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On the local behavior of a class of inverse mappings
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Abstract. We study the families of mappings such that the inverse ones satisfy an inequality of the
Poletskii type in the given domain. It is proved that those families are equicontinuous at the inner points,
if the initial and mapped domains are bounded, and the majorant responsible for a distortion of the modulus
is integrable. But if the initial domain is locally connected on its boundary, and if the boundary of the
mapped domain is weakly flat, then the corresponding families of mappings are equicontinuous at the inner
and boundary points.
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1. Introduction

At the present time, the local behavior of quasiconformal mappings of the Euclidean space is well
studied (see, e.g., [1, Theorem 19.2], [2, Theorem 3.17] and [3, Lemma 3.12, Corollary 3.22]). A certain
number of works is devoted, in this case, to their behavior in the closure of a domain. We mention,
for example, [4, Theorem 3.1] and [5, Theorem 3.1] (see also [6,7] and [8]). Let us ask: which is a local
behavior of corresponding inverse mappings?

In the frame of the class of quasiconformal homeomorphisms, this question has no meaning. Indeed,
the quasiconformality of a direct mapping f yields the quasiconformality of the mapping f −1 (in
this case, the conformality constant for the mappings is the same (see, e.g., [1, Corollary 13.3] and
[1, Theorem 34.3]). Thus, the study of the mappings inverse to quasiconformal ones gives no new
information, and the posed question is removed.

The situation will be significantly changed, if we consider some more general class of homeomor-
phisms, which will be considered now. Let M denote the modulus of families of curves (see [1]), and
let dm(x) correspond to the Lebesgue measure in Rn. Assume that the mapping f : D → Rn is set in
the domain D ⊂ Rn, n > 2, and it satisfies an inequality of the form

M(f(Γ)) 6
∫
D

Q(x) · ρn(x) dm(x) ∀ ρ ∈ admΓ (1.1)

where Q : D → [1,∞] is some (given) fixed function (see, e.g., [9]). We recall that ρ ∈ admΓ, iff∫
γ

ρ(x)|dx| > 1 ∀ γ ∈ Γ .

As for estimates of the form (1.1) in various classes of mappings, we refer, e.g., to [10, Theorems 4.6
and 6.10]. We note that, for an arbitrary function Q, we cannot replaced f by f −1 in (1.1); on this
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occasion, see Example 5.2 at the end of this work. Here, we will study the homeomorphisms g such
that the inverse ones satisfy relation (1.1). In what follows, we will construct the example of a family
of mappings under condition (1.1), which is not equicontinuous in the given domain. In this case, the
family “inverse” to it is equicontinuous. Therefore, the analysis of the local behavior of such mappings
has meaning.

It is worth to mention our previous works [11] and [12], where the analogous questions were con-
sidered. We note that the basic theorems of those works involve quite strong conditions imposed on
the geometry of domains and the mappings. Therefore, they cannot be compared with results of the
present work by the power of assertions. In particular, we reject the conditions normalization in the
classes under study, which enriches essentially the results from the viewpoint of applications (see Exam-
ple 5.1 below). As a rather unexpected discovery, we mention the obtained absence of any relationship
between the equicontinuity of mappings inside a domain and the geometry of this domain. As for any
domain, we require only its boundedness and the boundedness of its image at a mapping. We note that
all previous results, including those in works [11] and [12], were related to some additional conditions
imposed on domains and their boundaries.

The basic definitions and notations used below can be found in books [1] and [13] and, therefore,
are omitted. Let E and F ⊂ Rn be any sets. In what follows, by the symbol Γ(E,F,D), we denote the
family of all curves γ : [a, b] → Rn that connect E and F in D, i.e. γ(a) ∈ E, γ(b) ∈ F and γ(t) ∈ D
for t ∈ (a, b). We recall that the domain D ⊂ Rn is called locally connected at a point x0 ∈ ∂D, if,
for any neighborhood U of the point x0, there exists a neighborhood V ⊂ U of the point x0 such that
V ∩ D is connected. The domain D is locally connected on ∂D, if D is locally connected at every
point x0 ∈ ∂D. The boundary of a domain D is called weakly flat at the point x0 ∈ ∂D, if, for every
P > 0 and for any neighborhood U of the point x0, there exists a neighborhood V ⊂ U of this point,
and if this neighborhood is such that M(Γ(E,F,D)) > P for any continua E and F ⊂ D intersecting
∂U and ∂V. The boundary of a domain D is called weakly flat, if the corresponding property holds at
every point of the boundary D.

Consider the domains D,D ′ ⊂ Rn, n > 2, and any function Q : Rn → [1,∞] measurable by
Lebesgue and such that Q(x) ≡ 0 for x ̸∈ D. By RQ(D,D ′), we denote the family of all mappings
g : D ′ → D such that f = g−1 is a homeomorphism of the domain D on D ′ with condition (1.1). The
following proposition is valid.

Theorem 1.1. Assume that D and D ′ are compact sets in Rn. If Q ∈ L1(D), then the family
RQ(D,D ′) is equicontinuous in D ′.

Consider a number δ > 0, the domains D,D ′ ⊂ Rn, n > 2, a continuum A ⊂ D, and any function
Q : Rn → [1,∞] measurable by Lebesgue and such that Q(x) ≡ 0 for x ̸∈ D. By Sδ,A,Q(D,D ′), we
denote the family of all mappings g : D ′ → D such that f = g−1 is a homeomorphism of the domain
D on D ′ with condition (1.1). In this case, diam f(A) > δ. The following proposition is valid.

Theorem 1.2. Assume that the domain D is locally connected at all boundary points, D and D ′ are
compact sets in Rn, and the domain D ′ has a weakly flat boundary. Assume also that any connected
component ∂D ′ is a nondegenerate continuum. If Q ∈ L1(D), then every mapping g ∈ Sδ,A,Q(D,D ′)
is extended by continuity to the mapping g : D ′ → D, g|D ′ = g. In this case, g(D ′) = D, and the
family Sδ,A,Q(D,D ′), consisting of all extended mappings g : D ′ → D, is equicontinuous in D ′.

Remark 1.1. The assertion of Theorem 1.1 was first established by us in the metric spaces under
quite strong additional conditions imposed on the domains D and D ′, see [12, Theorem 2]. The main
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achievement of the present work is the assertion of this theorem without any conditions imposed on
those domains, except for their boundedness. The version of Theorem 1.2 related to metric spaces
was published in [12, Theorem 3] and was proved under the assumption that the domain D ′ is a
QED-domain. The last condition is stronger that the condition of weak flatness of the boundary
(see [13, Remark 3.14]). Thus, Theorem 1.2 in the Euclidean space is a stronger assertion, as compared
with results in [12].

2. Auxiliary information

First of all, we will establish two elementary assertions playing a significant role in the proof of the
main results. Let I be an open closed or semiopen interval in R. For the curve γ : I → Rn, we set, as
usual:

|γ| = {x ∈ Rn : ∃ t ∈ [a, b] : γ(t) = x} .

In this case, |γ| is called a support (image) of γ. We say that the curve γ lies in a domain D, if |γ| ⊂ D.
In addition, we say that the curves γ1 and γ2 are disjoint, if their supports are disjoint. The curve
γ : I → Rn is called a Jordan arc, if γ is a homeomorphism on I. The following assertion was proved
in [12, Proposition 1]. However, we give its proof here for the sake of completeness.

Lemma 2.1. Let D be a domain in Rn, n > 2, which is locally connected on its boundary. Then
any two pairs of different points a ∈ D, b ∈ D, and c ∈ D, d ∈ D can be connected by the curves
γ1 : [0, 1] → D and γ2 : [0, 1] → D that are nonoverlapping and are such that γi(t) ∈ D for all
t ∈ (0, 1), i = 1, 2, γ1(0) = a, γ1(1) = b, γ2(0) = c, and γ2(1) = d.

Proof. We note that the points of a domain, which are locally connected on the boundary, are attain-
able from inside of the domain by means of curves (see [13, Proposition 13.2]). In such case, if n > 3,
we connect the points a and b by any Jordan arc γ1 in the domain D not passing through the points
c and d (this is possible in view of the local connectedness of D on the boundary and the transition
from a curve to a broken line, if necessary). Then γ1 does not divide the domain D as a set with
topological dimension 1 (see [14, Corollary 1.5.IV]), which ensures the existence of the required curve
γ2. Thus, for n > 3, the assertion of Lemma 2.1 is established.

Let now n = 2. Then again the points c and d do not divide the domain D ( [14, Corollary 1.5.IV]).
In such case, it is also possible to connect the points a and b by a Jordan arc γ1 in D not passing
through the points c and d. In view of the Antoine theorem (see [15, Theorem 4.3, § 4]), the domain
D can be mapped on some domain D ∗ by means of a flat homeomorphism φ : R2 → R2 so that
φ(γ1) = J, and J is a segment in D ∗. We note that the points of the boundary of the domain D ∗ are
attainable from inside of D ∗ by means of curves. Thus, we can connect the points φ(c) and φ(d) in
D ∗ by the Jordan curve α2 : [0, 1] → D ∗, which lies completely in D ∗, except for, may be, its end
point α2(1) = φ(d).

It remains to show that curve α2 can be chosen so that it does not intersect the segment J. Indeed,
let α2 intersect J, and let t1 and t2 be, respectively, the largest and least values of t ∈ [0, 1], for which
α2(t) ∈ |J |. Let also

J = J(s) = φ(a) + (φ(b)− φ(a))s, s ∈ [0, 1]

be a parametrization of the segment J. Let s̃1 and s̃2 ∈ (0, 1) be such that J(s̃1) = α2(t1) and
J(s̃2) = α2(t2). We set s2 = max{s̃1, s̃2}. Let e1 = φ(b)−φ(a), and let e2 be a unit vector orthogonal
to e1. Then the set

Pε = {x = φ(a) + x1e1 + x2e2, x1 ∈ (−ε, s2 + ε), x2 ∈ (−ε, ε)} , ε > 0 ,
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Figure 1: Possible connection of two pairs of points by curves in the domain

is a rectangle containing |J1|, where J1 is the contraction of J on the segment [0, s2] (see Fig. 1). We
now choose ε > 0 so that φ(c) ̸∈ Pε, dist (Pε, ∂D

∗) > ε. In view of [16, Theorem 1.I, Chapt. 5, § 46]),
the curve α2 intersects ∂Pε for some T1 < t1 and T2 > t2. Let α2(T1) = y1 and α2(T2) = y2. Since
∂Pε \ {z0}, z0 := φ(a) + (s2 + ε)e1, is a connected set, we can connect the points y1 and y2 by the
curve α ∗(t) : [T1, T2] → ∂Pε \ {z0}. Finally, we set

α ∗
2 (t) =

{
α2(t), t ∈ [0, 1] \ [T1, T2],
α ∗(t), t ∈ [T1, T2]

and γ ∗
2 := φ−1 ◦ α ∗

2 . Then γ1 connects a and b in D, γ ∗
2 connects c and d in D. In this case, γ1 and

γ ∗
2 do not intersect each other, which was to be established.

Above, we introduce the notion of a weakly flat boundary of a domain, not considering, in this
case, the inner points. The following lemma contains the assertion about that the property of “weak
flatness” takes always place at the indicated points.

Lemma 2.2. Let D be a domain in Rn, n > 2, and x0 ∈ D. Then, for every P > 0 and for
any neighborhood U of the point x0, there exists a neighborhood V ⊂ U of the same point such that
M(Γ(E,F,D)) > P for any continua E and F ⊂ D intersecting ∂U and ∂V.

Proof. Let U be any neighborhood of the point x0. We choose ε0 > 0 so that B(x0, ε0) ⊂ D ∩ U. Let
cn be a positive constant defined in relation (10.11) in [1], and let the number ε ∈ (0, ε0) be so small
that cn · log ε0

ε > P. We set V := B(x0, ε). Let E,F be any continua intersecting ∂U and ∂V. Then E
and F intersect also S(x0, ε0) and ∂V (see [16, Theorem 1.I, Chapt. 5, § 46]). The required conclusion
follows from [1, Sect. 10.12], since

M(Γ(E,F,D)) > cn · log ε0
ε

> P .
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3. Proof of Theorem 1.1

We prove Theorem 1.1 by contradiction. Assume that the family RQ(D,D ′) is not equicontinuous
at some point y0 ∈ D ′. In other words, there exist y0 ∈ D ′ and ε0 > 0 such that, for any m ∈ N, there
exist an element ym ∈ D ′, |ym − y0| < 1/m, and a homeomorphism gm ∈ RQ(D,D ′), for which

|gm(ym)− gm(y0)| > ε0 . (3.1)

Through the points gm(ym) and gm(y0), we draw the straight line r = rm(t) = gm(y0) + (gm(ym) −
gm(y0))t, −∞ < t < ∞ (see Fig. 2). We note that the indicated straight line r = rm(t) must intersect
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Figure 2: To the proof of Theorem 1.1

the boundary of the domain D for t > 1 in view of [16, Theorem 1.I, Chapt. 5, § 46]), since the domain
D is bounded; thus, there exists tm1 > 1 such that rm(tm1 ) = xm1 ∈ ∂D. Without loss of generality, we
consider that rm(t) ∈ D for all t ∈ [1, tm1 ). Then the segment γm1 (t) = gm(y0) + (gm(ym) − gm(y0))t,
t ∈ [1, tm1 ], belongs to D for all t ∈ [1, tm1 ), γm1 (tm1 ) = xm1 ∈ ∂D, and γm1 (1) = gm(ym). In view of
the analogous reasoning, there exist tm2 < 0 and the segment γm2 (t) = gm(y0) + (gm(ym) − gm(y0))t,
t ∈ [tm2 , 0], such that γm2 (tm2 ) = xm2 ∈ ∂D, γm2 (0) = gm(y0), and γm2 (t) belongs toD for all t ∈ (tm2 , 0].We
set fm := g−1

m and note that fm is a homeomorphism. For each fixedm ∈ N, the limiting sets C(fm, xm1 )
and C(fm, xm2 ) of the mappings fm at corresponding boundary points xm1 , xm2 ∈ ∂D lie on ∂D ′ (see [13,
Proposition 13.5]). Hence, there exists a point zm1 ∈ D∩|γm1 | such that dist (fm(zm1 ), ∂D ′) < 1/m. Since
D ′ is a compact set, we can consider that the sequence fm(zm1 ) → p1 ∈ ∂D ′ as m → ∞. Analogously,
there exists a sequence zm2 ∈ D ∩ |γm2 | such that dist (fm(zm2 ), ∂D ′) < 1/m and fm(zm2 ) → p2 ∈ ∂D ′

as m → ∞.
Let Pm be a part of the segment γm1 contained between the points gm(ym) and zm1 , and let Qm be

a part of the segment γm2 contained between the points gm(y0) and zm2 . By construction and in view
of (3.1), we have dist (Pm, Qm) > ε0 > 0. Let Γm = Γ(Pm, Qm, D). Then the function

ρ(x) =

{ 1
ε0
, x ∈ D,

0, x /∈ D

is admissible for the family Γm. Indeed, for any (locally rectifiable) curve γ ∈ Γm, the relation∫
γ
ρ(x)|dx| > l(γ)

ε0
> 1 holds (where l(γ) denotes the length of a curve γ). Since, by condition, the
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mappings fm satisfy (1.1), we get

M(fm(Γm)) 6 1

εn0

∫
D

Q(x) dm(x) := c < ∞ , (3.2)

since Q ∈ L1(D). On the other hand, diam fm(Pm) > |ym − fm(zm1 )| > (1/2) · |y0 − p1| > 0 and
diam fm(Qm) > |y0 − fm(zm2 )| > (1/2) · |y0 − p2| > 0 for large m ∈ N. In addition,

dist (fm(Pm), fm(Qm)) 6 |ym − y0| → 0, m → ∞ .

Then, in view of Lemma 2.2,

M(fm(Γm)) = M(Γ
(
fm(Pm), fm(Qm), D ′)

)
→ ∞ , m → ∞ ,

which contradicts relation (3.2). This contradiction indicates that the assumption in (3.1) is improper,
which completes the proof of the theorem. 2

4. On the behavior of mappings in the closure of a domain

Consider the global behavior of mappings. The following assertion indicates that, for sufficiently
good domains and mappings under condition (1.1), the image of a fixed continuum at those mappings
cannot approach the boundary of the corresponding domain, as only the Euclidean diameter of the
image of this continuum is bounded from below (see also [1, Theorems 21.13 and 21.14]).

Lemma 4.1. Assume that the domain D is locally linearly connected on D, D and D ′ are compact
sets in Rn, n > 2, D ′ has a weakly flat boundary, Q ∈ L1(D), and none of the connected components
of the boundary ∂D ′ degenerates into a point. Let fm : D → D ′ be a sequence of homeomorphisms of
the domain D on the domain D ′ with condition (1.1). Let also the exist a continuum A ⊂ D and a
number δ > 0 such that diam fm(A) > δ > 0 for all m = 1, 2, . . . . Then there exists δ1 > 0 such that

dist (fm(A), ∂D ′) > δ1 > 0 ∀ m ∈ N .

Proof. Assume the contrary. Let, for each k ∈ N, there exist m = mk : dist (fmk
(A), ∂D ′) < 1/k.

Without loss of generality, we consider that the sequencemk is monotonically ascending. By condition,
D ′ is a compact set. Therefore, ∂D ′ is also the compact set as a closed subset of the compact set D ′.
In addition, fmk

(A) is a compact set as the continuous image of the compact set A at the mapping
fmk

. Then there exist xk ∈ fmk
(A) and yk ∈ ∂D ′ such that dist (fmk

(A), ∂D ′) = |xk − yk| < 1/k
(see Fig. 3). Since ∂D ′ is a compact set, we can consider that yk → y0 ∈ ∂D ′, k → ∞. Then we also
have

xk → y0 ∈ ∂D ′, k → ∞ .

Let K0 be a connected component of ∂D ′ containing the point y0. Then, obviously, K0 is a continuum
in Rn. Since D ′ has a weakly flat boundary, the mapping gmk

:= f −1
mk

is extended to a continuous

mapping gmk
: D ′ → D for every k ∈ N (see [13, Theorem 4.6]). Moreover, gmk

is equicontinuous on

D ′ as a mapping continuous on a compact set. Then, for any ε > 0, there exists δk = δk(ε) < 1/k
such that

|gmk
(x)− gmk

(x0)| < ε ∀ x, x0 ∈ D ′, |x− x0| < δk , δk < 1/k . (4.1)

Let ε > 0 be any number under the condition

ε < (1/2) · dist (∂D,A) , (4.2)
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Figure 3: To the proof of Lemma 4.1

where A is the continuum from the condition of the lemma. For every fixed k ∈ N, we consider the
set

Bk :=
∪

x0∈K0

B(x0, δk) , k ∈ N .

We note that Bk is an open set containing K0. In other words, Bk is some neighborhood of the
continuum K0. In view of [17, Lemma 2.2], there exists a neighborhood Uk ⊂ Bk of the continuum
K0, such that Uk ∩D ′ is connected. Without loss of generality, we can consider that Uk is an open
set. Then Uk ∩ D ′ is also linearly connected (see [13, Proposition 13.1]). Let diamK0 = m0. Then
there exist z0, w0 ∈ K0 such that diamK0 = |z0 − w0| = m0. Hence, we can choose the sequences
yk ∈ Uk ∩D ′, zk ∈ Uk ∩D ′ and wk ∈ Uk ∩D ′ so that zk → z0, yk → y0 and wk → w0 as k → ∞. We
can consider that

|zk − wk| > m0/2, ∀ k ∈ N . (4.3)

Let us connect the points zk, yk, and wk successively by the curve γk in Uk ∩D ′ (it is possible, since
Uk ∩D ′ is linearly connected). Let |γk| be, as usual, the support (image) of the curve γk in D ′. Then
gmk

(|γk|) is a compact set in D. Let x ∈ |γk|. Then there exists x0 ∈ K0 : x ∈ B(x0, δk). We fix
ω ∈ A ⊂ D. Since x ∈ |γk|, x is an inner point of the domain D ′. Thus, we can write gmk

(x) instead
gmk

(x) for the indicated x. In this case in view of the triangle inequality for large k ∈ N, relations
(4.1) and (4.2) yield

|gmk
(x)− ω| > |ω − gmk

(x0)| − |gmk
(x0)− gmk

(x)|

> dist (∂D,A)− (1/2) · dist (∂D,A) = (1/2) · dist (∂D,A) > ε . (4.4)

Passing in (4.4) to inf over all x ∈ |γk| and all ω ∈ A, we get

dist (gmk
(|γk|), A) > ε, ∀ k = 1, 2, . . . . (4.5)
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In view of (4.5), the length of any curve connecting gmk
(|γk|) and A in D is at least ε. We set

Γk := Γ(gmk
(|γk|), A,D). Then the function ρ(x), which is defined as 1/ε for x ∈ D and is equal to 0

for x ̸∈ D, is admissible for Γk, since
∫
γ
ρ(x)|dx| > l(γ)

ε > 1 for γ ∈ Γk (where l(γ) denote the length of

the curve γ). By the definition of mappings fmk
in (1.1), we have

M(fmk
(Γk)) 6

1

εn

∫
D

Q(x) dm(x) = c = c(ε,Q) < ∞ , (4.6)

since, by condition, Q ∈ L1(D).

We now show the contradiction with (4.6) in view of the weak flatness of the boundary ∂D ′. At the
point y0 ∈ ∂D ′, we choose a ball U := B(y0, r0), where r0 > 0, r0 < min{δ/4,m0/4}, δ is the number
from the condition of the lemma, and diamK0 = m0. We note that |γk| ∩U ̸= ∅ ̸= |γk| ∩ (D ′ \U) for
sufficiently large k ∈ N, since diam |γk| > m0/2 > m0/4 and yk ∈ |γk|, yk → y0 as k → ∞. In view of
the same reasoning, fmk

(A) ∩ U ̸= ∅ ̸= fmk
(A) ∩ (D ′ \ U). Since |γk| and fmk

(A) are continua, we
have

fmk
(A) ∩ ∂U ̸= ∅, |γk| ∩ ∂U ̸= ∅ (4.7)

(see [16, Theorem 1.I, Chapt. 5, § 46]). For a fixed P > 0, let V ⊂ U be a neighborhood of the point
y0 corresponding to the definition of a weakly flat boundary. Let the neighborhood be such that, for
any continua E and F ⊂ D ′ under the condition E ∩ ∂U ̸= ∅ ̸= E ∩ ∂V and F ∩ ∂U ̸= ∅ ̸= F ∩ ∂V,
the inequality

M(Γ(E,F,D ′)) > P (4.8)

holds. We note that, for sufficiently large k ∈ N,

fmk
(A) ∩ ∂V ̸= ∅, |γk| ∩ ∂V ̸= ∅ . (4.9)

Indeed, yk ∈ |γk|, xk ∈ fmk
(A), where xk, yk → y0 ∈ V as k → ∞. Therefore, |γk|∩V ̸= ∅ ̸= fmk

(A)∩V
for large k ∈ N. In addition, diamV 6 diamU = 2r0 < m0/2 and, since diam|γk| > m0/2 in
view of (4.3), |γk| ∩ (D ′ \ V ) ̸= ∅. Then |γk| ∩ ∂V ̸= ∅ (see [16, Theorem 1.I, Chapt. 5, § 46]).
Analogously, diamV 6 diamU = 2r0 < δ/2 and, since diam fmk

(A) > δ by the condition of the
lemma, fmk

(A)∩(D ′\V ) ̸= ∅. In view of [16, Theorem 1.I, Chapt. 5, § 46], we have fmk
(A)∩∂V ̸= ∅.

The relations in (4.9) are established.

Thus, according to relations (4.7), (4.8), and (4.9), we get

M(Γ(fmk
(A), |γk|, D ′)) > P . (4.10)

We note that Γ(fmk
(A), |γk|, D ′) = fmk

(Γ(A, gmk
(|γk|), D)) = fmk

(Γk), so that inequality (4.10) can
be presented as

M(Γ(fmk
(A), gmk

(|γk|), D)) = M(fmk
(Γk)) > P ,

which contradicts inequality (4.6). This contradiction indicates that the assumption
dist (fmk

(A), ∂D′)<1/k is improper. The lemma is proved. 2

Proof of Theorem 1.2. Since D ′ has a weakly flat boundary, every g ∈ Sδ,A,Q(D,D ′) is extended
to a continuous mapping g : D ′ → D (see [13, Theorem 4.6]).

Let us verify the equality g(D ′) = D. Indeed, by definition, g(D ′) ⊂ D. It remains to prove the
inverse inclusion D ⊂ g(D ′). Let x0 ∈ D. Then we will show that x0 ∈ g(D ′). If x0 ∈ D, then x0 ∈ D
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or x0 ∈ ∂D. If x0 ∈ D, nothing should be proved, since, by condition, g(D ′) = D. Let now x0 ∈ ∂D.
Then there exist xk ∈ D and yk ∈ D ′ such that xk = g(yk) and xk → x0 as k → ∞. Since D ′ is
a compact set, we can consider that yk → y0 ∈ D ′ as k → ∞. Since f = g−1 is a homeomorphism,
y0 ∈ ∂D ′. Since g−1 is continuous in D ′, g(yk) → g(y0). However, in such case, g(y0) = x0, since
g(yk) = xk, and xk → x0 as k → ∞. Hence, x0 ∈ g(D ′). The inclusion D ⊂ g(D ′) is proved, and,
hence, D = g(D ′), which was to be proved.

The equicontinuity of the family Sδ,A,Q(D,D ′) at the inner points D ′ is a result of Theorem 1.1.
It remains to show that this family is equicontinuous at boundary points. We carry on the proof by
contradiction. Let there exist a point z0 ∈ ∂D ′, a number ε0 > 0, the sequences zm ∈ D ′, zm → z0 as
m → ∞, and gm ∈ Sδ,A,Q(D,D ′) such that

|gm(zm)− gm(z0)| > ε0, m = 1, 2, . . . . (4.11)

We set gm := gm|D ′ . Since gm is extended by continuity on the boundary D ′, we can consider that,
zm ∈ D ′ and, hence, gm(zm) = gm(zm). In addition, there exists one more sequence z ′

m ∈ D ′,
z ′
m → z0 as m → ∞, such that |gm(z ′

m) − gm(z0)| → 0 as m → ∞. Since D is a compact set, we
can consider that the sequences gm(zm) and gm(z0) are convergent as m → ∞. Let gm(zm) → x1 and
gm(z0) → x2 as m → ∞. The continuity of the modulus in (4.11) implies that x1 ̸= x2. Moreover,
since the homeomorphisms conserve a boundary, x2 ∈ ∂D. Let x1 and x2 be any different points of the
continuum A, none of the points coincides with x1. By Lemma 2.1, we can connect the points x1 and
x1 by the curve γ1 : [0, 1] → D, and the points x2 and x2 can be connected by the curve γ2 : [0, 1] → D,
so that |γ1| ∩ |γ2| = ∅, γi(t) ∈ D for all t ∈ (0, 1), i = 1, 2, γ1(0) = x1, γ1(1) = x1, γ2(0) = x2, and
γ2(1) = x2. Since D is locally connected on its boundary, there exist neighborhoods U1 and U2 of the
points x1 and x2, whose closures are disjoint, and they are such thatWi := D∩Ui is a linearly connected
set. By decreasing the neighborhoods Ui, if necessary, we can consider that U1 ∩ |γ2| = ∅ = U2 ∩ |γ1|.
Without loss of generality, we can consider that gm(zm) ∈ W1 and gm(z ′

m) ∈ W2 for all m ∈ N. Let a1
and a2 be any points, which belong to |γ1| ∩W1 and |γ2| ∩W2. Let t1, t2 be such that γ1(t1) = a1 and
γ2(t2) = a2. We now connect the point a1 with the point gm(zm) by the curve αm : [t1, 1] → W1 such
that αm(t1) = a1 and αm(1) = gm(zm). Analogously, we connect the point a2 with the point gm(z ′

m)
by the curve βm : [t2, 1] → W2 such that βm(t2) = a2 and βm(1) = gm(z ′

m) (see Fig. 4). We now set

D

D

A

x1

x2gm m(z ) a1

gm m(z ) a2

m

Cm

1

Cm

2
x1

x2 fm

gm

f (x )m 1

f (x )m 2

fm( )m

z0

zm

zmfm
(| |)

Cm

1

fm
(| |)

Cm

2

Figure 4: To the proof of Theorem 1.2

85



C1
m(t) =

{
γ1(t), t ∈ [0, t1],
αm(t), t ∈ [t1, 1],

C2
m(t) =

{
γ2(t), t ∈ [0, t2],
βm(t), t ∈ [t2, 1].

Let, as usual, |C1
m| and |C2

m| be the supports of the curves C1
m and C2

m, respectively. We note that, by
construction, |C1

m| and |C2
m| are two nonoverlapping continua inD.Moreover, dist (|C1

m|, |C2
m|) > l0 > 0

for all m = 1, 2, . . . . We can take, for example,

l0 = min{dist (|γ1|, |γ2|),dist (|γ1|, U2),dist (|γ2|, U1),dist (U1, U2)}.

Let now Γm be a family of curves connecting |C1
m| and |C2

m| in D. Then the function

ρ(x) =

{ 1
l0
, x ∈ D

0, x /∈ D

is admissible for the family Γm, since
∫
γ
ρ(x)|dx| > l(γ)

l0
> 1 for γ ∈ Γm (where l(γ) denotes the length

of the curve γ). By condition, the mappings fm, fm = g−1
m , satisfy (1.1) for Q ∈ L1(D). From whence,

we get

M(fm(Γm)) 6 1

ln0

∫
D

Q(x) dm(x) := c = c(l0, Q) < ∞ . (4.12)

On the other hand, by Lemma 4.1, there exists a number δ1 > 0 such that dist (fm(A), ∂D ′) > δ1 > 0,
m = 1, 2, . . . . This implies that

diam fm(|C1
m|) > |zm − fm(x1)| > (1/2) · dist (fm(A), ∂D ′) > δ1/2 ,

diam fm(|C2
m|) > |z ′

m − fm(x2)| > (1/2) · dist (fm(A), ∂D ′) > δ1/2 (4.13)

for some M0 ∈ N and all m > M0.
At the point z0 ∈ ∂D ′, we choose the ball U := B(z0, r0) such that r0 > 0 and r0 < δ1/4, where

δ1 is the number from the relations in (4.13). We note that fm(|C1
m|) ∩ U ̸= ∅ ̸= fm(|C1

m|) ∩ (D ′ \ U)
for sufficiently large m ∈ N, since diam fm(|C1

m|) > δ1/2 and zm ∈ fm(|C1
m|), zm → z0 as m → ∞. In

view of the same reasoning, fm(|C2
m|) ∩ U ̸= ∅ ̸= fm(|C2

m|) ∩ (D ′ \ U). Since fm(|C1
m|) and fm(|C2

m|)
are continua, we have

fm(|C1
m|) ∩ ∂U ̸= ∅, fm(|C2

m|) ∩ ∂U ̸= ∅ , (4.14)

see [16, Theorem 1.I, Chapt. 5, § 46]. For a fixed P > 0, let V ⊂ U be a neighborhood of the point z0
corresponding to the definition of a weakly flat boundary. Let it be such that, for any continua E and
F ⊂ D ′ under the condition E ∩ ∂U ̸= ∅ ̸= E ∩ ∂V and F ∩ ∂U ̸= ∅ ̸= F ∩ ∂V, the inequality

M(Γ(E,F,D ′)) > P (4.15)

holds. We note that, for sufficiently large m ∈ N,

fm(|C1
m|) ∩ ∂V ̸= ∅, fm(|C2

m|) ∩ ∂V ̸= ∅ . (4.16)

Indeed, zm ∈ fm(|C1
m|), z ′

m ∈ fm(|C2
m|), where zm, z ′

m → z0 ∈ V as m → ∞. Therefore, fm(|C1
m|) ∩

V ̸= ∅ ̸= fm(|C2
m|) ∩ V for large m ∈ N. In addition, diamV 6 diamU = 2r0 < δ1/2 and, since

diamfm(|C1
m|) > δ1/2 in view of (4.13), we have fm(|C1

m|) ∩ (D ′ \ V ) ̸= ∅. Then fm(|C1
m|) ∩ ∂V ̸= ∅

(see [16, Theorem 1.I, Chapt. 5, § 46]). Analogously, diamV 6 diamU = 2r0 < δ1/2 and, since
diam fm(|C2

m|) > δ1/2 in view of (4.13), we have fm(|C2
m|)∩ (D ′ \V ) ̸= ∅. Then, by [16, Theorem 1.I,

Chapt. 5, § 46], we get fm(|C2
m|) ∩ ∂V ̸= ∅. Thus, relation (4.16) is proved.
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According to (4.15) with regard for (4.14) and (4.16), we get

M(fm(Γm)) = M(Γ(fm(|C1
m|), fm(|C2

m|), D ′)) > P ,

which contradicts inequality (4.12). This contradiction indicates that the input assumption made in
(4.11) is improper. The theorem is proved. 2

5. Some examples

We start from a simple example of mappings on the complex plane.

Example 5.1. As is known, the linear-fractional automorphisms of a unit circle D ⊂ C onto itself are
given by the formula f(z) = eiθ z−a

1−az , z ∈ D, a ∈ C, |a| < 1, θ ∈ [0, 2π). The indicated mappings f are
1-homeomorphisms; all conditions of Theorem 1.2 are satisfied, except fot the condition diam f(A) > δ,
which can be violated, generally speaking.

If, for example, θ = 0 and a = 1/n, n = 1, 2, . . . , then fn(z) =
z−1/n
1−z/n = nz−1

n−z . We set A = [0, 1/2].

Then fn(0) = −1/n → 0 and fn(1/2) = n−2
2n−1 → 1/2, n → ∞. From whence, it is seen that the

sequence fn satisfies the condition diam fn(A) > δ, for example, for δ = 1/4. By means of the direct

calculations, we verify that f −1
n (z) = z+1/n

1+z/n , and, hence, f
−1
n converges continuously to f −1(z) ≡ z.

Thus, the sequence f −1
n (z) is equicontinuous in D.

But if we set f −1
n (z) = z−(n−1)/n

1−z(n−1)/n = nz−n+1
n−nz+1 , then, as is easy to see, such sequence is locally

continuously convergent to −1 inside D; at the same time, f −1
n (1) = 1. In view of this fact, we may

conclude, by making direct calculations, that the sequence f −1
n is not equicontinuous at 1. In this

case, fn(z) =
z+(n−1)/n
1+z(n−1)/n , and condition diam fn(A) > δ cannot be satisfied for any δ > 0 independent

of n in view of Theorem 1.2.

From whence, it follows that, under the conditions of Theorem 1.2, we cannot reject the additional
requirement diam f(A) > δ, generally speaking.

Example 5.2. Let p > 1 be so large that the number n/p(n− 1) is less than 1, and let, in addition,
α ∈ (0, n/p(n− 1)) be any number. We define a sequence of mappings fm : Bn → B(0, 2) of the ball
Bn onto the ball B(0, 2) in the following way:

fm(x) =

{
1+|x|α

|x| · x , 1/m 6 |x| 6 1,
1+(1/m)α

(1/m) · x , 0 < |x| < 1/m .

We note that fm satisfy (1.1) for Q =
(
1+|x|α
α|x|α

)n−1
∈ L1(Bn) (see [11, proof of Theorem 7.1]), and

B(0, 2) has a weakly flat boundary (see [18, Lemma 4.3]). By construction, the mappings fm fix the
infinite number of points of a unit ball for all m > 2.

We now establish the equicontinuity of the mappings gm := f −1
m in B(0, 2) (for convenience, we

use the notation gm also for a continuous extension of gm in B(0, 2)). It is easy to see that

gm(y) := f−1
m (y) =

{
y
|y|(|y| − 1)1/α , 1 + 1/mα 6 |y| < 2,

(1/m)
1+(1/m)α · y , 0 < |y| < 1 + 1/mα .

The mappings gm map B(0, 2) onto Bn. Let us fix y0 ∈ B(0, 2). Three following situations are possible:

87



1) |y0| < 1. We choose δ0 = δ0(y0) so that B(y0, δ0) ⊂ B(0, 1). For a number ε > 0, we set
δ1 = δ1(ε, y0) := min{δ0, ε}. In such case, for y ∈ B(y0, δ1) and all m = 1, 2, . . . , we have |gm(y) −
gm(y0)| = (1/m)

1+(1/m)α |y − y0| < |y − y0| < ε, which proves the equicontinuity of the family gm at the
point y0.

2) |y0| > 1. By the definition of the mappings gm, there exist m0 = m0(y0) ∈ N and δ0 = δ0(y0) > 0
such that gm(y) = y

|y|(|y| − 1)1/α for all B(y0, δ0) ∩ B(0, 2) and all m > m0. Take ε > 0. By setting

g(y) = y
|y|(|y| − 1)1/α, we note that |gm(y) − gm(y0)| = |g(y) − g(y0)| < ε for m > m0 and, for some

δ = δ(ε, y0), δ < δ0, since the mapping g(y) = y
|y|(|y| − 1)1/α is continuous in B(0, 2).

3) Finally, we consider the “boundary” case where y0 ∈ Sn−1 = ∂Bn. Let δ0 = δ0(y0) be such that

B(y0, δ0) ⊂ B(0, 2). By definition, we have gm(y0) =
(1/m)

1+(1/m)α · y0, m = 1, 2, . . . . We note that

|gm(y)− gm(y0)| 6

6 max

{∣∣∣∣ (1/m)

1 + (1/m)α
· y0 −

y

|y|
(|y| − 1)1/α

∣∣∣∣ , (1/m)

1 + (1/m)α
|y − y0|

}
.

For a number ε > 0, we find the number m1 = m1(ε) > 0 such that 1/m < ε/2. We set δ0 =
δ0(ε, y0) = min{1, ε/2, δ0}. Using the triangle inequality and the inequality 1/α > 1, we obtain∣∣∣ y
|y|(|y| − 1)1/α − (1/m)

1+(1/m)α · y0
∣∣∣ 6 (|y|−1)1/α+1/m < ε/2+ε/2 = ε for m > m1 and |y−y0| < δ0. The

last relation for 1 6 m 6 m1 holds also for |y − y0| < δm and some δm = δm(ε, y0) > 0 in view of the

continuity of the mappings gm. Obviously, (1/m)
1+(1/m)α |y − y0| < ε for |y − y0| < δ0 and all m = 1, 2, . . . .

Finally, we have: |gm(y) − gm(y0)| < ε for all m ∈ N and y ∈ B(y0, δ), where δ := {δ0, δ1, . . . , δm1}.
The equicontinuity of gm in B(0, 2) is proved.

It is worth noting that the family G = {gm}∞m=1 is equicontinuous in B(0, 2), whereas the family
F = {fm}∞m=1 “inverse” to it does not (indeed, |fm(xm) − f(0)| = 1 + 1/m ̸→ 0 as m → ∞, where
|xm| = 1/m).

The family G contains the infinite number of mappings gmk
:= f −1

mk
, fmk

∈ F, that do not satisfy
relation (1.1). Otherwise, the family F “inverse” to G would be equicontinuous in Bn according to
Theorem 1.1.

The present work was published as an electronic preprint in [19].
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2. O. Martio, S. Rickman, and J. Väisälä, “Distortion and singularities of quasiregular mappings,” Ann. Acad.
Sci. Fenn. Ser. A1, 465, 1–13 (1970).

3. V. Ryazanov, U. Srebro, and E. Yakubov, “Finite mean oscillation and the Beltrami equation,” Israel Math.
J., 153, 247–266 (2006).
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