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A NEW SUBCLASS OF THE CLASS OF NONSINGULAR
H-MATRICES AND RELATED INCLUSION SETS FOR
EIGENVALUES AND SINGULAR VALUES

L. Yu. Kolotilina∗ UDC 512.643

The paper presents new nonsingularity conditions for n× n matrices, which involve a subset S of
the index set {1, . . . , n} and take into consideration the matrix sparsity pattern. It is shown that
the matrices satisfying these conditions form a subclass of the class of nonsingular H-matrices,
which contains some known matrix classes such as the class of doubly strictly diagonally dominant
(DSDD) matrices and the class of Dashnic–Zusmanovich type (DZT) matrices. The nonsingular-
ity conditions established are used to obtain the corresponding eigenvalue inclusion sets, which,
in their turn, are used in deriving new inclusion sets for the singular values of a square matrix,
improving some recently suggested ones. Bibliography: 11 titles.

1. Introduction

The paper suggests new nonsingularity conditions for square matrices of order n ≥ 2, which
depend on a nonempty proper subset S of the index set 〈n〉 = {1, . . . , n} and take into account
the matrix sparsity pattern. It is proved that the matrices satisfying these conditions form
a subclass, referred to as {S-SOB} (S-sparse Ostrowski–Brauer), of the class of nonsingular
H-matrices.

Recall that a matrix A ∈ C
n×n, n ≥ 2, is a nonsingularH-matrix if and only if its comparison

matrix M(A) = (mij), where

mij =

{ |aii|, i = j,
−|aij|, i �= j,

is a nonsingular M-matrix.
Also we introduce the subclass of the so-called S-OB (S-Ostrowski–Brauer) matrices, which

is contained in the class {S-SOB}.
The nonsingularity criteria suggested are then used, in a standard way, to obtain the corre-

sponding eigenvalue inclusion sets.
Finally, based on a general result proved in [7], we derive a new inclusion set for the singular

values of a square matrix, improving a recent result in [4].
The paper is organized as follows. In Sec. 2, a nonsingularity criterion is established.

Based on this criterion, we introduce new matrix classes, referred to as {S-SOB} and {S-
OB}, and show that they are subclasses of the class of nonsingular H-matrices. Also we list
some elementary properties of matrices in these subclasses, mostly related to strict diagonal
dominance. In Sec. 3, by using the nonsingularity criterion of Sec. 2, we obtain new eigenvalue
inclusion sets for square matrices and show that they are contained in the Gerschgorin disks.
Also we provide an improvement of the inclusion set for the singular values of a square matrix
recently suggested in [4].

We conclude this introduction by specifying the notation used in the paper.
• For a subset S ⊆ 〈n〉, |S| denotes the cardinality of S, and S̄ = 〈n〉 \S is the complementary
subset.
• In is the identity matrix of order n.
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• For a matrix A = (aij) ∈ C
n×n,

ri(A) =
n∑

j=1
j �=i

|aij |, i = 1, . . . , n,

are the deleted absolute row sums of A; for j ∈ 〈n〉, j �= i, we set

rji (A) = ri(A)− |aij |,
and if S ⊆ 〈n〉 is a nonempty subset of indices, then

rSi (A) =
∑
j∈S
j �=i

|aij |, i = 1, . . . , n,

are the corresponding partial deleted absolute row sums.

2. Nonsingularity criteria

The main results of this section are Theorem 2.3, which establishes a new nonsingularity
criterion, dependent on a subset of the index set, and Theorem 2.4, claiming that the matrices
satisfying the hypotheses of Theorem 2.3 form a subclass of the class of nonsingularH-matrices.

We start with establishing the following basic result.

Lemma 2.1. Let A = (aij) ∈ C
n×n, n ≥ 2, be a singular matrix, let S ⊂ 〈n〉 be a subset of

the index set 〈n〉, 1 ≤ |S| ≤ n− 1, and let

|xp| = max
i∈〈n〉

|xi|. (2.1)

If p ∈ S, then

either rS̄p (A) = 0 and

|app| − rSp (A) = |app| − rp(A) ≤ 0 (2.2)

or, for a certain q ∈ S̄ such that apq �= 0,

[|app| − rSp (A)] |aqq| ≤ rS̄p (A) rq(A). (2.3)

Proof. Let

Ax = 0, (2.4)

where x = (xi) ∈ C
n is a nonzero vector.

If rS̄p (A) = 0, then from (2.4) and (2.1) it follows that

|app| |xp| ≤ rp(A) |xp| = rSp (A) |xp|,
which proves (2.2).

In the case where rS̄p (A) �= 0, p ∈ S, we choose q ∈ S̄ in such a way that

|xq| = max
j∈S̄: apj �=0

|xj |. (2.5)

Using (2.4), (2.1), and (2.5), we derive

|app| |xp| ≤
∑
i∈S
i�=p

|api| |xi|+
∑
j∈S̄:
apj �=0

|apj | |xj | ≤ rSp (A) |xp|+ rS̄p (A) |xq |.

Therefore,

[|app| − rSp (A)] |xp| ≤ rS̄p (A) |xq|. (2.6)
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Here, two cases are possible. If xq = 0, then, by (2.6),

|app| − rSp (A) ≤ 0,

and inequality (2.3) holds trivially. If xq �= 0, then using (2.4) and (2.1), we derive

|aqq| |xq| ≤
∑
i �=q

|aqi| |xi| ≤ rq(A) |xp|. (2.7)

Since both xp and xq are nonzero, inequality (2.3) readily follows from (2.6) and (2.7).
This completes the proof of the lemma. �

Consider two special cases of Lemma 2.1.
First let S = {p}, where p is chosen in accordance with (2.1). In this case, we obviously

have

rSp (A) = 0 and rS̄p (A) = rp(A),

whence inequality (2.2) and the condition rS̄p (A) = 0 imply that the pth row of A is zero,
whereas inequality (2.3) reads as

|app| |aqq| ≤ rp(A) rq(A). (2.8)

Thus, in the case under consideration, Lemma 2.1 reduces to the following known assertion.

Corollary 2.1. If a matrix A = (aij) ∈ C
n×n, n ≥ 2, is free of zero rows and singular, then

inequality (2.3) holds for a pair of indices p, q ∈ 〈n〉, p �= q, such that apq �= 0.

Obviously, Corollary 2.1 amounts to the following sparse version of the classical Ostrowski–
Brauer nonsingularity criterion (see [9, 2]).

Theorem 2.1 ([6]). If a matrix A = (aij) ∈ C
n×n, n ≥ 2, is free of zero rows and satisfies

the condition

|app| |aqq| > rp(A) rq(A) for all p �= q such that apq �= 0, (2.9)

then A is nonsingular.

Matrices satisfying condition (2.9) for all p �= q (without the requirement that apq �= 0)
are sometimes referred to as doubly strictly diagonally dominant (DSDD) matrices (see, e.g.,
[3, 11]).

Now consider yet another specific choice of the set S. Let again p be chosen in accordance
with (2.1) and let q be an arbitrary index distinct from p. Set S = 〈n〉 \ {q}. In this case,
p ∈ S, inequality (2.3) reads as

[|app| − rqp(A)] |aqq| ≤ |apq| rq(A), (2.10)

and, by Lemma 2.1, for a singular matrix A, inequality (2.10) holds whenever apq �= 0. If
apq = 0, then (2.10) holds by virtue of (2.2). Thus, we arrive at the following result.

Corollary 2.2. If a matrix A = (aij) ∈ C
n×n, n ≥ 2, is singular, then inequality (2.10) holds

for a certain p ∈ 〈n〉 and every q ∈ 〈n〉, q �= p.

Corollary 2.2 amounts to the following nonsingularity criterion.

Theorem 2.2 ([11]). Let A = (aij) ∈ C
n×n, n ≥ 2. If for every p ∈ 〈n〉 the inequality

[|app| − rqp(A)] |aqq| > |apq| rq(A) (2.11)

holds with a certain q = q(p) �= p, then A is nonsingular.
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Matrices that satisfy the above condition were introduced in [11] and called Dashnic–
Zusmanovich type (DZT) matrices. For most recent results on DZT matrices, see [8].

In the case where S is an arbitrary nonempty proper subset of the index set, from Lemma 2.1
we immediately obtain the following result, generalizing both Theorem 2.1 and Theorem 2.2.

Theorem 2.3. Let A = (aij) ∈ C
n×n, n ≥ 2, and let S ⊂ 〈n〉, 1 ≤ |S| ≤ n− 1. Assume that

the following conditions are fulfilled:
(i) |app| > rSp (A) for all p ∈ S;

(ii) |aqq| > rS̄q (A) for all q ∈ S̄;

(iii) for all p ∈ S and all q ∈ S̄ such that apq �= 0,

[|app| − rSp (A)] |aqq| > rS̄p (A) rq(A); (2.12)

(iv) for all p ∈ S and all q ∈ S̄ such that aqp �= 0,

[|aqq| − rS̄q (A)] |app| > rSq (A) rp(A). (2.13)

Then the matrix A is nonsingular.

Theorem 2.3 is stated with account for the sparsity pattern of the matrix A. If the matrix
sparsity is ignored and we require that conditions (2.12) and (2.13) be fulfilled for all p ∈ S
and all q ∈ S̄, then conditions (i) and (ii) become exuberant, and we obtain the following
simplified statement.

Corollary 2.3. Let A = (aij) ∈ Cn×n, n ≥ 2, and let S ⊂ 〈n〉, 1 ≤ |S| ≤ n− 1. If inequalities
(2.12) and (2.13) hold for all p ∈ S and all q ∈ S̄, then A is nonsingular.

As is known [3, 11], the matrices satisfying the assumptions of Theorems 2.1 and 2.2 form
subclasses of the class of nonsingular H-matrices. Therefore, it is reasonable to conjecture
that the matrices satisfying the hypotheses of Theorem 2.3 also form a subclass of nonsingular
H-matrices. This conjecture is confirmed by the following theorem.

Theorem 2.4. If a matrix A ∈ C
n×n, n ≥ 2, satisfies the assumptions of Theorem 2.3, then

A is a nonsingular H-matrix.

Proof. Observe that a matrix A satisfies conditions (i)–(iv) of Theorem 2.3 if and only if its
comparison matrix M(A) satisfies them. Therefore, by Theorem 2.3, M(A) is nonsingular,
and we must demonstrate that it is an M-matrix. To this end, by [1, Condition D15 of
Theorem 6.2.3], it is sufficient to prove that the shifted matrix M(A) + εIn is nonsingular for
every ε ≥ 0. Obviously, if conditions (i)–(iv) hold for M(A), then they hold for M(A) + εIn
a fortiori. Thus, M(A) + εIn is nonsingular for all ε ≥ 0 by Theorem 2.3, whence A is a
nonsingular H-matrix. �

In what follows, for a subset S of the index set, the classes of matrices satisfying the condi-
tions of Theorem 2.3 and Corollary 2.3 will be referred to as {S-SOB} (S-Sparse Ostrowski–
Brauer) and {S-OB} (S-Ostrowski–Brauer), respectively.

We conclude this section with a list of some elementary properties of matrices from the
classes {S-SOB} and {S-OB}, most of which are related to strict diagonal dominance.

1. The following inclusions are valid:

{SDD} � {S-OB} � {S-SOB} � H.

2. The classes {S-SOB} and {S-OB} are invariant with respect to left multiplication by
nonsingular diagonal matrices.
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3. If A ∈ {S-SOB} or A ∈ {S-OB}, then the two principal submatrices A[S] = (aij)i,j∈S
and A[S̄] = (aij)i,j∈S̄ of A both are strictly diagonally dominant.

4. If A is an S-SOB matrix, p ∈ S, q ∈ S̄, and apq �= 0 or aqp �= 0, then, by virtue of (2.12)
or (2.13), at least one of the rows p and q is strictly diagonally dominant.

5. If A ∈ {S-OB} and, for a certain p ∈ S, the pth row is not strictly diagonally dominant,
then, by either (2.12) or (2.13), all the rows with numbers q ∈ S̄ are strictly diagonally
dominant. Thus, if A /∈{SDD}, then all its rows that are not strictly diagonally dominant are
simultaneously contained in either S or S̄.

3. Applications

In this section, we present new inclusion sets for the eigenvalues of a square matrix and the
corresponding inclusion sets for the singular values.

3.1. Eigenvalue inclusion sets. Applying Lemma 2.1 to the singular matrix λIn−A, where
λ ∈ SpecA is an eigenvalue of A, we conclude that for any subset S ⊂ 〈n〉, 1 ≤ |S| ≤ n − 1,
there exist some p ∈ S and q ∈ S̄ such that at least one of the following conditions is fulfilled:

(i)

rS̄p (A) = 0 and |λ− app| ≤ rSp (A);

(ii)

rSq (A) = 0 and |λ− aqq| ≤ rS̄q (A);

(iii)

apq �= 0 and
[|λ− app| − rSp (A)

] |λ− aqq| ≤ rS̄p (A) rq(A);

(iv)

aqp �= 0 and
[
|λ− aqq| − rS̄q (A)

]
|λ− app| ≤ rSq (A) rp(A).

This leads us to the following eigenvalue inclusion sets, dependent on S.

Theorem 3.1. Let A = (aij) ∈ C
n×n, n ≥ 2, and let S ⊂ 〈n〉, 1 ≤ |S| ≤ n−1, be an arbitrary

subset of the index set 〈n〉. Then

SpecA ⊆ Ω(A,S) ≡
⋃
p∈S:

rS̄p (A)=0

{
z ∈ C : |z − app| ≤ rSp (A)

}

∪
⋃
q∈S̄:

rSq (A)=0

{
z ∈ C : |z − aqq| ≤ rS̄q (A)

}

∪
⋃

p∈S,q∈S̄:
apq �=0

ΩS
pq(A) ∪

⋃
p∈S,q∈S̄:
aqp �=0

ΩS̄
qp(A), (3.1)

where

ΩS
pq(A) =

{
z ∈ C : [|z − app| − rSp (A)] |z − aqq| ≤ rS̄p (A) rq(A)

}
, p ∈ S, q ∈ S̄, (3.2)

and

ΩS̄
qp(A) =

{
z ∈ C : [|z − aqq| − rS̄q (A)] |z − app| ≤ rSq (A) rp(A)

}
, p ∈ S, q ∈ S̄. (3.3)

If, in Theorem 3.1, the sparsity considerations are ignored, then we obtain the following
result, which is simpler but less sharp.
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Corollary 3.1. Under the assumptions of Theorem 3.1,

SpecA ⊆
⋃

p∈S, q∈S̄
Ωpq(A,S), (3.4)

where

Ωpq(A,S) ≡ ΩS
pq(A) ∪ ΩS̄

qp(A), p ∈ S, q ∈ S̄.

Proof. We must show that the set Ω(A,S) is contained in the right-hand side of (3.4). Indeed,

if rS̄p (A) = 0, then, for every q ∈ S̄, the set

ΩS
pq(A) =

{
z ∈ C : [|z − app| − rSp (A)] |z − aqq| ≤ 0

}
obviously contains the set {

z ∈ C : |z − app| ≤ rSp (A)
}
.

Similarly, if rSq (A) = 0, then, for every p ∈ S, the set

{
z ∈ C : |z − aqq| ≤ rS̄q (A)

}
is trivially contained in the set

ΩS̄
qp(A) =

{
z ∈ C : [|z − aqq| − rS̄q (A)] |z − aqq| ≤ 0

}
. �

As is readily seen, for all p ∈ S and all q ∈ S̄,

Ωpq(A,S) ⊆ Γp(A) ∪ Γq(A), (3.5)

where

Γi(A) = {z ∈ C : |z − aii| ≤ ri(A)}, i = 1, . . . , n,

are the Gerschgorin disks for the matrix A.
Indeed, let z ∈ Ωpq(A,S). If z ∈ Γp(A), then, certainly, z ∈ Γp(A) ∪ Γq(A). In the case

where z /∈ Γp(A), we have

|z − app| > rp(A) and |z − app| − rSp (A) > rS̄p (A),

and from (3.2) and (3.3) it follows that

|z − aqq| ≤ rq(A),

i.e., z ∈ Γq(A). This proves (3.5).
Since, as shown in the proof of Corollary 3.1, Ω(A,S) ⊆ ⋃

p∈S, q∈S̄
Ωpq(A,S), from (3.5) we

immediately obtain that

Ω(A,S) ⊆
⋃

p∈S, q∈S̄
Ωpq(A,S) ⊆ Γ(A) ≡

⋃
i∈〈n〉

Γi(A), (3.6)

i.e., the new eigenvalue inclusion sets of Theorem 3.1 and Corollary 3.1 are contained in the
Gerschgorin set Γ(A).
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3.2. Inclusion sets for the singular values of a square matrix. The approach to de-
riving inclusion sets for singular values developed in [7] allows one to obtain them by applying
known eigenvalue inclusion sets to a certain matrix of double size associated with a given
matrix. This approach is based on the following lemma.

Lemma 3.1 ([7]). Let A = (aij) = DA + B ∈ C
n×n, where DA = diag (a11, . . . , ann). If

σ ∈ Σ(A) is a singular value of A, then the matrix

C = (cij) = C(σ,A) =

[
σ2In − |DA|2 0

0 σ2In − |DA|2
]
−

[
DAB

∗ σB
σB∗ D∗

AB

]
(3.7)

is singular. Furthermore, if σ ≥ 0 and σ �= |aii|, i = 1, . . . , n, then C is singular if and only
if σ ∈ Σ(A).

Lemma 3.1 says that zero is an eigenvalue of the matrix C = C(σ,A). Consequently, zero
is contained in any eigenvalue inclusion set for C. In particular, by virtue of Corollary 3.1,

0 ∈
⋃

p∈S,q∈S̄

[
ΩS
pq(C) ∪ ΩS̄

qp(C)
]
, (3.8)

where S is an arbitrary nonempty proper subset of the index set {1, 2, . . . 2n}, and the sets

ΩS
pq(C) and ΩS̄

qp(C) are defined in accordance with (3.2) and (3.3). Take S = 〈n〉. Then the

sets ΩS
pq(C) and ΩS̄

qp(C) are as follows:

ΩS
pq(C) =

{
z ∈ C :

[∣∣z − (σ2 − |app|2)
∣∣− |app| rp(A∗)

] · ∣∣z − (σ2 − |aqq|2)
∣∣

≤ σ rp(A) [σ rq(A
∗) + |aqq| rq(A)]} , p, q ∈ 〈n〉; (3.9)

ΩS̄
qp(C) =

{
z ∈ C :

[∣∣z − (σ2 − |aqq|2)
∣∣− |aqq| rq(A)

] · ∣∣z − (σ2 − |app|2)
∣∣

≤ σ rq(A
∗) [σ rp(A) + |app| rp(A∗)]} , p, q ∈ 〈n〉. (3.10)

The inclusion 0 ∈ ΩS
pq(C) amounts to the inequality

[|σ2 − |app|2| − |app| rp(A∗)
] · |σ2 − |aqq|2|

≤ σ rp(A) [σ rq(A
∗) + |aqq| rq(A)] , (3.11)

whereas the inclusion 0 ∈ ΩS̄
qp(C) is equivalent to the inequality

[
σ2 − |aqq|2| − |aqq| rq(A)

] · |σ2 − |app|2|
≤ σ rq(A

∗) [σ rp(A)] + |app| rp(A∗)] . (3.12)

Combining (3.8) with (3.11) and (3.12), we arrive at the following inclusion set for the
singular values of a square matrix, first suggested in [4].

Theorem 3.2 ([4]). Let A = (aij) ∈ C
n×n, where n ≥ 2. Then

Σ(A) ⊆ Δ(A) ≡
⋃

p,q∈〈n〉
[Δpq(A) ∪Δqp(A

∗)] , (3.13)

where

Δpq(A) =
{
z ≥ 0 :

[|z2 − |app|2| − |app| rp(A∗)
] · |z2 − |aqq|2|

≤ z rp(A) [z rq(A
∗) + |aqq| rq(A)]} , p, q ∈ 〈n〉. (3.14)
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As is readily verified, for all p, q ∈ 〈n〉, we have

Δpq(A) ∪Δqp(A
∗) ⊆ {

z ≥ 0 : |z2 − |app|2| ≤ |app| rp(A∗) + z rp(A)
}

∪{
z ≥ 0 : |z2 − |aqq|2| ≤ |aqq| rq(A) + z rq(A

∗)
}

⊆
⋃

i∈〈n〉

{
z ≥ 0 : |z2 − |aii|2| ≤ ϕi(z,A)

}
,

where

ϕi(z,A) = max{|aii| ri(A∗) + z ri(A), |aii| ri(A) + z ri(A
∗)}, i = 1, . . . , n.

This shows that
Δ(A) ⊆

⋃
i∈〈n〉

{
z ≥ 0 : |z2 − |aii|2| ≤ ϕi(z,A)

}
,

whence Theorem 3.2 provides an improvement of Theorem 2.1 in [7], claiming that

Σ(A) ⊆
⋃

i∈〈n〉

{
z ≥ 0 : |z2 − |aii|2| ≤ ϕi(z,A)

}
(3.15)

and corresponding to combining Lemma 3.1 with Gerschgorin’s theorem. Note that the in-
clusion (3.15) was first obtained, though not explicitly stated, in [10]. Quite recently, it has
appeared as Theorem 2 in the papers [4] and [5], both citing [10] but not referring to the result
in question. It should also be mentioned that up to ignoring some misprints, Theorem 3 in [5]
is a weaker version, disregarding the matrix sparsity pattern, of Corollary 2.4 in [7].

Note that the inclusion set provided by Theorem 3.2 actually applies not only to a given
matrix A but to all the equimodular matrices B = (bij) for which |bij | = |aij |, 1 ≤ i, j ≤ n.

Arguing as above but applying Theorem 3.1 rather than Corollary 3.1, we come to the fol-
lowing refinement of Theorem 3.2, which takes into consideration the matrix sparsity pattern.

Theorem 3.3. Let A = (aij) ∈ C
n×n, where n ≥ 2. Then

Σ(A) ⊆
⋃

p∈〈n〉:
rp(A)=0

{
z ≥ 0 :

∣∣z2 − |app|2
∣∣ ≤ |app| rp(A∗)

}

∪
⋃

q∈〈n〉:
rq(A∗)=0

{
z ≥ 0 :

∣∣z2 − |aqq|2
∣∣ ≤ |aqq| rq(A)

}
(3.16)

∪

⎡
⎢⎣ ⋃

p,q∈〈n〉:
apq �=0

Δpq(A)

⎤
⎥⎦ ∪

⎡
⎢⎣ ⋃

p,q∈〈n〉:
aqp �=0

Δqp(A
∗)

⎤
⎥⎦ ,

where the sets Δpq(A) are defined in accordance with (3.14).

Observe that for a matrix A having no diagonal rows and, in particular, for an arbitrary
irreducible matrix A, (3.16) takes the following simpler form:

Σ(A) ⊆

⎡
⎢⎣ ⋃

p,q∈〈n〉:
apq �=0

Δpq(A)

⎤
⎥⎦ ∪

⎡
⎢⎣ ⋃

p,q∈〈n〉:
aqp �=0

Δqp(A
∗)

⎤
⎥⎦ , (3.17)

which is the sparse version of (3.13).

We conclude this paper by mentioning that if one chooses the set S distinct from 〈n〉, say,
S = {k}, where k ∈ 〈n〉, then, by applying Lemmas 2.1 and Theorem 3.1 or Corollary 3.1, one
can obtain other inclusion sets for the matrix singular values.
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Translated by L. Yu. Kolotilina.
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