T ′(w − ξ) almost everywhere in Ω, m → ∞.

Hence, by the Fatou lemma we obtain
[
aψ

(
x, w,∇w

)
· ∇wT ′(w − ξ)d

]
≤ lim

m→∞ inf J1. (6.45)

From (6.22) we obtain the boundedness of the sequence of norms:
∥∥∥B

(
aψ

(
x, Tmwm,∇wm

)
T ′(wm − ξ)

)∥∥∥
1

≤ C18

∥∥∥B
(
aψ

(
x, Tmwm,∇wm

))
χ
(
|wm| ≤ k + ‖ξ‖∞

)∥∥∥
1
≤ C19, m = 1, 2, . . . .

Applying Lemma 4.4, we prove the weak convergence:

aψ

(
x, Tmwm,∇wm

)
T ′(wm − ξ) ⇀ aψ

(
x, w,∇w

)
T ′(w − ξ) in LB(Ω), m → ∞.

Passing to the limit in J2, we have

lim
m→∞ J2 =

[
aψ

(
x, w,∇w

)
· ∇ξT ′(w − ξ)

]
. (6.46)

The integral I is also divided into two summands. The first integral

I1 =

[(
bm(x, wm) +

B′
0(w

m)

m

)
T (wm − ξ)

]

is estimated as follows. Consider an increasing sequence {K l} of compact subsets of Ω such that
∞⋃
l=1

K l = Ω. Let

supp ξ ⊂ K l, l ≥ l0, vm = wm − ξ, v = w − ξ, cm(x, wm) = bm(x, wm) +
B′

0(w
m)

m
.

then taking into account (6.5), for l ≥ l0, we have

I1 =

∫

Ω\Kl

cm(x, wm)T (wm)dx+

∫

Kl

cm(x, wm)T (vm)dx ≥
∫

Kl

cm(x, wm)T (vm)dx = I1.

Consider the integral

Ĩ1 =

∫

Kl

(
bψ(x, w)T (v) − cm(x, wm)T (vm)

)
dx

=

∫

Kl

(
bψ(x, w) − cm(x, wm)

)
T (v)dx+

∫

Kl

cm(x, wm)
(
T (v)− T (vm)

)
dx = Ĩ11 + Ĩ12.

In view of the convergences (6.34) and (6.40), we conclude that Ĩ11 → 0 as m → ∞, and for Ĩ12 we
obtain

Ĩ12 =

∫

{Kl:|wm|≥L}

cm(x, wm)(T (v) − T (vm))dx

+

∫

{Kl:|wm|<L}

cm(x, wm)(T (v)− T (vm))dx = Ĩ121 + Ĩ122.
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Due to (6.36), by choosing large L, we obtain the inequality |Ĩ121| < ε (uniformly in m). For fixed L,
in view of (6.13), using the Lebesgue theorem, we find that

|Ĩ122| < ε, m ≥ m0.

So, Ĩ1 → 0 for m → ∞; therefore,
∫

Kl

bψ(x, w)T (w − ξ)dx = lim
m→∞ I1 ≤ lim

m→∞ inf I1. (6.47)

Passing to the limit as l → ∞, we replace Kl by Ω.
Applying (6.1) and (6.2) and using the Lebesgue theorem, we pass to the limit as m → ∞ in the

second integral. We obtain

I2 =
[
Am

0ψT (w
m − ξ)d

]
→

[
A0

0ψT (w − ξ)
]
. (6.48)

Combining (6.43)–(6.48), we deduce (3.11ψ). �

Example 6.1. Consider the equation
n∑

i=1

(
gi(u− ψ)B′

i

(
uxi − ψxi

)
+ fi(x)

)

xi

− g0(u− ψ)ϕ(x)− f0(x) = 0 (6.49)

with continuously differentiable N -functions B1(z), . . . , Bn(z) satisfying the Δ2-condition such that
B′

1(z), . . . , B
′
n(z) are strictly monotonic for z ≥ 0, and (2.11) is fulfilled. The functions gi(z), z ∈ R,

i = 0, . . . , n, are nondecreasing and continuous; in addition, gi(z), i = 1, . . . , n, are Lipschitz, positive,
and bounded below. If fi(x) ∈ LBi

(Ω), i = 1, 2, . . . , n, f0(x), ϕ(x) ∈ L1(Ω), then for functions

ai(x, s0, s) = gi(s0 − ψ)B′
i

(
si − ψxi

)
+ fi(x), i = 1, 2, . . . , n,

a0(x, s0) = g0(s0 − ψ)ϕ(x) + f0(x),

the conditions (3.3)–(3.7), (3.9) are fulfilled. According to Theorem 3.1, there exists a solution of the

problem (6.49), (1.2).
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