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AN ALGORITHM FOR DECOMPOSING
REPRESENTATIONS OF FINITE GROUPS USING
INVARIANT PROJECTIONS

V. V. Kornyak∗ UDC 512.547.2

We describe an algorithm for decomposing permutation representations of finite groups over fields
of characteristic zero into irreducible components. The algorithm is based on the fact that the
components of the invariant inner product in invariant subspaces are operators of projecting to
these subspaces.This allows us to reduce the problem to solving systems of quadratic equations.
The current implementation of the suggested algorithm allows us to split representations with
dimensions up to hundreds of thousands. Computational examples are given. Bibliography: 8
titles.

1. Introduction

The decomposition of linear representations of groups into irreducible representations is one
of the main problems in the theory of groups and its applications in physics. In general, the
problem of splitting a module over an associative algebra into irreducible components is very
nontrivial. A quite complete overview of algorithms for solving this problem can be found
in [1]. Currently, it is considered that the most efficient algorithm is a probabilistic algorithm
of Las Vegas type called MeatAxe [2]. One of the main elements of the algorithm is the
calculation of the characteristic polynomial of a randomly generated matrix of the module
followed by the factorization of this polynomial. Processing the irreducible factors of the
characteristic polynomial in the case of success allows one either to construct a decomposition
of the module into submodules, or to prove that it is irreducible (a detailed description of the
MeatAxe algorithm is given in Sec. 7.4 of the book [1]). The MeatAxe algorithm played
an important role in solving the classification problem for finite simple groups, where it was
applied to group representations in linear spaces over small finite fields (typically, over GF(2)).
However, MeatAxe is not effective for representations over fields of zero characteristic, due
to the rapid growth of numerical coefficients when calculating characteristic polynomials for
large matrices, and because in the zero characteristic case a randomly generated matrix with
high probability has an irreducible characteristic polynomial, which is useless for the work of
MeatAxe.

The quantum formalism is based on Hilbert spaces over fields of zero characteristic. Tra-
ditionally, one uses nonconstructive fields C or R. Our goal was to develop an algorithm
suitable for studying quantum mechanical models based on unitary representations of finite
groups over constructive fields of zero characteristic [3, 4]. The computer implementation of
our algorithm, let us call it IrreducibleProjectors, splits representations of dimensions up
to hundreds of thousands, which is as good as dimensions achievable for MeatAxe in the
computationally easier context of finite fields. On the other hand, the IrreducibleProjec-
tors algorithm, unlike MeatAxe, is of little use in problems over finite fields, because it uses
the notion of scalar product. In spaces over finite fields, introducing a scalar product, which
would allow one to complete the computations, requires a number of arithmetic restrictions
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on the field characteristic. As a matter of fact, the MeatAxe and IrreducibleProjectors
algorithms have different areas of application.

The IrreducibleProjectors algorithm requires the knowledge of the centralizer ring of the
group representation in question. In the general case, the calculation of the centralizer ring
reduces to a simple linear algebra problem, namely, solving a system of matrix equations of
the form AX = XA. Here we consider only permutation representations, since (a) any linear
representation of a finite group is a subrepresentation of a permutation representation, and
(b) permutation representations underlie the aforementioned constructive quantum mechanical
models. In the case of permutation representations, the calculation of the centralizer ring is
especially simple: it reduces to constructing the orbits of the group on the Cartesian square
of the set on which the group acts by permutations.

2. Basic notions and notation

Let G (or, in more detail, G(Ω)) be a permutation group acting transitively on the set
Ω ∼= {1, . . . ,N}. The action of an element g ∈ G on i ∈ Ω will be denoted by ig. A permutation
representation P is a representation of G by matrices of the form P(g)ij = δigj . Since P(g) is a

(0, 1)-matrix, a permutation representation can be realized in a vector space over any field F .
We will assume that the representation space is the N-dimensional Hilbert space HN. For F
we can take a suitable subfield of the mth cyclotomic field, where m is the exponent of the
group G. Such a field F , being an Abelian extension of the field of rational numbers Q, is a
constructive dense subfield of R or C. From the point of view of physics, F is indistinguishable
from R or C and can be freely used in the formalism of quantum mechanics.

An orbit of G on the Cartesian square Ω×Ω is called an orbital [5]. The number of orbitals
R is called the rank of the permutation group G(Ω). If the set of orbitals contains some orbital
Δ, then it necessarily contains the transposed orbital ΔT. The set of orbitals of a transitive
group contains the unique diagonal orbital Δ1 = {(i, i) | i ∈ Ω}, which we will always consider
to be the first element in the list of orbitals {Δ1, . . . ,ΔR}. For transitive groups, there is a
natural one-to-one correspondence between the orbitals and the orbits of stabilizers of arbitrary
points i, i.e., subgroups Gi ≤ G such that g ∈ Gi ⇒ ig = i. The correspondence has the form

Δ ↔ Σi = {j ∈ Ω | (i, j) ∈ Δ} .
Orbits of stabilizers will be called suborbits. Note that the sizes of orbitals and suborbits are
related as follows: |Δ| = N |Σi|.

The invariance condition for a bilinear form A in the Hilbert space HN is expressed by the
equations A = P(g)AP

(
g−1

)
, g ∈ G. In terms of components, these equations have the form

(A)ij = (A)igjg , which means that the basis of all invariant bilinear forms is in a one-to-one

correspondence with the set of orbitals. Namely, each orbital Δr ∈ {Δ1, . . . ,ΔR} corresponds
to an N× N base matrix Ar with components

(Ar)ij =

{
1 if (i, j) ∈ Δr ,

0 if (i, j) /∈ Δr .

The matrices A1,A2, . . . ,AR also form a basis of the centralizer ring (centralizer algebra)
of the permutation representation P. The multiplication table for this basis is

ApAq =

R∑

r=1

Cr
pqAr, (1)

where Cr
pq are nonnegative integers such that 0 ≤ Cr

pq < N. The centralizer ring is commutative
if and only if the representation P is multiplicity-free.
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To implement the algorithm and organize the output, we must introduce some ordering of
the basis elements of the centralizer ring:

A1 ≺ A2 ≺ . . . ≺ AR. (2)

We use the following conventions:

(1) Ar ≺ As if |Δr| < |Δs| (or, equivalently, |(Σi)r| < |(Σi)s|; comparing the lengths of
the suborbits),

(2) Ar ≺ As if Ar = AT
r ∧ As 	= AT

s (among the matrices with the same lengths of
suborbits, symmetric matrices precede asymmetric ones),

(3) Ar ≺ As if IAr < IAs , IX = min (i | (X)i1 = 1) (comparing the positions of the first
nonzero element in the first columns of the matrices),

(4) if Ar 	= AT
r , then Ar+1 = AT

r (paired matrices are always adjacent, and inside the pair
the rule (3) works automatically).

The application of the rules (1)–(4) in the specified order uniquely determines the sequence (2).
According to these rules, the matrix of the diagonal orbital is the first element of the list (2):
A1 = 1N.

3. Description of the algorithm

Let T be a unitary transformation matrix (we can always ensure that it is unitary) splitting
a permutation representation P in the Hilbert space HN into M irreducible components:

T−1P(g)T = 1⊕ Ud2(g)⊕ · · · ⊕ Udm(g)⊕ · · · ⊕ UdM (g) ,

where Udm is an irreducible subrepresentation of dimension dm and ⊕ denotes the direct sum
of matrices, i.e., A⊕B = diag(A,B).

The standard scalar product in a Hilbert space is represented in any orthonormal basis by
the identity matrix 1N. In the splitting basis, we have the following expansion for the scalar
product:

1N = 1d1=1 ⊕ · · · ⊕ 1dm ⊕ · · · ⊕ 1dM . (3)

Here, 1d1=1 =
(
1
)
is the scalar product in the one-dimensional trivial subrepresentation, which

is always present in any permutation representation. The preimage of the decomposition (3)
in the original permutation basis has the form

1N = B1 + · · ·+ Bm + · · · + BM , (4)

where Bm is defined by the relation

T−1BmT = 01+d2+···+dm−1 ⊕1dm ⊕ 0dm+1+···+dM ≡ Dm. (5)

This relation shows that the matrices Bm are idempotent,

B2
m = Bm, (6)

and mutually orthogonal,

BmBm′ = 0N if m 	= m′. (7)

Relations (6) and (7), together with the completeness condition (4), mean that B1, . . . ,BM is
a complete system of mutually orthogonal projections in the Hilbert space HN.

The set of irreducible invariant projections B1, . . . ,BM contains complete information about
the decomposition of the representation P into irreducible components. For example, the
transformation matrix T can be calculated by solving the system of linear equations

B1T − TD1 = · · · = BMT − TDM = 0N .
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Any invariant projection is a solution to the equation

X2 −X = 0N, (8)

where X = x1A1+ · · ·+xRAR is the invariant bilinear form written in the basis (2). Using the
multiplication table (1) and expanding (8) into components in the basis (2), we get a system
of R quadratic equations for R unknowns x1, . . . , xR:

E(x1, . . . , xR) = 0 ∼ {E1(x1, . . . , xR) = 0, . . . , ER(x1, . . . , xR) = 0} . (9)

We will call the left-hand sides of these equations idempotency polynomials. In the basis (2),
an irreducible invariant projection Bm has the form

Bm = bm,1A1 + bm,2A2 + · · · + bm,RAR, (10)

where the vector Bm = [bm,1, . . . , bm,R] is a solution of the system of equations (9). Since the
trace of a matrix is an invariant of a similarity transformation, relation (5) implies the equality

trBm = dm. (11)

Combining this equality with the fact that in the decomposition (10) only A1 has nonzero
diagonal elements and trA1 = N, we can fix the first coefficient in (10):

bm,1 = dm/N.

Thus, the possible values of x1 in (9) are rational numbers d/N for some dimensions d ∈
[1, . . . ,N− 1]. Any positive integer d for which the polynomial system (9) has a solution is ei-
ther an irreducible dimension dm or a sum of such dimensions. The orthogonality condition (7)
allows us to exclude from consideration dimensions that are not irreducible. In general, the
orthogonality condition can be written as

BX = 0 (12)

where B = b1A1 + · · · + bRAR. Equation (12) is a system of linear equations in variables
x1, . . . , xR with parameters b1, . . . , bR. Using the multiplication table (1), the left-hand side
of (12) can be represented as a system of R bilinear forms

O(b1, . . . , bR;x1, . . . , xR) =

⎧
⎪⎨

⎪⎩

O1(b1, . . . , bR;x1, . . . , xR) ,
...

OR(b1, . . . , bR;x1, . . . , xR)

⎫
⎪⎬

⎪⎭
, (13)

which we will call orthogonality polynomials.
The main part of the algorithm is organized as a cycle starting with d = 1 and ending when

the sum of irreducible dimensions reaches the value N. The current dimension d is processed
as follows:

1. The algorithm solves the system of equations

E(d/N, x2, . . . , xR) = 0. (14)

Moreover, without significant additional calculations,it finds the Hilbert dimension h
of the corresponding polynomial ideal. The solution can always be realized algorithmi-
cally, since all roots of the system belong to Abelian extensions of the ring of rational
numbers. Modern computer algebra systems, in particular, Maple, do the job quite
well.

2. If the system (14) is incompatible, then the current value d is not an irreducible di-
mension, and we pass to the next value of d.

3. If h = 0 and the system (14) has k solutions, then we get k (distinct, provided that
k > 1) d-dimensional irreducible subrepresentations.

654



4. The fact that the dimension h of the polynomial ideal is positive means that there is
a d-dimensional irreducible component of nontrivial multiplicity k. The corresponding
component of the centralizer algebra has the structure of a Kronecker product A⊗ 1d

where A is an arbitrary k × k matrix. From the idempotency condition

(A⊗ 1d)
2 = A⊗ 1d

distinguishing a projector, a restriction on the matrix A follows:

A2 −A = 0. (15)

The complete family of solutions to this equation1 is a variety of dimension h =
⌊
k2/2

⌋
.

Hence, the multiplicity can be calculated from the Hilbert dimension: k =
⌈√

2h
⌉
.

Then, using a certain procedure, from the family of equivalent d-dimensional pro-
jections we choose k arbitrary, but mutually orthogonal, representatives.

5. Each of the k irreducible projections obtained at step 3 or 4 is processed as follows.
The projection Bm is added to the list of irreducible projections. The corresponding
invariant subspace is excluded from further consideration by adding the orthogonality
polynomials BmX to the set of polynomials (9):

E(x1, x2, . . . , xR) ← E(x1, x2, . . . , xR) ∪ {BmX} .
6. After processing all k irreducible projections of the current dimension d as described

at step 5, we pass to the next possible dimension.

The IrreducibleProjectors algorithm is implemented in the form of two procedures, called
PreparePolynomialData and SplitRepresentation.

The PreparePolynomialData procedure is implemented as a program in the language C.
The input toPreparePolynomialData is a set of permutations that generate the group G(Ω).
The program calculates a basis of the centralizer ring (2) and the multiplication table (1) and
constructs the idempotency polynomials (9) and orthogonality polynomials (13). Then it
builds the procedure code SplitRepresentation. This code takes into account the specific
features of concrete tasks. In particular, if the centralizer ring is noncommutative, then the
decomposition contains multiple subrepresentations, for which additional functions are gener-
ated.

The program SplitRepresentation is a code in the language Maple generated by the pro-
gram PreparePolynomialData. This program performs the cycle described above. Systems
of polynomial equations are processed using functions from the Groebner package imple-
mented in the system Maple.

The algorithms, their implementation, and related technical details are described in more
detail in [6].

4. Computations

We give examples of computations using the programs PreparePolynomialData and
SplitRepresentation. The input data (permutations generating the representations under
study) are taken from the “Sporadic groups” section of the Atlas of representations of finite
groups [7]. This section contains subsections corresponding to the traditional classification of
sporadic simple groups: “Mathieu groups,” “Leech lattice groups,” “Monster sections,” and
“Pariahs.” Besides representations of simple groups, the Atlas contains representations of their
extensions. Namely, if a group G has a nontrivial

1It is well known that any solution of the matrix equation (15) can be represented as A = Q−1 (1r ⊕ 0k−r)Q,
where Q is an arbitrary invertible k × k matrix and r is an arbitrary positive integer such that 0 ≤ r ≤ k.
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(1) second homology group H2(G,Z), called the Schur multiplicator and denoted by M(G),
then there are nontrivial central extensions of G by subgroups of M(G);

(2) group of outer automorphisms Out(G), then there are nontrivial extensions in which
G is a normal subgroup.

An arbitrary extension of a group B by a group A will be denoted by A.B; a decomposable
extension, i.e., a semidirect product, will be denoted by A�B. According to the abbreviation
used in the Atlas, cyclic groups Cn involved in extensions will be denoted by their orders n.

In the expressions for decompositions of representations below, irreducible components will
be denoted by their dimensions in bold (possibly with additional indices to distinguish between
nonequivalent subrepresentations of the same dimension). Permutation representations are
denoted by their dimensions underlined. Irreducible projections will be denoted by Bm where
m is the corresponding irreducible subrepresentation.

The calculations were performed on a personal computer with a 3.30GHz Intel Core i3 2120
processor and 16 GB RAM.

4.1. A detailed example. Let us consider a clear example in detail, to illustrate the output
data produced by the programs PreparePolynomialData and SplitRepresentation.

The Held group He, belonging to the “Monster sections” subsection of the Atlas, has the
following basic properties:

Ord(He) = 4030387200 = 210 · 33 · 52 · 73 · 17, M(He) ∼= 1, Out(He) ∼= C2.

The program PreparePolynomialData, applied to the 8330-dimensional representation of
this group, besides generating the program code SplitRepresentation and the input data
for it, outputs the following text:

___Action of He on 8330 points

Rank of He_on_8330: 7

Dimension: 8330

Suborbit lengths: 1, 105, 720, 840, 840’, 1344, 4480.

Centralizer ring is commutative

=> permutation representation is multiplicity free

___Total time: 2.93 sec

___Technical information

Orbital matrices space: 57.9 MB

Orbital path space : 35.6 MB

Total orbital space : 93.5 MB

Maximum number of polynomial terms: 217

This text contains information on the rank of the representation, the lengths of the suborbits
(the length of the suborbit of the second orbital in a pair of mutually transposed orbitals
is primed), the presence or absence of multiple subrepresentations, as well as the time and
memory spent to solve the problem.

The program SplitRepresentation produces the following decomposition:

8330 ∼= 1⊕ 51⊕ 51⊕ 680⊕ 1275⊕ 1920⊕ 4352
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B1 =
1

8330
(A1 +A2 +A3 +A4 +A5 +A6 +A7)

B51 =
3

490

(

A1 +
A2

3
− A3

6
− 1− i

√
7

12
A4 − 1 + i

√
7

12
A5 +

A6

6

)

B680 =
4

49

(
A1 +

A2

5
+

A3

120
+

A4

20
+

A5

20
− A7

40

)

B1275 =
15

98

(
A1 +

A2

15
+

A3

15
− A4

30
− A5

30

)

B1920 =
192

833

(
A1 − 2A2

15
+

A3

120
+

A4

120
+

A5

120
+

5A6

192
− 3A7

320

)

B4352 =
128

245

(
A1 − A3

48
− A6

64
+

A7

128

)

Time: 1.4 sec

Here, 51 and 51 are different complex conjugate representations of dimension 51.

4.2. Comparison with the implementation of MeatAxe in Magma . The implemen-
tation of the MeatAxe algorithm in the computer algebra system Magma is considered to
be one of the best ones. The Magma database contains a 3906-dimensional permutation rep-
resentation of the exceptional Lie type group G2(5). The decomposition of this representation
into irreducible components over the field GF(2) is presented in [8] to illustrate the possibilities
of MeatAxe.

Applying our programs to this representation, we get the following data:
Rank: 4. Suborbit lengths: 1, 30, 750, 3125.

3906 ∼= 1⊕ 930⊕ 1085 ⊕ 1890

B1 =
1

3906

4∑

k=1

Ak

B930 =
5

21

(
A1 +

3

10
A2 +

1

50
A3 − 1

125
A4

)

B1085 =
5

18

(
A1 − 1

5
A2 +

1

25
A3 − 1

125
A4

)

B1890 =
15

31

(
A1 − 1

30
A2 − 1

30
A3 +

1

125
A4

)

Time C: 0.5 sec. Time Maple: 0.8 sec.
We see that in the case of zero characteristic, the representation can be split over the field Q.

One cannot split this representation over Q with Magma, due to memory exhaustion.
However, one can reproduce the same set of dimensions of irreducible components as in the
case of zero characteristic if one splits the representation over a finite field whose characteristic
does not divide the order of the group. In this case, |G2(5)| = 5859000000 = 26 · 33 · 56 · 7 · 31.
Therefore, the smallest field “modeling” Q in the above sense is GF(11). We present the
corresponding calculation session using Magma (the calculation time is displayed in seconds).

> load "g25";

Loading "/opt/magma.21-1/libs/pergps/g25"

The Lie group G( 2, 5 ) represented as a permutation

group of degree 3906.
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Order: 5 859 000 000 = 2^6 * 3^3 * 5^6 * 7 * 31.

Group: G

> time Constituents(PermutationModule(G,GF(11)));

[

GModule of dimension 1 over GF(11),

GModule of dimension 930 over GF(11),

GModule of dimension 1085 over GF(11),

GModule of dimension 1890 over GF(11)

]

Time: 282.060

4.3. Some calculations for sporadic groups. For completeness, we have tried to select
examples from both families of sporadic groups (“Pariah” and “Happy Family”) and from all
generations of “Happy Family.” Not all sections of the Atlas have sufficiently representative
data sets, so the examples below, along with the results solving difficult problems, contain
almost trivial ones.

The results of the calculations presented in this section contain information on ranks, lengths
of suborbits, structures of decompositions into irreducible components, and computation times.
For brevity, we omit explicit expressions for irreducible projections, which can be quite cum-
bersome. An expression of the form �m in a list of lengths of suborbits means that there are m
suborbits of length �. Nonequivalent irreducible components of the same dimension are distin-
guished either by the complex conjugation symbol (overline), or by Greek subscripts, or else
by the subscripts ±, which mean that there are two components having the structure A±B.
To distinguish one-dimensional representations from trivial ones, primes are used. Multiple
subrepresentations are combined using underbraces. The execution times of the programs
PreparePolynomialData and SplitRepresentation are indicated separately.

4.3.1. Mathieu groups. The five Mathieu groups M11, M12, M22, M23, and M24 are the first
sporadic groups to be discovered. Each group Mn is isomorphic to a multiply transitive
permutation group of n objects. Among all the Mathieu groups, only M12 and M22 have
nontrivial Schur multiplicators and groups of outer automorphisms. As concerns the structure
of decompositions, the most interesting case is that of extensions of the group M22.

The main properties of the group M22 are as follows:

Ord(M22) = 443520 = 27 · 32 · 5 · 7 · 11, M(M22) ∼= C12, Out(M22) ∼= C2.

(1) The 990-dimensional representation of the group 3.M22.

Rank: 13. Suborbit lengths: 13, 73, 423, 1683, 336.

990 ∼= 1⊕ 21α ⊕ 21β ⊕ 21β ⊕ 55⊕ 99α ⊕ 99β ⊕ 99β

⊕ 105+ ⊕ 105+ ⊕ 105− ⊕ 105− ⊕ 154

Time C: 1 sec. Time Maple: 28 sec.
(2) The 2016-dimensional representation of the group 3.M22.

Rank: 16. Suborbit lengths: 13, 553, 663, 1654, 3303.

2016 ∼= 1⊕ 21α ⊕ 21β ⊕ 21β ⊕ 55⊕ 105+ ⊕ 105+ ⊕ 105− ⊕ 105−
⊕ 154⊕ 210α ⊕ 210β ⊕ 210β ⊕ 231α ⊕ 231β ⊕ 231β

Time C: 2 sec. Time Maple: 1 h 15 min 52 sec.
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(3) The 1980-dimensional representation of the group 6.M22.

Rank: 17. Suborbit lengths: 16, 143, 843, 3365.

1980 ∼= 1⊕ 21α ⊕ 21β ⊕ 21β ⊕ 55⊕ 99α ⊕ 99β ⊕ 99β ⊕ 105+ ⊕ 105+

⊕ 105− ⊕ 105− ⊕ 120⊕ 154⊕ 210⊕ 330⊕ 330

Time C: 1 sec. Time Maple: 6 h 34 min 14 sec.

4.3.2. Leech lattice groups.
• The Higman–Sims group HS. Basic properties:

Ord(HS) = 44352000 = 29 · 32 · 53 · 7 · 11, M(HS) ∼= C2, Out(HS) ∼= C2.

(1) The 5600-dimensional representation of the group HS.

Rank: 9. Suborbit lengths: 1, 55, 132, 165, 495, 660, 792, 1320, 1980.

5600 ∼= 1⊕ 22⊕ 77⊕ 154⊕ 175⊕ 770⊕ 825⊕ 1056⊕ 2520

Time C: 2 sec. Time Maple: 2 sec.
(2) The 11200-dimensional representation of the group 2.HS.

Rank: 16. Suborbit lengths: 12, 110, 1322 , 1652, 6602, 7922, 990, 13202 , 19802.

11200 ∼= 1⊕ 22⊕ 56⊕ 77⊕ 154⊕ 175⊕ 176⊕ 176⊕ 616⊕ 616

⊕ 770⊕ 825⊕ 1056 ⊕ 1980 ⊕ 1980⊕ 2520

Time C: 7 sec. Time Maple: 1 h 25 min 47 sec.
(3) The 1100-dimensional representation of the group HS� 2.

Rank: 5. Suborbit lengths: 1, 28, 105, 336, 630.

1100 ∼= 1⊕ 77⊕ 154 ⊕ 175⊕ 693

Time C: < 1 sec. Time Maple: < 1 sec.
(4) The 1408-dimensional representation of the group 2.HS.2.

Rank: 11. Suborbit lengths: 14, 504, 3502, 504.

1408 ∼= 1⊕ 1′ ⊕ 22+ ⊕ 22− ⊕ 175+ ⊕ 175− ⊕ 308⊕ 352⊕ 352︸ ︷︷ ︸

Time C: < 1 sec. Time Maple: 3 sec.

• The Janko group J2. Basic properties:

Ord(J2) = 604800 = 27 · 33 · 52 · 7, M(J2) ∼= C2, Out(J2) ∼= C2.

(1) The 1800-dimensional representation of the group J2.

Rank: 18. Suborbit lengths: 1, 142, 21, 28, 423 , 843, 1686, 336.

1800 ∼= 1⊕ 36⊕ 63⊕ 63︸ ︷︷ ︸⊕126⊕ 126︸ ︷︷ ︸⊕160⊕ 175⊕ 288⊕ 336⊕ 336︸ ︷︷ ︸

Time C: 2 sec. Time Maple: 13 min 29 sec.

• The Conway group Co1. Basic properties:

Ord(Co1) = 4157776806543360000 = 221 · 39 · 54 · 72 · 11 · 13 · 23,
M(Co1) ∼= C2, Out(Co1) ∼= 1.
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(1) The 98280-dimensional representation of the group Co1.
Rank: 4. Suborbit lengths: 1, 4600, 46575, 47104.

98280 ∼= 1⊕ 299⊕ 17250 ⊕ 80730

Time C: 43 min 12 sec. Time Maple: 6 sec.

Remark. The program PreparePolynomialData uses more than 8.8 Gb of memory for
this task.

• The Conway group Co2. Basic properties:

Ord(Co2) = 42305421312000 = 218 · 36 · 53 · 7 · 11 · 23, M(Co2) ∼= 1, Out(Co2) ∼= 1.

(1) The 4600-dimensional representation of the group Co2.

Rank: 5. Suborbit lengths: 12, 8912, 2816.

4600 ∼= 1⊕ 23⊕ 275⊕ 2024⊕ 2277

Time C: < 1 sec. Time Maple: < 1 sec.

• The Conway group Co3. Basic properties:

Ord(Co3) = 495766656000 = 210 · 37 · 53 · 7 · 11 · 23, M(Co3) ∼= 1, Out(Co3) ∼= 1.

(1) The 48600-dimensional representation of the group Co3.

Rank: 8. Suborbit lengths: 1, 253, 506, 1771, 7590, 8855, 14168, 15456.

48600 ∼= 1⊕ 23⊕ 253⊕ 275⊕ 2024⊕ 5544⊕ 8855 ⊕ 31625

Time C: 2 min 17 sec. Time Maple: 2 sec.

• The McLaughlin group McL. Basic properties:

Ord(McL) = 898128000 = 27 · 36 · 53 · 7 · 11, M(McL) ∼= C3, Out(McL) ∼= C2.

(1) The 22275-dimentional representation (a) of the group McL.

Rank: 13. Suborbit lengths: 1, 112, 140, 210, 420, 672, 16802 , 2240, 33603 , 5040.

22275 ∼= 1⊕ 22⊕ 252⊕ 252︸ ︷︷ ︸⊕1750⊕ 1750︸ ︷︷ ︸⊕3520⊕ 5103⊕ 9625

Time C: 23 sec. Time Maple: 11 sec.
(2) The 66825-dimensional representation of the group 3.McL.

Rank: 14. Suborbit lengths: 13, 630, 22403 , 50403, 80643, 20160.

66825 ∼= 1⊕ 252⊕ 252⊕ 1750⊕ 2772 ⊕ 2772⊕ 5103β ⊕ 5103β

⊕ 5103α ⊕ 5544⊕ 6336⊕ 6336 ⊕ 8064⊕ 8064⊕ 9625

Time C: 8 min 45 sec. Time Maple: 12 min 59 sec.
(3) The 22275-dimensional representation (a) of the group McL� 2.

Rank: 11. Suborbit lengths: 1, 112, 210, 420, 1120, 1260, 25202 , 3360, 4032, 6720.

22275 ∼= 1⊕ 22⊕ 252⊕ 252︸ ︷︷ ︸⊕1750α ⊕ 1750β ⊕ 3520⊕ 5103 ⊕ 9625

Time C: 23 sec. Time Maple: 5 sec.

• The Suzuki group Suz. Basic properties:

Ord(Suz) = 448345497600 = 213 · 37 · 52 · 7 · 11 · 13, M(Suz) ∼= C6, Out(Suz) ∼= C2.
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(1) The 32760-dimensional representation of the group Suz.

Rank: 6. Suborbit lengths: 1, 891, 1980, 2816, 6336, 20736.

32760 ∼= 1⊕ 143⊕ 364⊕ 5940⊕ 12012 ⊕ 14300

Time C: 54 sec. Time Maple: 2 sec.
(2) The 65520-dimensional representation of the group 2.Suz.

Rank: 10. Suborbit lengths: 12, 8912, 28162, 3960, 12672, 207362 .

65520 ∼= 1⊕ 143⊕ 364α ⊕ 364β ⊕ 364β ⊕ 5940⊕ 12012

⊕ 14300⊕ 16016 ⊕ 16016

Time C: 6 min 9 sec. Time Maple: 11 sec.
(3) The 98280-dimensional representation of the group 3.Suz.

Rank: 14. Suborbit lengths: 13, 8913, 28163, 5940, 19008, 207363 .

98280 ∼= 1⊕ 78⊕ 78⊕ 143⊕ 364⊕ 1365⊕ 1365⊕ 4290 ⊕ 4290

⊕ 5940⊕ 12012⊕ 14300 ⊕ 27027⊕ 27027

Time C: 57 min 58 sec. Time Maple: 6 min 42 sec.
Remark. The PreparePolynomialData program uses more than 17.6 GB of mem-
ory for this task, which exceeds the RAM of our computer and slows the computations
due to the use of hard drive space.

(4) The 1782-dimensional representation of the group Suz� 2.

Rank: 3. Suborbit lengths: 1, 416, 1365.

1782 ∼= 1⊕ 780 ⊕ 1001

Time C: < 1 sec. Time Maple: < 1 sec.
(5) The 5346-dimensional representation of the group 3.Suz� 2.

Rank: 5. Suborbit lengths: 1, 2, 416, 832, 4095.

5346 ∼= 1⊕ 132⊕ 780⊕ 1001 ⊕ 3432

Time C: 1 sec. Time Maple: < 1 sec.

4.3.3. Monster sections. The main properties of the Held group He and the results of calcula-
tions for its 8330-dimensional representation are described in Sec. 4.1.

(1) The 29155-dimensional representation of the group He.

Rank: 12. Suborbit lengths: 1, 90, 120, 384, 9602 , 1440, 2160, 28802 , 5760, 11520.

29155 ∼= 1⊕ 51⊕ 51⊕ 680⊕ 1275⊕ 1275︸ ︷︷ ︸⊕1920⊕ 4352

⊕ 7650 ⊕ 11900

Time C: 42 sec. Time Maple: 11 sec.
(2) The 8330-dimensional representation of the group He� 2.

Rank: 6. Suborbit lengths: 1, 105, 720, 1344, 1680, 4480.

8330 ∼= 1⊕ 102⊕ 680⊕ 1275⊕ 1920 ⊕ 4352

Time C: 3 sec. Time Maple: 1 sec.

• The Fischer group Fi22. Basic properties:

Ord(Fi22) = 64561751654400 = 217 · 39 · 52 · 7 · 11 · 13, M(Fi22) ∼= C6, Out(Fi22) ∼= C2.
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(1) The 61776-dimensional representation of the group Fi22.

Rank: 4. Suborbit lengths: 1, 1575, 22400, 37800.

61776 ∼= 1⊕ 3080⊕ 13650 ⊕ 45045

Time C: 10 min 6 sec. Time Maple: 3 sec.
(2) The 28160-dimensional representation of the group 2.Fi22.

Rank: 5. Suborbit lengths: 12, 31592, 21840.

28160 ∼= 1⊕ 352⊕ 429⊕ 13650 ⊕ 13728

Time C: 39 sec. Time Maple: 2 sec.
(3) The 56320-dimensional representation of the group 2.Fi22 � 2.

Rank: 9. Suborbit lengths: 12, 728, 10802 , 31592, 21840, 25272.

56320 ∼= 1⊕ 1′ ⊕ 352⊕ 352⊕ 429+ ⊕ 429−
⊕ 13650+ ⊕ 13650− ⊕ 27456

Time C: 3 min 20 sec. Time Maple: 5 sec.

• The Fischer group Fi23. Basic properties:

Ord(Fi23) = 4089470473293004800 = 218 · 313 · 52 · 7 · 11 · 13 · 17 · 23,
M(Fi23) ∼= 1, Out(Fi23) ∼= 1.

(1) The 31671-dimensional representation of the group Fi23.

Rank: 3. Suborbit lengths: 1, 3510, 28160.

31671 ∼= 1⊕ 782 ⊕ 30888

Time C: 52 sec. Time Maple: 1 sec.

4.3.4. Pariah.
• The Janko group J1. Basic properties:

Ord(J1) = 175560 = 23 · 3 · 5 · 7 · 11 · 19, M(J1) ∼= 1, Out(J1) ∼= 1.

(1) The 1045-dimensional representation of the group J1.

Rank: 11. Suborbit lengths: 1, 8, 28, 563 , 1685.

1045 ∼= 1⊕ 56+ ⊕ 56− ⊕ 76⊕ 77+ ⊕ 77− ⊕ 120α ⊕ 120β ⊕ 120γ

⊕ 133⊕ 209

Time C: < 1 sec. Time Maple: 22 sec.

• The Janko group J3. Basic properties:

Ord(J3) = 50232960 = 27 · 35 · 5 · 17 · 19, M(J3) ∼= C3, Out(J3) ∼= C2.

(1) The 14688-dimensional representations (a) and (b) of the group J3.
Rank: 14. Suborbit lengths: 1, 285, 342, 380, 5702 , 8552, 11402, 17103, 3420.

14688 ∼= 1⊕ 85⊕ 85⊕ 1140 ⊕ 1140︸ ︷︷ ︸⊕1215+ ⊕ 1215− ⊕ 1615

⊕ 1920α ⊕ 1920β ⊕ 1920γ ⊕ 2432

Time C: 11 sec. Time Maple: 1 min 52 sec.

Remark. The Atlas [7] contains two nonequivalent 14688-dimensional representations
of the group J3, (a) and (b), which have the same decomposition structure. The

662



difference is manifested in the explicit expressions for irreducible projections (and in
the structure of orbitals), which we do not present here. The execution times also
coincide up to one second.

(2) The 6156-dimensional representation of the group J3 � 2.
Rank: 7. Suborbit lengths: 1, 85, 120, 510, 680, 2040, 2720.

6156 ∼= 1⊕ 324⊕ 646⊕ 1140⊕ 1215+ ⊕ 1215− ⊕ 1615

Time C: 1 sec. Time Maple: 1 sec.

• The Rudvalis group Ru. Basic properties:

Ord(Ru) = 145926144000 = 214 · 33 · 53 · 7 · 13 · 29, M(Ru) ∼= C2, Out(Ru) ∼= 1.

(1) The 4060-dimensional representation of the group Ru.

Rank: 3. Suborbit lengths: 1, 1755, 2304.

4060 ∼= 1⊕ 783 ⊕ 3276

Time C: < 1 sec. Time Maple: < 1 sec.
(2) The 16240-dimensional representation of the group 2.Ru.

Rank: 9. Suborbit lengths: 14, 23044, 7020.

16240 ∼= 1⊕ 28⊕ 28⊕ 406⊕ 783⊕ 3276⊕ 3654⊕ 4032 ⊕ 4032

Time C: 12 sec. Time Maple: 2 sec.

4.4. Concluding remarks. For the program PreparePolynomialData, the main restrict-
ing parameter is the dimension of the representation. A computer with 16 GB of RAM we
use can deal with dimensions at most 100000. For example, processing the 98280-dimensional
representation of the group 3.Suz requires 17.6 GB of memory, which causes the use of hard
drive space, resulting in a significant slowdown of computations. The Windows 10 operating
system we use can address up to 512 GB, so we can expect that if there is enough memory,
the program will cope with representations of dimensions of several hundred thousand.

The main bottleneck of the SplitRepresentation program is that it is based on polyno-
mial algebra methods, which are by nature algorithmically hard. The number of polynomial
variables is equal to the rank R of the permutation representation to be splitted. In practice,
the SplitRepresentation program has no difficulties with splitting representations of rank
at most 17, although there are some examples with ranks 18 and 19. However, representations
of finite groups often have low ranks. For example, the condition R ≤ 17 is satisfied for 761
out of 886, or 86%, permutation representations from the Atlas [7].

Systems of polynomial equations arising in the splitting algorithm using invariant projections
are very special. In particular, all roots of these systems belong to Abelian extensions. It would
be desirable to develop, instead of universal Gröbner bases methods, some approach that uses
the specific features of polynomial systems arising in the problem in question.
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Translated by N. N. Vasiliev.
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