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RELATIONSHIP GRAPHS OF REAL CAYLEY–DICKSON
ALGEBRAS

A. E. Guterman∗ and S. A. Zhilina† UDC 512.554

The paper studies the anticommutativity condition for elements of arbitrary real Cayley–Dickson
algebras. As a consequence, the anticommutativity graphs on equivalence classes of such algebras
are classified. Under some additional assumptions on the algebras considered, an expression for
the centralizer of an element in terms of its orthogonalizer is obtained. Conditions sufficient for
this interrelation to hold are provided. Also examples of real Cayley–Dickson algebras in which
the centralizer and orthogonalizer of an element are not interrelated in this way are considered.
Bibliography: 28 titles.

1. Introduction

Studies in the area of graphs determined by relations in algebraic systems have originated
from group theory, see, e.g., [7]. Rings and algebras were first studied in this way in 1988
by Beck [11], where the zero divisor graph of a commutative ring was introduced. In Beck’s
definition, the vertex set of the graph coincides with the set of all elements of the ring. Then
Anderson and Livingston [6] gave another definition, which excludes zero and all zero divisors
of the ring. Mulay [26] considered a new zero divisor graph, whose vertex set consists of
the equivalence classes of the zero divisors of the ring. As to the zero divisor graphs of
noncommutative rings, they were introduced by Redmond [27] (namely, ΓZ(R) and Γ̄Z(R)).
In [12], Bozic and Petrovic studied the diameters of the zero divisor graphs of matrix rings
over commutative rings and their relationship with the diameters of the zero divisor graphs of
the ground rings.

In addition to the zero divisor graphs, commutativity graphs of matrix rings and some
other rings were also intensively studied, see [3] and the references therein. In particular,
in [2, 4, 16], different authors explored the connectivity and diameters of the commutativity
graphs of matrix rings, and also the way they are determined by the ground rings. In [9, 10, 19],
the orthogonality graphs (ΓO(R)) of matrix rings were studied.

In this paper, we consider relationship graphs of non-associative algebras and focus on their
combinatorial characteristics, such as the diameter, clique number, and description of cliques.
The paper is organized as follows. Section 2 contains main definitions and notation concerning
relationship graphs and some basic facts of graph theory. The Cayley–Dickson process is
described in detail in Sec. 3. In Sec. 5, we establish the anticommutativity condition for
the elements of an arbitrary real Cayley–Dickson algebra and present some auxiliary lemmas.
Theorem 6.3 in Sec. 6 provides a classification of the anticommutativity graphs on equivalence
classes of real Cayley–Dickson algebras. Some particular cases of this theorem for quaternions,
split-complex numbers, and split-quaternions are considered in Sec. 7. An expression for the
centralizer in terms of the orthogonalizer and some sufficient conditions for this expression to
hold are provided in Sec. 8, where we also demonstrate that these conditions are essential.
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2. Definitions and Notation

Let F be an arbitrary field and let (A,+, ·) be an algebra with the identity 1A over the field
F. The algebra A is not assumed to be commutative and associative. Given a, b ∈ A, we say
that

• a and b commute if ab = ba;
• a and b anticommute if ab+ ba = 0;
• a and b are orthogonal if ab = ba = 0;
• a is a left zero divisor if a �= 0 and there exists a nonzero b ∈ A such that ab = 0;
• a is a right zero divisor if a �= 0 and there exists a nonzero b ∈ A such that ba = 0;
• a is a two-sided zero divisor if it is both a left and a right zero divisor;
• a is a zero divisor if it is a left or a right zero divisor.

Definition 2.1. The center of an algebra A is the set CA =
{
a ∈ A | ab = ba for all b ∈ A}

.

The centralizer of a subset S ⊂ A is CA(S) =
{
a ∈ A | as = sa for all s ∈ S

}
, i.e., the set of

all elements in A that commute with every element of S. For an arbitrary a ∈ A, we denote
CA({a}) by CA(a).

By Z∗(A) we denote the set of zero divisors of A, and Z∗∗(A) is the set of two-sided zero
divisors of A. The set AC∗(A) =

{
a ∈ A \ {0} | ∃ b ∈ A \ {0} : ab + ba = 0

}
is the set of all

nonzero elements a ∈ A such that a anticommutes with a certain nonzero b ∈ A.

Definition 2.2. The anticentralizer of a subset S ⊂ A is the set AncA(S) =
{
a ∈ A|as+sa = 0

for all s ∈ S
}
, i.e., the set of all elements in A that anticommute with every element of S. For

an arbitrary a ∈ A, we denote AncA({a}) by AncA(a).

Definition 2.3. The left annihilator of a subset S ⊂ A is the set

l.AnnA(S) =
{
a ∈ A| as = 0 for all s ∈ S

}
.

Similarly, the right annihilator of S is

r.AnnA(S) =
{
a ∈ A | sa = 0 for all s ∈ S

}
.

For an arbitrary a ∈ A, we denote l.AnnA({a}) by l.AnnA(a) and r.AnnA({a}) by r.AnnA(a).

Definition 2.4. The orthogonalizer of a subset S ⊂ A is the set OA(S) =
{
a ∈ A| as = sa = 0

for all s ∈ S
}
, i.e., the set of all elements in A that are orthogonal to every element of S. For

an arbitrary a ∈ A, we denote OA({a}) by OA(a).

Now we introduce some equivalence relations that will be used below.

Definition 2.5.

(1) Let a, b ∈ A \ CA. We say that a and b are C-equivalent (a ∼C b) if CA(a) = CA(b).
The equivalence class of a is denoted by [a]C .

(2) Let a, b ∈ AC∗(A). We say that a and b are AC-equivalent (a ∼AC b) if AncA(a) =
AncA(b). The equivalence class of a is denoted by [a]AC .

(3) Let a, b ∈ Z∗(A). We say that a and b are Z-equivalent (a ∼Z b) if l.AnnA(a) =
l.AnnA(b) and r.AnnA(a) = r.AnnA(b). The equivalence class of a is denoted by [a]Z .

(4) Let a, b ∈ Z∗∗(A). We say that a and b are O-equivalent (a ∼O b) if OA(a) = OA(b).
The equivalence class of a is denoted by [a]O.

Remark 2.6. Let S ⊂ A. It is readily seen that CA, CA(S), AncA(S), l.AnnA(S), r.AnnA(S),
and OA(S) are vector spaces over F.

Now we can introduce some relationship graphs that will be studied in this paper.
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Definition 2.7. For an algebra A, we define the following structures:

(1) The commutativity graph ΓC(A): its vertex set is A \ CA, and distinct vertices a and
b are adjacent if and only if ab = ba.

(2) The commutativity graph on the equivalence classes ΓE
C(A): its vertex set is

{
[a]C

∣
∣a ∈

A \ CA
}
, and distinct vertices [a]C and [b]C are adjacent if and only if ab = ba.

(3) The anticommutativity graph ΓAC(A): its vertex set is AC∗(A), and distinct vertices
a and b are adjacent if and only if ab+ ba = 0.

(4) The anticommutativity graph on the equivalence classes ΓE
AC(A): its vertex set is{

[a]AC

∣
∣a ∈ AC∗(A)

}
, and distinct vertices [a]AC and [b]AC are adjacent if and only if

ab+ ba = 0.
(5) The orthogonality graph ΓO(A): its vertex set is Z∗∗(A), and distinct vertices a and b

are adjacent if and only if ab = ba = 0.
(6) The orthogonality graph on the equivalence classes ΓE

O(A): its vertex set is
{
[a]O

∣∣a ∈
Z∗∗(A)

}
, and distinct vertices [a]O and [b]O are adjacent if and only if ab = ba = 0.

(7) The directed zero divisor graph ΓZ(A): its vertex set is Z∗(A), and distinct vertices a
and b are connected by an arc going from a to b if and only if ab = 0.

(8) The directed zero divisor graph on the equivalence classes ΓE
Z (A): its vertex set is{

[a]Z
∣∣a ∈ Z∗(A)

}
, and distinct vertices [a]Z and [b]Z are connected by an arc going

from [a]Z to [b]Z if and only if ab = 0.
(9) The undirected zero divisor graph Γ̄Z(A): its vertex set is Z∗(A), and distinct vertices

a and b are adjacent if and only if ab = 0 or ba = 0.
(10) The undirected zero divisor graph on the equivalence classes Γ̄E

Z (A): its vertex set is{
[a]Z

∣
∣a ∈ Z∗(A)

}
, and distinct vertices [a]Z and [b]Z are adjacent if and only if ab = 0

or ba = 0.

Proposition 2.8. The graphs ΓE
C(A), ΓE

AC(A), ΓE
O(A), ΓE

Z (A), and Γ̄E
Z (A) are well defined.

Proof. As is readily verified, adjacency in these graphs is independent of representatives of the
equivalence classes. �

We will need the following definitions of graph theory.

Definition 2.9. Let Γ be an undirected graph.

• Γ is said to be connected if for every pair of vertices {x, y} there exists a path going
from x to y, that is, x and y are connected. Otherwise Γ is said to be disconnected.

• A connected component of Γ is a maximal connected subgraph of Γ.
• The distance d(x, y) between two vertices x and y in Γ is the number of edges in a
shortest path connecting them. If there is no path connecting x and y, i.e., they belong
to different connected components, then d(x, y) = ∞.

• The diameter d(Γ) of Γ is defined as sup
x,y∈Γ

d(x, y).

• A clique C in Γ is a subset of vertices of Γ such that every two distinct vertices in C
are adjacent.

• A clique C is said to be maximal if for any clique C̃ such that C ⊂ C̃ we have C = C̃.

3. Construction of Cayley–Dickson algebras

In this section, mainly based on [22, 28], we recall a classical construction of non-associative
algebras, which is called the Cayley–Dickson process.

Definition 3.1 ([22, p. 139, Definition 1.5.1]). Let (A,+, ·) be an algebra over a field F. An
involution a �→ ā in A is an endomorphism of the vector space A such that for all a, b ∈ A we
have ¯̄a = a and ab = b̄ā.
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Definition 3.2. Let (A,+, ·) be an algebra over a field F with the identity 1A and an involution
a �→ ā. This involution is said to be regular if it satisfies the conditions a + ā ∈ F1A and
aā ∈ F1A for any a ∈ A.

Henceforth, we assume that A is an algebra over a field F with a regular involution a �→ ā.
Consider the following definitions, which are analogous to those for complex numbers.

Definition 3.3. The real part of an element a ∈ A is Re(a) = a+ā
2 ; the imaginary part of a is

Im(a) = a−ā
2 ; the norm of a is n(a) = aā = āa. An element a is said to be pure if Re(a) = 0.

The norm of a is often defined as
√
aā; however, in this paper, we use the norm n(a) = aā.

Note that most of the results can easily be extended to the norm modified in this way.
The next proposition describes some properties of the above notions. Its proof is based on

properties of endomorphisms of vector spaces.

Proposition 3.4. Let F = R, a, b ∈ A, r ∈ R. Then the following equalities hold:

Re(a+ b) = Re(a) +Re(b),

Im(a+ b) = Im(a) + Im(b),

Re(ra) = rRe(a),

Im(ra) = rIm(a),

Re(Re(a)) = Re(a),

Re(Im(a)) = 0,

Im(Re(a)) = 0,

Im(Im(a)) = Im(a).

Now we turn to the Cayley–Dickson process itself.

Definition 3.5 ([28]). The algebra A{γ} produced by the Cayley–Dickson process applied to
A with the parameter γ ∈ F is defined as the set of ordered pairs of elements of A with the
operations

α(a, b) = (αa, αb),

(a, b) + (c, d) = (a+ c, b+ d),

(a, b)(c, d) = (ac+ γd̄b, da+ bc̄)

and the involution
(a, b) = (ā,−b), a, b, c, d ∈ A, α ∈ F.

Proposition 3.6 ([28]). The algebra A{γ} is an algebra over F with the identity 1A{γ} =
(1A, 0) and a regular involution.

Proposition 3.7 ([28]). Let A be an n-dimensional algebra and let
{
ei
}
i=1,...,n

be a basis in

A. Then A{γ} is a 2n-dimensional algebra, and
{
(ei, 0), (0, ei)

}
i=1,...,n

is a basis in A{γ}.
Thus, starting with a one-dimensional algebra and successively applying the Cayley–Dickson

process to it, at the nth step we obtain a 2n-dimensional algebra.

Lemma 3.8 ([28]). Let a, b ∈ A, (a, b) ∈ A{γ}. Then

Re((a, b)) = Re(a),

Im((a, b)) = (Im(a), b),

n((a, b)) = n(a)− γn(b).

Proof. Consider the following strings of equalities:

Re((a, b))=
(a, b) + (a, b)

2
=

(a, b) + (ā,−b)

2
=

(a+ ā, 0)

2
=
(2Re(a), 0)

2
=Re(a)1A{γ}=Re(a);

Im((a, b)) =
(a, b)− (a, b)

2
=

(a, b) − (ā,−b)

2
=

(a− ā, 2b)

2
=

(2Im(a), 2b)

2
= (Im(a), b);
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n((a, b)) = (a, b)(a, b) = (a, b)(ā,−b) = (aā− γb̄b,−ba+ b¯̄a) = (n(a)− γn(b), 0)

= (n(a)− γn(b))(1A, 0) = (n(a)− γn(b))1A{γ} = n(a)− γn(b). �

Definition 3.9. Let b, c ∈ A, a = (b, c) ∈ A{γ}. An element a is said to be doubly pure if
Re(b) = Re(c) = 0.

Proposition 3.10. If a ∈ A{γ} is doubly pure, then a is pure.

Proof. If a = (b, c), Re(b) = Re(c) = 0, then Re(a) = Re((b, c)) = Re(b) = 0. �
Notation 3.11. A{γ1, . . . , γn} denotes (. . . (A{γ1}) . . . ){γn}.

The question whether this construction is correct naturally arises. In particular, does the
order of application of the Cayley–Dickson process with different values of γ influence the
result we obtain? The following lemma contains an observation concerning this issue.

Lemma 3.12. If A is a commutative algebra, then for any γ1, γ2 ∈ F the algebras A{γ1, γ2}
and A{γ2, γ1} are isomorphic.

Proof. Consider the mapping φ : A{γ1, γ2} −→ A{γ2, γ1} such that for all a, b, c, d ∈ A,

φ : ((a, b)γ1 , (c, d)γ1)γ2 �→ ((a, c)γ2 , (−b, d)γ2)γ1 .

Obviously, φ is bijective. Show that φ preserves multiplication, whence φ is a homomorphism.
Indeed, we have

(
(a, b)γ1 , (c, d)γ1

)

γ2

(
(a′, b′)γ1 , (c

′, d′)γ1
)

γ2

=
(
(a, b)γ1(a

′, b′)γ1 + γ2(c′, d′)γ1(c, d)γ1 , (c
′, d′)γ1(a, b)γ1 + (c, d)γ1(a

′, b′)γ1
)

γ2

=
(
(a, b)γ1(a

′, b′)γ1 + γ2(c̄′,−d′)γ1(c, d)γ1 , (c
′, d′)γ1(a, b)γ1 + (c, d)γ1(ā

′,−b′)γ1
)

γ2

=
(
(aa′ + γ1b̄′b, b′a+ bā′)γ1 + γ2(c̄′c− γ1d̄d

′, dc̄′ − d′c̄)γ1 ,

(c′a+ γ1b̄d
′, bc′ + d′ā)γ1 + (cā′ − γ1b̄′d,−b′c+ da′)γ1

)

γ2

=
((

aa′ + γ1b̄′b+ γ2c̄′c− γ1γ2d̄d
′, (b′a+ bā′) + γ2(dc̄′ − d′c̄)

)
γ1
,

(
(c′a+ cā′) + γ1(b̄d

′ − b̄′d), (bc′ − b′c) + (d′ā+ da′)
)
γ1

)

γ2
.

It follows that

φ
((

(a, b)γ1 , (c, d)γ1
)
γ2

)
φ
((

(a′, b′)γ1 , (c
′, d′)γ1

)
γ2

)

=
(
(a, c)γ2 , (−b, d)γ2

)

γ1

(
(a′, c′)γ2 , (−b′, d′)γ2

)

γ1

=
((

aa′ + γ2c̄′c+ γ1b̄′b− γ2γ1d̄d
′, (c′a+ cā′) + γ1(−db̄′ + d′b̄)

)
γ2
,

(
(−b′a− bā′) + γ2(c̄d

′ − c̄′d), (−cb′ + c′b) + (d′ā+ da′)
)
γ2

)

γ1

=
((

aa′ + γ1b̄′b+ γ2c̄′c− γ1γ2d̄d
′, (c′a+ cā′) + γ1(d

′b̄− db̄′)
)
γ2
,

(− ((b′a+ bā′) + γ2(c̄′d− c̄d′)), (bc′ − b′c) + (d′ā+ da′)
)
γ2

)

γ1

=
((

aa′ + γ1b̄′b+ γ2c̄′c− γ1γ2d̄d
′, (c′a+ cā′) + γ1(b̄d

′ − b̄′d)
)
γ2
,
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(− ((b′a+ bā′) + γ2(dc̄′ − d′c̄)), (bc′ − b′c) + (d′ā+ da′)
)
γ2

)

γ1

= φ
((

(aa′ + γ1b̄′b+ γ2c̄′c− γ1γ2d̄d
′, (b′a+ bā′) + γ2(dc̄′ − d′c̄)

)
γ1
,

(
(c′a+ cā′) + γ1(b̄d

′ − b̄′d), (bc′ − b′c) + (d′ā+ da′))γ1
)
γ2

)

= φ
((

(a, b)γ1 , (c, d)γ1
)
γ2

(
(a′, b′)γ1 , (c

′, d′)γ1
)
γ2

)
. �

Definition 3.13. For every integer n ≥ 0 and arbitrary reals γ0, . . . , γn−1, we inductively
define the algebras An = An{γ0, . . . , γn−1} as follows:

1) A0 = R, and e
(0)
0 = 1 is its only basis element.

2) If An{γ0, . . . , γn−1} is already available, then An+1{γ0, . . . , γn}=(An{γ0, . . . , γn−1}){γn}.
Its basis elements are e

(n+1)
0 , . . . , e

(n+1)
2n+1−1

, which are defined by

e
(n+1)
i =

{
(e

(n)
i , 0), 0 ≤ i ≤ 2n − 1,

(0, e
(n)
i−2n ), 2n ≤ i ≤ 2n+1 − 1.

Lemma 3.14 ([28]). For every integer n ≥ 0, the structure An constructed in Definition 3.13

is a 2n-dimensional algebra over R with the identity e
(n)
0 and a regular involution.

Proof. This assertion follows from Propositions 3.6 and 3.7 by induction on n. �

We will use the following notation: 1 = 1(n) = e
(n)
0 and r = r1(n) for r ∈ R. The superscript

is omitted if it is clear from the context. From the definition of An it follows that real numbers
commute with all its elements, and we obtain the following result.

Corollary 3.15. For every integer n ≥ 0, we have R ⊂ CAn .

Proposition 3.16 ([22, p. 161, Exercise 2.5.1]). Let γ′ = α2γ, with α �= 0. Then A{γ} and
A{γ′} are isomorphic.

From Proposition 3.16 it follows that in studying real Cayley–Dickson algebras An =
An{γ0, . . . , γn−1}, it is sufficient to consider γk ∈ {0,±1}, k = 0, . . . , n − 1, because for
other values of γk the resulting algebras are isomorphic to these ones.

Assume that 00 = 1.

Notation 3.17. Let An be a real Cayley–Dickson algebra. For every m = 0, . . . , 2n − 1, we
set

δ
(n)
m =

n−1∏

l=0

(−γl)
cm,l ,

where the indices cm,l ∈ {0, 1} are uniquely determined by the condition m =
n−1∑

l=0

cm,l2
l.

Proposition 3.18. For any m = 0, . . . , 2n − 1, the value of δ
(n)
m is determined uniquely.

Proof. This assertion follows from the uniqueness of the binary representation of a nonnegative
integer. �

Remark 3.19. For any γ0, . . . , γn−1, we have δ
(n)
0 = 1.

In the sequel, we will need the following lemma.
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Lemma 3.20. Let a = a0 + a1e
(n)
1 + · · ·+ a2n−1e

(n)
2n−1 ∈ An. Then

ā = a0 − a1e
(n)
1 − · · · − a2n−1e

(n)
2n−1;

Re(a) = a0;

Im(a) = a1e
(n)
1 + · · ·+ a2n−1e

(n)
2n−1;

n(a) =

2n−1∑

m=0

δ(n)m a2m.

Proof. The equalities are obtained from Lemma 3.8 by direct calculations. �

4. Some examples of real Cayley–Dickson algebras

Definition 4.1. An algebra An{γ0, . . . , γn−1} is said to belong to the main Cayley–Dickson
sequence if γi = −1 for every i = 0, . . . , n− 1.

Example 4.2. Examples of real Cayley–Dickson algebras of the main sequence are provided
by the complex numbers (C), quaternions (H), octonions (O), and sedenions (S). We refer the
reader to [8] for the definitions of H and O, and to [15] for that of S.

Definition 4.3. An algebra An{γ0, . . . , γn−1} is called a real Cayley–Dickson split algebra if
γi = −1 for all i = 0, . . . , n− 2 and γn−1 = 1.

Example 4.4. Examples of real Cayley–Dickson split algebras are provided by the split-
complex numbers (Ĉ), split-quaternions (coquaternions; Ĥ), and split-octonions (hyperbolic

octonions; Ô), all of them being defined in [13].

It is known that Ĥ is isomorphic to the algebra M2(R) of 2 × 2 matrices over R, see [22,

p. 66], and Ô is isomorphic to the Zorn vector-matrix algebra, see [22, p. 158]. The constructive

definitions of Ĉ and Ĥ are given below. We will need them in Sec. 7.

Definition 4.5 ([13]). The algebra Ĉ is the algebra of elements of the form a + b�, where
a, b ∈ R, �2 = 1, with the involution a+ b� = a− b�.

Definition 4.6 ([13]). The algebra Ĥ is a four-dimensional algebra over R; its basis elements

are 1, i, �, �i. The involution in Ĥ is defined by the formula a0 + a1i+ a2�+ a3�i = a0 − a1i−
a2�− a3�i, and multiplication is defined by Table 1.

Table 1. Multiplication table of the unit split-quaternions.

× 1 i � �i
1 1 i � �i
i i −1 −�i �
� � �i 1 i
�i �i −� −i 1

Proposition 4.7 ([23], [22, pp. 64–66]). The following isomorphisms hold:

C ∼= A1{−1};
H ∼= A2{−1,−1};
O ∼= A3{−1,−1,−1};
S ∼= A4{−1,−1,−1,−1}.

Ĉ ∼= A1{1};
Ĥ ∼= A2{−1, 1};
Ô ∼= A3{−1,−1, 1};
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5. Anticommutativity in real Cayley–Dickson algebras

Everywhere below, we assume that An = An{γ0, . . . , γn−1}, where γi ∈ {−1, 0, 1}, i =
0, . . . , n− 1, is an arbitrary real Cayley–Dickson algebra.

Lemma 5.1. Let a ∈ An. Then the following conditions are equivalent:

1) a ∈ OAn(a), i.e., a
2 = 0;

2) a ∈ AncAn(a);
3) n(a) = 0 and Re(a) = 0.

Proof. 1) ⇔ 2):: The conditions a2 = 0 and 2a2 = 0 are equivalent in An.
1) ⇒ 3):: Let a2 = 0. Then n(a) = aā = a(2Re(a) − a) = 2Re(a)a − a2 = 2Re(a)a ∈ R.

Hence either Re(a) = 0 and then n(a) = 0, or a ∈ R and then a = 0.
3) ⇒ 1):: Let n(a)=0 and Re(a)=0. Then ā=−a and a2=−aā=−n(a) = 0. �

Lemma 5.2. Let a ∈ An and Re(a) = 0. Then a2 = −n(a) ∈ R.

Proof. Since Re(a) = 0, it follows that ā = −a and a2 = −aā = −n(a) ∈ R. �

Notation 5.3. Given elements a =
2n−1∑

m=0
ame

(n)
m , b =

2n−1∑

m=0
bme

(n)
m ∈ An, we denote

Λ(a, b) =
2n−1∑

m=0
δ
(n)
m ambm,

where δ
(n)
m is defined in Notation 3.17.

Proposition 5.4. Λ(a, b) is a real-valued symmetric bilinear form, that is, for all a, b ∈ A,
α ∈ R,

Λ(a1 + a2, b) = Λ(a1, b) + Λ(a2, b);

Λ(αa, b) = αΛ(a, b);

Λ(a, b) = Λ(b, a);

Λ(a, b) ∈ R.

Proof. All the properties can be verified directly. �
Proposition 5.5. For any a ∈ A, we have n(a) = Λ(a, a).

Proof. This follows from Lemma 3.20. �
Proposition 5.6. Let a, b ∈ An. Then āb+ b̄a = 2Λ(a, b) ∈ R.

Proof. Using Propositions 5.4 and 5.5, we derive

āb+ b̄a = (ā+ b̄)(a+ b)− āa− b̄b = (a+ b)(a+ b)− āa− b̄b

= n(a+ b)− n(a)− n(b) = Λ(a+ b, a+ b)− Λ(a, a)− Λ(b, b)

=
(
Λ(a, a) + Λ(a, b) + Λ(b, a) + Λ(b, b)

) − Λ(a, a) − Λ(b, b) = 2Λ(a, b). �

Corollary 5.7. Let a, b ∈ An, Re(a) = Re(b) = 0. Then ab+ ba = −2Λ(a, b) ∈ R.

Proof. This is a special case of Proposition 5.6 for ā = −a, b̄ = −b. �
Lemma 5.8. Let a ∈ An, a �= 0.

(1) If Re(a) �= 0, n(a) �= 0, then AncAn(a) = 0.
(2) If Re(a) �= 0, n(a) = 0, then AncAn(a) = Rā.
(3) If Re(a) = 0, then b ∈ AncAn(a) if and only if Re(b) = 0 and Λ(a, b) = 0.
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Proof. Consider the anticommutativity condition for some nonzero elements a, b ∈ An:

0 = ab+ ba = (Re(a) + Im(a))(Re(b) + Im(b)) + (Re(b) + Im(b))(Re(a) + Im(a))

= (2Re(a)Re(b) + Im(a)Im(b) + Im(b)Im(a)) + 2(Re(a)Im(b) +Re(b)Im(a)).

Note that

A1 = 2Re(a)Re(b) + Im(a)Im(b) + Im(b)Im(a) = Re(ab+ ba),

whereas

A2 = 2(Re(a)Im(b) +Re(b)Im(a)) = Im(ab+ ba).

The equality A1 +A2 = 0 implies A1 = A2 = 0.
First assume that Re(a) �= 0. In this case,

Im(b) = −Re(b)

Re(a)
Im(a),

b = Re(b) + Im(b) =
Re(b)

Re(a)
(Re(a)− Im(a)) =

Re(b)

Re(a)
ā. (5.1)

Thus,

0 = ab+ ba =
Re(b)

Re(a)
(aā+ āa) = 2

Re(b)

Re(a)
n(a). (5.2)

If n(a) �= 0, then equality (5.2) implies Re(b) = 0, and, by equality (5.1), we obtain b = 0.
Thus, (1) is proved.

If n(a) = 0, then (2) follows from equality (5.1).
The case where Re(b) �= 0 is considered similarly and leads us to the conditions of either

(1) or (2).
If Re(a) = Re(b) = 0, then, by Corollary 5.7, we obtain (3). �

Let q denote the number of zero elements among γ0, . . . , γn−1. Now we introduce the
following subsets of the set of indices {1, . . . , 2n − 1}:

M+ =
{
1 ≤ m ≤ 2n − 1

∣
∣∣ δ(n)m > 0

}
,

M− =
{
1 ≤ m ≤ 2n − 1

∣
∣∣ δ(n)m < 0

}
,

M0 =
{
1 ≤ m ≤ 2n − 1

∣
∣∣ δ(n)m = 0

}
,

M± = M+ ∪M−.

Proposition 5.9. In the above notation, M+ ∪M− ∪M0 = {1, . . . , 2n − 1} and M+ ∩M− =
M+ ∩M0 = M0 ∩M− = ∅.

Proof. The relations immediately follows from the definitions of M+,M−,M0. �

Proposition 5.10. In the above notation, the following assertions hold:

(1) |M±| = 2n−q − 1, |M0| = 2n − 2n−q;
(2) if γ0, . . . , γn−1 ≤ 0, then |M+| = 2n−q − 1, |M−| = 0;
(3) if for a certain i ∈ {0, . . . , n− 1} the condition γi > 0 is fulfilled, then |M+| = 2n−q−1 − 1,

|M−| = 2n−q−1.

Proof. The assertions follow from the definitions of M+,M−,M0, Notation 3.17, and Proposi-
tion 5.9. �
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We will need the following linear subspaces of An:

A+
n =

⊕

m∈M+

〈e(n)m 〉, A−
n =

⊕

m∈M−

〈e(n)m 〉, A0
n =

⊕

m∈M0

〈e(n)m 〉,

A±
n = A+

n ⊕A−
n , A′

n = A±
n ⊕A0

n.

By definition, A′
n = Im(An), that is, this is the set of pure elements of An.

Let a ∈ An, a =
2n−1∑

m=0
ame

(n)
m . Obviously, Im(a) ∈ A′

n. We will also need the following

notation:

a+ =
∑

m∈M+

ame(n)m ∈ A+
n , a− =

∑

m∈M−

ame(n)m ∈ A−
n ,

a0 =
∑

m∈M0

ame(n)m ∈ A0
n, a± = Im(a)− a0 ∈ A±

n .

Below, we present some immediate consequences of the above definitions, which will be used
in the proof of the main result.

Corollary 5.11. Let a ∈ A′
n \ {0}.

(1) If a ∈ A0
n, then AncAn(a) = A′

n and dim(AncAn(a)) = 2n − 1.
(2) If a /∈ A0

n, then AncAn(a) � A′
n and dim(AncAn(a)) = 2n − 2.

Proof. Since Re(a) = 0, from Lemma 5.8 it follows that b ∈ AncAn(a) if and only if Re(b) = 0
and Λ(a, b) = 0.

(1) If a ∈ A0
n, then the condition Λ(a, b) = 0 is fulfilled automatically, whence the only

essential condition is b ∈ A′
n.

(2) If a /∈ A0
n, then the equation Λ(a, b) = 0 determines a proper (2n−2)-dimensional subspace

of A′
n. �

Corollary 5.12. Let a ∈ A′
n, n(a) �= 0. Then

(1) A′
n = Ra⊕AncAn(a);

(2) An = CAn(a) + AncAn(a).

Proof. (1) By Lemma 5.1, n(a) �= 0 implies a /∈ AncAn(a). Moreover, from Corollary 5.11 it
follows that AncAn(a) ⊂ A′

n and dim(AncAn(a)) ≥ 2n − 2. Therefore, Ra⊕ AncAn(a) ⊂ A′
n,

dim(Ra⊕AncAn(a)) ≥ 2n − 1 = dim(A′
n), whence A′

n = Ra⊕AncAn(a).
(2) Since 1, a ∈ CAn(a), we have

An = R⊕A′
n = R⊕ (Ra⊕AncAn(a)) = (R⊕ Ra)⊕AncAn(a) ⊂ CAn(a) + AncAn(a).

This completes the proof. �
Remark 5.13. The sum in the equality An = CAn(a) + AncAn(a) can be replaced with the
direct sum if and only if OAn(a) = {0}.
Proof. CAn(a) ∩AncAn(a) = OAn(a). �
Example 5.14. As an example of the case where OAn(a) �= {0}, consider an arbitrary zero
divisor a in An = S.

Lemma 5.15. For An, the following assertions hold:

(1) An element a ∈ AC∗(An) such that Re(a) = 0 exists if and only if either n ≥ 2 or n = 1
and γ0 = 0.

(2) An element a ∈ An such that Re(a) �= 0 and n(a) = 0 exists if and only if A−
n �= 0, that

is, at least one of the numbers γ0, . . . , γn−1 is positive.
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(3) AC∗(An) = ∅ if and only if either n = 0 or n = 1 and γ0 < 0.

Proof. (1) It is known that a ∈ AC∗(An) and Re(a) = 0 if and only if the equation Λ(a, b) = 0

in the variable b =
2n−1∑

m=1
bme

(n)
m has at least one nonzero solution.

• If n ≥ 2, then any a ∈ A′
n \ {0} satisfies this condition.

• If n = 1, then a = a1e
(1)
1 , and the equation in the variable b = b1e

(1)
1 takes the form

−γ0a1b1 = 0. Since a �= 0, we have a1 �= 0. Hence this equation has a nonzero solution if and
only if γ0 = 0.

(2) If γ0, . . . , γn−1 ≤ 0, a =
2n−1∑

m=0
ame

(n)
m , then the coefficients at all terms of n(a) =

2n−1∑

m=0
δ
(n)
m a2m are nonzero. Moreover, δ

(n)
0 = 1. Thus, Re(a) �= 0 implies n(a) > 0.

If there exists a certain i ∈ {0, . . . , n−1} such that γi > 0, then one can take a =
√
γi+e

(n)
2i

.
(3) Assume that either n = 0 or n = 1 and γ0 < 0. Then, obviously, AC∗(An) = ∅. Now

assume that either n ≥ 2 or n = 1 and γ0 ≥ 0. Prove that AC∗(An) �= ∅.
• Consider the case where either n ≥ 2 or n = 1 and γ0 = 0. Then, as has been shown

above, there exists a ∈ AC∗(An) such that Re(a) = 0.
• Consider the case where n = 1 and γ0 > 0. As we have proved above, there exists b ∈ An

such that Re(b) �= 0 and n(b) = 0, whence b ∈ AC∗(An). �
Corollary 5.16. Let AC∗(An) �= ∅, a ∈ An.

(1) If A−
n �= 0 or A0

n = 0, then a anticommutes with every b ∈ AC∗(An) if and only if a = 0.
(2) If A−

n = 0 and A0
n �= 0, then a anticommutes with every b ∈ AC∗(An) if and only if

a ∈ A0
n.

Proof. Obviously, if a = 0, then ab+ ba = 0 for any b ∈ AC∗(An). We now check the existence
of a nonzero a satisfying this condition. In view of the condition AC∗(An) �= ∅, we have
a ∈ AC∗(An).

(1) • Let A−
n �= 0. Then there exists b ∈ An such that Re(b) �= 0 and n(b) = 0. Then

b, b̄ ∈ AC∗(An), but AncAn(b) ∩AncAn(b̄) = 0, and the desired assertion follows.
• Now let A−

n = 0 and A0
n = 0. Since AC∗(An) �= ∅, we have n ≥ 2. Then AC∗(An)

consists of nonzero elements of A′
n = A+

n . For an arbitrary element a ∈ AC∗(An) we
have AncAn(a) � A′

n. Hence there exists b ∈ AC∗(An) \ AncAn(a).
(2) If A−

n = 0 and A0
n �= 0, then AC∗(An) = A′

n \ {0}. Now let a ∈ AC∗(An). If a ∈ A0
n,

then AncAn(a) = A′
n, and, consequently, a anticommutes with all elements of AC∗(An).

If a /∈ A0
n, then AncAn(a) � A′

n, whence a cannot satisfy the desired condition. �
Lemma 5.17. Let a, b ∈ A′

n.

(1) Assume that γ0, . . . , γn−1 ≤ 0. Then a and b anticommute if and only if a± and b± are
orthogonal as elements of a (2n−q − 1)-dimensional Euclidean space.

(2) Assume that there exists i ∈ {0, . . . , n − 1} such that γi > 0. Then a and b anticommute
if and only if a± and b± are orthogonal as elements of a pseudo-Euclidean space with
signature (2n−q−1 − 1, 2n−q−1).

Proof. Both assertions follow from Lemma 5.8. �
Remark 5.18. The problem of finding cliques consisting of pure elements in ΓE

AC(An) has
been reduced to the problem of finding orthogonal systems either in a (2n−q − 1)-dimensional
Euclidean space or in a pseudo-Euclidean space with signature (2n−q−1−1, 2n−q−1).

The following fact is well known.
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Lemma 5.19 ([18, p. 282]). Let E be a pseudo-Euclidean space and let U be a subspace of E.
By U⊥ denote the set of elements that are orthogonal to every element of U . Then U⊥ also is
a subspace of E, and the following equality holds:

dim(U) + dim(U⊥) = dim(E).

Corollary 5.20. Let S ⊂ A±
n . Then

rk(S) + dim(AncAn(S) ∩ A±
n ) = 2n−q − 1,

where rk(S) is the cardinality of a maximal linearly independent subsystem of S.

Proof. The desired relation immediately follows from Lemmas 5.17 and 5.19. �
Lemma 5.21. Let a ∈ AC∗(An).

(1) If Re(a) = 0, then a ∼AC b if and only if b �= 0 and b ∈ (R \ {0})a +A0
n, i.e., b = αa+ x

for some 0 �= α ∈ R and x ∈ A0
n.

(2) If Re(a) �= 0 and n(a) = 0, then a ∼AC b if and only if b ∈ (R \ {0})a.
Proof. Now we use Lemma 5.8.

(1) If Re(a) = 0, then AncAn(a) ⊂ A′
n, whence a ∼AC b implies Re(b) = 0. Thus, as it

follows from Lemma 5.8, a ∼AC b if and only if the equations Λ(a, d) = 0 and Λ(b, d) = 0 in

the variable d =
2n−1∑

m=1
dme

(n)
m determine the same solution set. From the definition of the sets

M0 and M± it follows that M0 ∪M± = {1, . . . , 2n − 1} and, in addition, δ
(n)
m = 0 for m ∈ M0,

and δ
(n)
m �= 0 for m ∈ M±. Thus,

Λ(a, d) =

2n−1∑

m=1

δ(n)m amdm =
∑

m∈M±

δ(n)m amdm.

A similar formula holds for Λ(b, d). Consequently, a ∼AC b if and only if b �= 0, Re(b) = 0,
and b± = αa± for a certain 0 �= α ∈ R. As is readily seen, this condition is fulfilled if and only
if b �= 0 and b ∈ (R \ {0})a +A0

n.
(2) If Re(a) �= 0 and n(a) = 0, then AncAn(a) = Rā and AncAn(a) ∩ A′

n = 0. Thus,
a ∼AC b implies Re(b) �= 0, n(b) = 0, AncAn(b) = Rb̄. Moreover, Rā = Rb̄ if and only if
b ∈ (R \ {0})a. �
Remark 5.22. From Lemma 5.21 it follows that for any a ∈ A′

n \ A0
n we have a ∼AC a±.

However, if a ∈ A0
n \ {0}, then a± = 0, AncAn(a) = A′

n, and AncAn(a±) = An.

Notation 5.23. Let A0
n �= 0. Then 0′ denotes a chosen element of A0

n \ {0}. Also we set

A±
n = (A±

n \ {0}) ∪ {0′}.
Proposition 5.24. For any a ∈ A0

n \ {0} we have a ∼AC 0′.

Proof. Since a, 0′ ∈ A0
n \ {0}, we have AncAn(a) = AncAn(0

′) = A′
n, whence a ∼AC 0′. �

Corollary 5.25. (1) Let A0
n = 0. Then for any a ∈ A′

n \ {0} we can choose a representative
of the equivalence class [a]AC that lies in A±

n \ {0}.
(2) Let A0

n �= 0. Then for any a ∈ A′
n\{0} we can choose a representative of the equivalence

class [a]AC that lies in A±
n .

6. Anticommutativity graphs of real Cayley–Dickson algebras

Notation 6.1. In order to describe the connected components of the graph ΓE
AC(An), we will

need the following types of induced subgraphs of ΓE
AC(An) on the vertex sets listed below:
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(C1) ::
{
[a], [ā]

}
, where Re(a) �= 0 and n(a) = 0;

(C2) ::
{
[a]

∣∣ a ∈ A±
n \ {0}};

(C3) ::
{
[a]

∣
∣ a ∈ A±

n

}
.

Notation 6.2. In order to describe the cliques of the graph ΓE
AC(An), we will need the

following types of subsets of the vertex set of ΓE
AC(An):

(Q1) ::
{
[a], [ā]

}
, where Re(a) �= 0 and n(a) = 0;

(Qk
2) ::

{
[r1a1 + · · ·+ rkak]

∣
∣ (r1, . . . , rk) ∈ R

k \ {0}} ∪ {
[b1], . . . , [b2n−2k−1]

}
, where

• 0 ≤ k ≤ 2n−1 − 1 (if k = 0, then this set takes the form
{
[b1], . . . , [b2n−1]

}
);

• a1, . . . , ak, b1, . . . , b2n−2k−1 ∈ A±
n anticommute pairwise and form a linearly inde-

pendent system;
• n(aj) = 0 for all j = 1, . . . , k;
• n(bj) �= 0 for all j = 1, . . . , 2n − 2k − 1;

(Qk
3) ::

{
[0′]

} ∪ {
[r1a1 + · · · + rkak]

∣∣ (r1, . . . , rk) ∈ R
k \ {0}} ∪ {

[b1], . . . , [b2n−q−2k−1]
}
,

where
• 0 ≤ k ≤ 2n−q−1 − 1 (if k = 0 this set takes the form

{
[0′], [b1], . . . , [b2n−q−1]

}
),

• a1, . . . , ak, b1, . . . , b2n−q−2k−1 ∈ A±
n anticommute pairwise and form a linearly in-

dependent system;
• n(aj) = 0 for all j = 1, . . . , k;
• n(bj) �= 0 for all j = 1, . . . , 2n−q − 2k − 1.

We now proceed to the classification of anticommutativity graphs of the algebras An.

Theorem 6.3. Let γ0, . . . , γn−1 ∈ {−1, 0, 1}, An = An{γ0, . . . , γn−1}.
(A) Let either n = 0 or n = 1 and γ0 < 0. Then the vertex set of ΓE

AC(An) is the empty set.
(B) If n = 1 and γ0 > 0, then ΓE

AC(An) is a complete graph on two vertices.

(C) If n ≥ 1 and q = n, then the vertex set of ΓE
AC(An) is a singleton.

(D) If n ≥ 2, q = 0, and A−
n �= 0, then the vertex set of ΓE

AC(An) is the set of equivalence
classes of the elements of {a ∈ An |Re(a) �= 0, n(a) = 0} and A±

n \ {0}.
The connected components of this graph are of the form C1 and C2. The diameter

of every connected component of the form C1 equals 1, whereas the diameter of every
connected component of the form C2 equals 2.

The maximal cliques in ΓE
AC(An) are of the form Q1 and Qk

2, 0 ≤ k ≤ 2n−1 − 1.
(E) If n ≥ 2, q = 0, and A−

n = 0, then the vertex set of ΓE
AC(An) is the set of equivalence

classes of the elements of A±
n \ {0}.

This graph is connected, and its diameter is equal to 2 (that is, ΓE
AC(An) consists of

the only connected component, namely, C2).
The maximal cliques in ΓE

AC(An) are of the form Q0
2.

(F) If n ≥ 2, 0 < q < n, and A−
n �= 0, then the vertex set of ΓE

AC(An) is the set of equivalence

classes of the elements of {a ∈ An |Re(a) �= 0, n(a) = 0} and of A±
n .

The connected components of this graph are of the form C1 and C3. The diameter of
every connected component of the form C1 equals 1, and the diameter of every connected
component of the form C3 equals 1 if q = n− 1, and 2 if q < n− 1.

The maximal cliques in ΓE
AC(An) are of the form Q1 and Qk

3, 0 ≤ k ≤ 2n−q−1 − 1.
(G) If n ≥ 2, 0 < q < n, and A−

n = 0, then the vertex set of ΓE
AC(An) is the set of equivalence

classes of the elements of A±
n .

This graph is connected; its diameter is equal to 1 if q = n − 1 and to 2 if q < n − 1
(that is, ΓE

AC(An) consists of the only connected component C3).
The maximal cliques in ΓE

AC(An) are of the form Q0
3.
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Proof. (1) Case (A) immediately follows from Lemma 5.15.
(2) In Case (B), we have AC∗(An) ∩ A′

n = ∅ by Lemma 5.15. Then, as it follows from

Lemma 5.8, we have AC∗(An) = {a ∈ An |Re(a) �= 0, n(a) = 0} = (R \{0})(√γ0+ e
(1)
1 )∪ (R \

{0})(√γ0−e
(1)
1 ). Thus, the vertex set of ΓE

AC(An) consists of
[√

γ0+e
(1)
1

]
AC

and
[√

γ0−e
(1)
1

]
AC

,
and these two vertices are adjacent.

(3) In cases (C), (E), and (G), from Lemma 5.15 it follows that AC∗(An) ⊂ A′
n. Therefore,

by Lemma 5.8, AC∗(An) = A′
n \ {0}.

(4) In case (C), we have A±
n = 0, whence AC∗(An) = A0

n \ {0}. Thus, the vertex set of
ΓE
AC(An) contains the only one element [0′]AC .
(5) Cases (F) and (G) can be inferred from cases (D) and (E), respectively, by adding the

element [0′]AC and changing dim(A±
n ) from 2n − 1 to 2n−q − 1. It should also be noted that

if n − q = 1 in cases (F) and (G), then dim(A±
n ) = 1, whence the connected component C3

consists of two elements, and its diameter is equal to 1. If n − q ≥ 2, then dim(A±
n ) ≥ 3;

therefore, in C3 there are at least two nonadjacent elements.
(6) Thus, it only remains to consider cases (D) and (E), where n ≥ 2 and q = 0. The

distinction between them is discussed in Lemma 5.17.
(7) First consider case (D). From Lemma 5.8 it is clear that the equivalence classes of the

elements {a ∈ An |Re(a) �= 0, n(a) = 0} and those of the elements in A±
n \ {0} lie in different

connected components.

(a) From Lemma 5.8 it follows that the equivalence classes of the elements of

{a ∈ An |Re(a) �= 0, n(a) = 0}
are contained in connected components of the form C1, and their maximal cliques coincide
with the connected components themselves and are of the form Q1.

(b) Now we show that the subgraph of ΓE
AC(An) on the vertex set

{
[a]AC

∣∣a ∈ A±
n \ {0}} is

connected and its diameter equals 2. We use Lemma 5.17. The subspace of the elements of
A±

n that are orthogonal (in the sense of a pseudo-Euclidean space) to a given a ∈ A±
n \{0} is

of dimension 2n−2. Since dim(A±
n ) = 2n−1, the intersection of the orthogonal subspaces

of any two elements from A±
n is of dimension at least 2n − 3 and hence nonzero. It follows

that C2 is connected and d(C2) ≤ 2. Moreover, since dim(A±
n ) ≥ 3, there exist two vertices

that are not adjacent, and we also have d(C2) ≥ 2.
(c) Now consider the maximal cliques in the connected component C2.

Note that if r1, . . . , rk ∈ R and distinct vertices [a1], . . . , [ak], [r1a1 + · · ·+ rkak] form a
clique, then from rj �= 0 it follows that aj anticommutes with itself. Then, by Lemma 5.1,
n(aj) = 0 and Re(aj) = 0. Hence n(r1a1 + · · ·+ rkak) = 0.

Let Q be a maximal clique in C2. For every equivalence class in Q we choose its
representative from A±

n . Let S denote the set of these representatives, whereas S0 is the
subset of S consisting of elements with zero norm. Lin(S) and Lin(S0) are linear spaces
generated by S and S0, respectively; Lin(S0) ⊂ Lin(S) ⊂ A±

n . Let

m = rk(S) = dim(Lin(S)), k = rk(S0) = dim(Lin(S0)), m ≥ k.

Obviously, S0 ⊂ AncAn(S) ∩ A±
n , whence dim(AncAn(S) ∩ A±

n ) ≥ k. Moreover, from the
above remark it follows that

Lin(S) ∩ (AncAn(S) ∩ A±
n ) = Lin(S0).

By using Corollary 5.20, we obtain that m + dim(AncAn(S) ∩ A±
n ) = 2n − 1, whence

2k ≤ k +m ≤ 2n − 1. Consequently, k ≤ 2n−1 − 1. Furthermore, if k +m < 2n − 1, then
there is an element b ∈ (AncAn(S) ∩A±

n ) \ Lin(S), and Q ∪ {
[b]AC

}
also is a clique. Since
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the clique Q is maximal by assumption, we have k + m = 2n − 1, and thus Q is of the
form Qk

2 .
Now we present examples of cliques of the form Qk

2 for all possible values of k, 0 ≤ k ≤
2n−1 − 1:

aj = e
(n)
2j−1 + e

(n)
2j , j = 1, . . . , k,

bj = e
(n)
2k+j , j = 1, . . . , 2n − 2k − 1.

(8) In case (E), all elements of AC∗(An) are pure and have nonzero norms. The anticommu-
tativity relation in this case can be expressed in terms of orthogonality in a (2n−1)-dimensional
Euclidean space. In a similar way, we prove that the subgraph of ΓE

AC(An) of the form C2

(which is, in fact, ΓE
AC(An) itself) is connected, and its diameter equals 2. The explicit form

of the cliques (Q0
2) follows from the fact that any orthogonal system in a Euclidean space can

be extended to an orthogonal basis. �

7. Some examples of anticommutativity graphs

In the cases of quaternions, split-complex numbers, and split-quaternions, Lemma 5.8 and
Theorem 6.3 take the following forms.

Lemma 7.1. Let a ∈ H, a �= 0. Then AncH(a) �= 0 if and only if Re(a) = 0.
If Re(a) = 0, then dim(AncH(a)) = 2, and b ∈ AncH(a) if and only if Re(b) = 0 and

a1b1 + a2b2 + a3b3 = 0, where a = a1i+ a2j + a3k, b = b1i+ b2j + b3k.

Proof. This is a special case of Lemma 5.8, corresponding to n = 2, γ0 = −1, and γ1 = −1. �
Theorem 7.2. The vertex set of ΓE

AC(H) is the set of equivalence classes of the nonzero

elements of Ri⊕ Rj ⊕ Rk. The graph ΓE
AC(H) is connected, and its diameter equals 2.

The cliques correspond to the orthogonal systems in Ri⊕Rj⊕Rk free of zero elements (with
Euclidean inner product in R

3). Every maximal clique has three vertices.

Proof. This is a special case of Theorem 6.3, corresponding to n = 2, γ0 = −1, γ1 = −1. �
Lemma 7.3. Every nontrivial pair of anticommuting elements in Ĉ consists of a + a� and
b− b�, where a, b ∈ R \ {0}.
Proof. This is a special case of Lemma 5.8, corresponding to n = 1, γ0 = 1. �
Theorem 7.4. ΓE

AC(Ĉ) is a complete graph on the vertex set
{
[1 + �]AC , [1− �]AC

}
.

Proof. This is a special case of Theorem 6.3, corresponding to n = 1, γ0 = 1. �
Lemma 7.5. Let a ∈ Ĥ, a �= 0.

(1) If Re(a) = 0, then dim(Anc
Ĥ
(a)) = 2, and b ∈ Anc

Ĥ
(a) if and only if Re(b) = 0 and

a1b1 − a2b2 − a3b3 = 0, where a = a1i+ a2�+ a3�i, b = b1i+ b2�+ b3�i.
(2) If Re(a) �= 0 and n(a) = 0, then dim(Anc

Ĥ
(a)) = 1, Anc

Ĥ
(a) = Rā. Any nonzero

b ∈ Anc
Ĥ
(a) satisfies the condition Re(b) �= 0.

(3) If Re(a) �= 0 and n(a) �= 0, then Anc
Ĥ
(a) = 0.

Proof. This is a special case of Lemma 5.8, corresponding to n = 2, γ0 = −1, γ1 = 1. �
Theorem 7.6. The vertex set of ΓE

AC(M2(R)) is the set of equivalence classes of the nonzero
elements of M2(R) that have either zero trace or zero norm. The vertex sets of the connected
components of this graph have one of the following two forms:

(1) the equivalence classes of all nonzero elements with zero trace; the diameter of such a
connected component is equal to 2;
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(2)
{
[A]AC , [Ā]AC

}
, where tr(A) �= 0 and det(A) = 0.

The maximal cliques of ΓE
AC(M2(R)) are as follows:

(i)
{
[A]AC , [Ā]AC

}
, where tr(A) �= 0, det(A) = 0;

(ii)
{
[A]AC , [B]AC , [C]AC

}
, where

• A,B,C are linearly independent and anticommute pairwise,
• tr(A) = tr(B) = tr(C) = 0,
• det(A),det(B),det(C) �= 0;

(iii)
{
[A]AC , [B]AC

}
, where

• A and B anticommute,
• tr(A) = tr(B) = 0,
• det(A) = 0, det(B) �= 0.

Proof. This is a special case of Theorem 6.3, corresponding to n = 2, γ0 = −1, and γ1 = 1. �

8. Relationship between the centralizer and orthogonalizer

Definition 8.1. The associator of three elements a, b, c ∈ A is the element [a, b, c] = (ab)c −
a(bc).

Proposition 8.2. The associator is a trilinear function of its arguments.

Proof. This assertion follows directly from the definition of an algebra over a field. �
Definition 8.3. An algebra A is said to be flexible if (ab)a = a(ba) for all a, b ∈ A.

Lemma 8.4 ([28, Theorem 1]). For all n ∈ N ∪ {0} and all γ0, . . . , γn−1 ∈ R, the algebra An

is flexible.

Corollary 8.5. For all a, b, c ∈ An we have [a, b, c] = −[c, b, a].

Proof.

0 = [a+ c, b, a+ c] = [a, b, a] + [a, b, c] + [c, b, a] + [c, b, c]

= 0 + [a, b, c] + [c, b, a] + 0 = [a, b, c] + [c, b, a]. �

Definition 8.6. An algebra A is said to be alternative if the relations a2b = a(ab) and
ba2 = (ba)a hold for all a, b ∈ A.

Lemma 8.7 ([5, p. 172]). The algebra A{γ} is alternative if and only if A is associative.

Corollary 8.8 ([28, p. 436]). The algebra An is alternative if and only if n ≤ 3.

Corollary 8.9. For n ≤ 3 the associator in An is skew-symmetric, that is, it changes its sign
as its arguments are transposed.

Proof. The proof is similar to that of Corollary 8.5. �
Lemma 8.10. Let a ∈ An, Im(a) �= 0. Then

CAn(a) = R⊕OAn(Im(a)) ⊕ V,

where dim(V ) ≤ 1.

Proof. Obviously, CAn(a) = CAn(Im(a)), and thus we need to show that

Im(CAn(Im(a))) = OAn(Im(a))⊕ V ,

where dim(V ) ≤ 1. From Lemma 5.8 it follows that AncAn(Im(a)) ⊂ A′
n. We have

OAn(Im(a)) = CAn(Im(a)) ∩AncAn(Im(a)) = Im(CAn(Im(a))) ∩AncAn(Im(a)).
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Moreover, if b ∈ Im(CAn(Im(a))) (and thus Re(b) = 0), then the condition b ∈ AncAn(Im(a))
is given by a linear equation (maybe trivial). Therefore,

dim(Im(CAn(Im(a)))) − dim(OAn(Im(a))) ≤ 1. �

Lemma 8.11. Let a ∈ An, Im(a) �= 0.

(1) If n(Im(a)) = 0 and, in addition, either Im(a) ∈ A0
n or n ≤ 3, then CAn(a) = R ⊕

OAn(Im(a));
(2) if n(Im(a)) �= 0, then CAn(a) = R⊕ Ra⊕OAn(Im(a)).

Proof. Obviously, for any a ∈ An we have CAn(a) ⊇ R+Ra+OAn(Im(a)). As it follows from
Lemma 5.1, the conditions n(Im(a)) = 0 and Im(a) ∈ OAn(Im(a)) are equivalent. By the
lemma assumption, Im(a) �= 0. Therefore,

(1) if n(Im(a)) = 0, this relation takes the form CAn(a) ⊇ R⊕OAn(Im(a));
(2) if n(Im(a)) �= 0, it is of the form CAn(a) ⊇ R⊕ Ra⊕OAn(Im(a)).

Now we show that in the above-mentioned cases, the reverse inclusion also holds. Let
b ∈ CAn(a), then Im(b) ∈ CAn(Im(a)).

(1) First assume that n(Im(a)) = 0, i.e., (Im(a))2 = 0.
• If Im(a) ∈ A0

n, then from Lemma 5.8 it follows that Im(b) ∈ AncAn(Im(a)), whence
Im(b) ∈ AncAn(Im(a)) ∩ CAn(Im(a)) = OAn(Im(a)).

• If n ≤ 3, then the algebra An is alternative by Corollary 8.8. Note that
Im(a)Im(b) = Im(b) · Im(a) = Im(b)Im(a) = Im(a)Im(b),

that is, Im(a)Im(b) = r ∈ R. Therefore,
0 = (Im(a))2Im(b) = Im(a)(Im(a)Im(b)) = rIm(a),

and we have r = 0, i.e., Im(b) ∈ OAn(Im(a)).
(2) Consider the case where n(Im(a)) �= 0, i.e., (Im(a))2 �= 0. By Corollary 5.12, there exists

a unique decomposition

Im(b) = kIm(a) + d,

where d ∈ AncAn(Im(a)). Note that

d = Im(b)− kIm(a) ∈ CAn(Im(a)),

d ∈ AncAn(Im(a)) ∩CAn(Im(a)) = OAn(Im(a))

Im(b) ∈ RIm(a)⊕OAn(Im(a)). �

Example 8.12. If An belongs to the main sequence, then any a ∈ An, Im(a) �= 0, satisfies
the assumption of Lemma 8.11.

Lemma 8.13 ([1], [23, Lemma 1.2]). Let A be an arbitrary algebra. Then for arbitrary
x, y, z, w ∈ A the following relation holds:

x[y, z, w] + [x, y, z]w = [xy, z, w] − [x, yz, w] + [x, y, zw].

Lemma 8.14 ([28, Lemma 2]). For any x, y, z ∈ An we have Re([x, y, z]) = 0.

Proposition 8.15. Let a ∈ A4{−1,−1,−1, 1} = O{1} = Ŝ, n(Im(a)) = 0. Then C
Ŝ
(a) =

R⊕O
Ŝ
(Im(a)).

Proof. Let b ∈ C
Ŝ
(a) \ (R ⊕O

Ŝ
(Im(a))). Then Im(b) ∈ C

Ŝ
(a), and therefore

Im(a)Im(b) = Im(b) · Im(a) = Im(b)Im(a) = Im(a)Im(b),
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that is, Im(a)Im(b) = r ∈ R. Since Im(b) /∈ O
Ŝ
(Im(a)), we have r �= 0. Assume, without loss

of generality, that r = 1.
Denote Im(a)=(a1, a2), Im(b)=(b1, b2), where a1, a2, b1, b2 ∈ O, Re(a1)=Re(b1)=0. Then

0 = (a1, a2)
2 = (a21 + ā2a2, a2a1 + a2ā1) = (a21 + n(a2), 0),

(1, 0) = (a1, a2)(b1, b2) = (a1b1 + b̄2a2, b2a1 + a2b̄1) = (a1b1 + b̄2a2, b2a1 − a2b1).

By using the equalities b2a1 = a2b1 and n(a2) = −a21 ∈ R and also the alternativity of O, we
obtain

n(a2)b2 = −b2a
2
1 = −(b2a1)a1 = −(a2b1)a1,

n(a2)b̄2 = n(a2)b2 = −(a2b1)a1 = −ā1(b̄1ā2) = −a1(b1ā2).

Now we multiply the equality 1 = a1b1+ b̄2a2 by ā2 on the right and substitute the expression
for n(a2)b̄2. In this way, we obtain

ā2 = (a1b1)ā2 + (b̄2a2)ā2 = (a1b1)ā2 + b̄2(a2ā2) = (a1b1)ā2 + n(a2)b̄2

= (a1b1)ā2 − a1(b1ā2) = [a1, b1, ā2].

From Lemma 8.14 it follows that Re(ā2) = 0, whence ā2 = −a2 and a2 = [a1, b1, a2]. Recall
that the associator in O is skew-symmetric. Then, by applying Lemma 8.14 to x = w = a2, y =
a1, z = b1, we obtain

−2n(a2) = 2a22 = a2[a1, b1, a2] + [a2, a1, b1]a2 = [a2a1, b1, a2]− [a2, a1b1, a2] + [a2, a1, b1a2].

The real part of the right-hand side is zero; therefore, n(a2) = 0, whence n(a1) = 0, implying
that a1 = a2 = 0 and Im(a)Im(b) = 0. Thus, we have a contradiction. �

Show that the additional conditions in item (1) of Lemma 8.11 are essential. We will need
the following notation and some related assertions.

Notation 8.16. Consider a, b ∈ An such that ba = 0, a �= 0, b �= 0, Re(a) = 0, and
n(a) = γnn(b) �= 0.

(1) Set c = (a, b), d = (0, b) ∈ An+1 = An{γn}.
(2) If we also have γn > 0 and ab = 0, then, for any r ∈ R, |r| < 1, we denote c(r) =(

a, r(
√
γn)

−1a+
√
1− r2b

) ∈ An+1.

Proposition 8.17. Let a, b ∈ An, ba = 0, a �= 0, Re(a) = 0. Then the conditions ab = 0 and
Re(b) = 0 are equivalent.

Proof. Since a �= 0, this assertion follows from the equality string

ab = b̄ā = −(2Re(b)− b)a = −2Re(b)a+ ba = −2Re(b)ā = 2Re(b)a. �

Proposition 8.18. Let a, b, c, c(r) be introduced in Notation 8.16. Then

(1) Re(c) = 0, n(c) = 0;
(2) Re(c(r)) = 0, n(c(r)) = 0.

Proof. (1) From Lemma 3.20 it follows that

Re(c) = Re
(
(a, b)

)
= Re(a) = 0,

n(c) = n
(
(a, b)

)
= n(a)− γnn(b) = 0.
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(2) Obviously, Re
(
r(
√
γn)

−1a+
√
1− r2b

)
=0, Re(c(r))=0. Now we verify that n(c(r))=0.

Indeed,

n(c(r)) = n(a)− γnn

(
r√
γn

a+
√

1− r2b

)
= γn

(

n(b) +

(
r√
γn

a+
√

1− r2b

)2
)

= γn

(
n(b) +

r2

γn
a2 +

r
√
1− r2√
γn

(ab+ ba) + (1− r2)b2
)

= γn
(
n(b)− r2n(b)− (1− r2)n(b)

)
= 0. �

Proposition 8.19. Let a, b, c, c(r), d be introduced in Notation 8.16. Then

(1) CAn+1(c) = R⊕ Rd⊕OAn+1(c);
(2) CAn+1(c(r)) = R⊕Rd⊕OAn+1(c(r)).

Proof. (1) It is readily seen that

cd = (a, b)(0, b) = (a0 + γnb̄b, ba+ b0̄) = γnn(b) ∈ R \ {0}.
Furthermore, Re(c) = Re(d) = 0, whence dc = d̄c̄ = cd = cd. Thus, d ∈ CAn+1(c). However,
d /∈ R⊕OAn+1(c) because d /∈ OAn+1(c) and for any r ∈ R\{0} we have Im(c(d−r)) = −rc �= 0.
From Lemma 8.10 we infer that CAn+1(c) = R⊕ Rd⊕OAn+1(c).

(2) Show that c(r)d ∈ R \ {0}. Indeed,

c(r)d =

(
a,

r√
γn

a+
√

1− r2b

)
(0, b)

=

(

a0 + γnb̄

(
r√
γn

a+
√

1− r2b

)
, ba+

(
r√
γn

a+
√

1− r2b

)
0̄

)

=
(− r

√
γnba+ γn

√
1− r2b̄b, ba

)
= γn

√
1− r2n(b) ∈ R \ {0}.

The fact that CAn+1(c(r)) = R⊕ Rd⊕OAn+1(c(r)) is proved similarly. �

Example 8.20. Both conditions of Notation 8.16 are satisfied, for instance, whenever

a = (e1, e4), b = (e2, e7) ∈ S = A4{−1,−1,−1,−1}, and γ4 = 1.

9. Conclusion

The commutativity graphs of real Cayley–Dickson algebras are of special interest; however,
a number of difficulties arises even for n = 4. It is conjectured that the commutativity graph
of the algebra of sedenions possesses the following property:

Conjecture 9.1. The elements of S whose imaginary parts are zero divisors form a connected
component in ΓC(S), and its diameter equals 3.

In the case of real Cayley–Dickson algebras of the main sequence, Lemma 8.11 completely
describes the relationship between the centralizer and orthogonalizer of an arbitrary element.
Moreover, it is obvious that ΓO(A) always is a subgraph of ΓC(A). In this connection, the
following question arises:

Question 9.2. What is the relationship between ΓO(An) and ΓC(An) for a real Cayley–
Dickson algebra An of the main sequence? For an arbitrary real Cayley–Dickson algebra?

Remark 9.3. The authors have recently discovered that the orthogonality graphs of formally
real Jordan algebras (FRJAs for short) are studied in [17]. In particular, their clique numbers

751



are computed, and it is proved that two FRJAs are isomorphic if and only if their orthogonality
graphs are isomorphic.

Note that every real Cayley–Dickson algebra (An,+, ·) can be transformed into a Jordan
algebra (An,+, ◦), where a ◦ b = 1

2(ab + ba). Then the anticommutativity graph of (An,+, ·)
is isomorphic to the orthogonality graph of (An,+, ◦). It can readily be seen that (An,+, ◦) is
formally real if and only if (An,+, ·) either belongs to the main sequence or is isomorphic to
the split-complex numbers. Thus, the classes of algebras discussed in [17] and in this paper do
not coincide; however, they have a nontrivial intersection. It can be verified that the results
obtained for the algebras from the above-mentioned intersection agree.

This work was supported by the Russian Science Foundation (project No. 17-11-01124).

Translated by the authors.
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